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THE HEAT AND ADJOINT HEAT POTENTIALS
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Let G stand for the fundamental solution of the heat equation in R"*1, i.e.
2
G(x, 1) = (4151)_"/26XP(— E}-) for xeR", t>0,
t

G(x,f)=0 for xeR", t<0.

By the term measure we mean a finite Borel measure with compact supportin R™.
If p is a measure in R"*!, the heat potential G is defined by the equality

Gu(x, 1) =f Glx — & t — 1) dul&, 7).
Rn+1
Similarly one can define the adjoint heat potential GZ by

GH(x, 1) = J GHx — & 1 — 7) du(é, %) ,

Rn+1

where G* is the fundamental solution of the adjoint heat equation; G*(x, t) =
= G(x, —1). ’

Let u be a measure in R**1. It is known (see [1], [3], [4]) that for & €(0, 1) the
condition

(1) . sup {IGM(xl’ tl) - Gu(xZ’ IZ)I 5 )
Xy, X2 € R", le - x2| <e, |t‘1 - t2| < e’} S K&*

(i.e. G, is a Holder-continuous function with the coefficient a in the variable x and
the coefficient 4« in the variable t) is fulfilled if and only if the condition

(2) sup {u({(x, 1) e R™*Y; |x - él <e, |1: - tl < €%}); (&, 1) e R} < Mt

holds. As the condition (2) is “‘symmetric in the variable t”, an analogous condition
to (1) is fulfilled for the adjoint heat potential G} if and only if (2) holds. It is seen
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from this that the potential G:‘ is a Holder-continuous function with the coefficient o
in the variable x and with the coefficient }a in the variable ¢ if and only if the potential
G, possesses the same property. We will show that the assumption « > 0 is essential.
It holds (see [3], [4]) that the potent1a1 G, is uniformly continuous on R"*! if and
only if the condition

6) lim (sup { f,l(A(x, b, o)) de; (x, 1) € R"“}) ~0

a— o

is fulfilled, where .
Ax, t, ¢) = {(&, 1)eR"+_1; Gx —¢ t—1)>c} (c>0).

For the uniform continuity of the adjoint heat potential G, we have an analogous
condition under which G,‘:‘ is uniformly continuous:

@ lim (sup { f :oy(A*(x, <) de; (x, 1) e R"“} >= 0,

where
A*(x,t,¢) = {(¢&, 1) R**Y G*(x -&t—1)>c (c>0).

However, the conditions (3), (4) are not “symmetric in the variable £ which raises
the following question: are the conditions (3), (4) equivalent to each other, or in
other words, is it right that the potential G} is uniformly continuous if and only if
the potential G, is? The following example shows that the answer to that question is
negative.

If a measure p in R"*! is of the form u = 6., ® 4, where x, € R" (6, is a Dirac
measure in R"), A is a measure on R’, then the conditions (3), (4) are reduced to the
conditions

(3" ‘l'l_‘n‘:o (sup{f,l (<t - 41_1: ¢ 2, t>>dc; te R‘}) =0,
4) ‘I'Ln; (sup { J‘j}. (<t, t + ﬁ c‘z"'>) dc; te R‘}) =0

(cf. [4]).

. Let us now consider the case n = 1. Let 4 be a measure on R! with its support
supp A = 0,e"1), Wthh is defined by the density h (thh respect to the Lebesgue
measure)

, te(0,e7t),

-1
W) = \/(t) Int

h(f) = 0 for te R' — (0, e™"). First let us show that for each a > 0

J (= e
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i.e. the condition (4') (for n = 1) is not fulfilled. Let a > % ./(e/x). Then

[(Caee= -1 Gam)*-

(1/4u)a"d /12)(=0"1% 4o (1/4%)a~2 a
= - t —_— —t——— -
J’ 0 j a Jt)nt .[ 0 (J(t) Int

dt = + o0

(1/4n)a=12 a d (1/4n)a-2 dt
—————ne <+q)’ —_— —_— =
L J@)mnt I 2@t

Note that if u is a measure in R? which is, for instance, of the form py = Jo ® A
(66 is the Dirac measure in R! supported by the point 0), then one can even calculate
the value

since

GH(0,0) = L GH(—¢, 1) du(é, 1) = f o GH0, —1) h(z) dt =

- o 1 ! dt = +o
o 2(m@)J(r)ln< '
Now let us prove that the condition (3') (for n = 1) is fulfilled, i.e. for u = do ® 4

the potential G, is uniformly continuous on R2. It is obvious that it suffices to show
that

(3") lim (sup {J. A (<t -1 c?, t>) dc; te <0, e“)}) =
a= o ) a 4n
as (for any ¢ > 0) : .
A(<t - —!—c“z,t>> =0 for t<0,
4r

).(<t - ic“z, t>) < l(<e“ - —-l—c‘z,-e">> for t=e L.
4n 4r

Let 1€ (0, e~'). In order to calculate the value A({t — (1 [ar) ¢, t)) let us distinguish
the following two cases:

a) t-— 4—1—0" <0 (e c <3(re)"1?),
T

B) t—Sc 220 (iec2 Hu) ).
4
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In the case a) we have

t
‘l(<t———1-c‘2,t - 9
\ 4 0/(x)Int
and in the case b)
t
(w7
4n — (1/4n)c \/(r) Int
0 (1/2)(rt)~1)2 t
) f /L(<t _ Ll t>) dc = — de[ =&
a 4n a 0+/(7)Int

© t
d
- I ch '——t—— = Il + Iz
aan-12 Je-ame-2 V(D) In T

for a < (nt)~"/2. In the case a = }(nt)~'/2 we have

G D o e =t

The integral I, is evidently finite. The integrals I,, I are also finite, since

(7) J" dr 1 t d_r _
t=(1/4x)c=2 \/(T) Int| |l" tl t—(1/4n)c~2 \/""

e w)
_ 1 1 11
2nc? in 1 (J(t) + \/(t _ 41_1tc_2)> ¢ 2nn f| |/t

It is easily seen that for a fixed a > 0 the function

-3~

is continuous on the interval (0, e~ 1. Since the integral I, is finite, it holds for each
~ te(0,e7t) that

IM

® f{f)=>0 for a— +0
monotonically. Let us show that for each a > 0
) limf(f) = 0.

-0+
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It holds
1 (*dt Jt

= 2———
lln f 0T |in 1|

-
L el o

_ 1 _ 2a Jt
J(m) Iln tl [in |

We obtain from (7) that

< 1 J’ ® de _ .
(11) Il = 2n|ln t| \/t J 1)20n-12 € 21t|ln 1|t 2\/(1“) 0
for t - 0+. (9) follows from (10) and (11). Since f,(f) - 0 monotonically for a —
— + oo and since the functions f, are continuous, it is seen from Dini’s theorem that
fat) » 0for a > + oo uniformly on the interval <0, e~ ). Thus we see that the con-
dition (3”) is fulfilled and the potential G, (where u = §, ® A) is uniformly con-
tinuous on R?.

and hence

(10 |n|=

(1/2)(xt)=1/2 5 /4
<f ‘/ dc =

|1n tl

-0 for t—->0+.
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