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THE HEAT AND ADJOINT HEAT POTENTIALS 

MIROSLAV DONT, Praha 

(Received November 17, 1977) 

Let G stand for the fundamental solution of the heat equation in RH+1, i.e. 

G(x, t) = (47rr)-w/2exp(- ^-\ for xeRn, t>0, 

G(x, t) = 0 for xeRn, t = 0 . 

By the term measure we mean a finite Borel measure with compact support in Rm. 
If ix is a measure in Rn+1, the heat potential G is defined by the equality 

G„(x,f)= f G ( x - £ , f-T)d/i(£,T). 

Similarly one can define the adjoint heat potential G* by 

G,*(x, t) = f G*(x - & f - T) d/<£, T) , 
J Rn + 1 

where G* is the fundamental solution of the adjoint heat equation; G*(x, t) = 
= G(x, -*) . 

Let / ibea measure in Rn+1. It is known (see [1], [3], [4]) that for a e (0,1) the 
condition 

(1) sup {\GJ(xl9 tx) - GM(x2, *2)| ; 

xl5 x2eRn, \x± - x2| <£ 6, |t± - *2| = e2} <; Kea 

(i.e. GM is a Holder-continuous function with the coefficient a in the variable x and 
the coefficient i<x in the variable t) is fulfilled if and only if the condition 

(2) sup {fi({(x, t) e Rn+1; \x - t;\ S «, \x - t\ £ e2}); ((, x) e Rn+1} £ Me"+a 

holds. As the condition (2) is "symmetric in the variable f\ an analogous condition 
to (1) is fulfilled for the adjoint heat potential G* if and only if (2) holds. It is seen 
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from this that the potential G* is a H61der-continuous function with the coefficient a 
in the variable x and with the coefficient \OL in the variable t if and only if the potential 
GM possesses the samtf property. We will show that the assumption a > 0 is essential. 
It holds (see [3], [4]) that the potential GM is uniformly continuous on Rn+1 if and 
only if the condition 

(3) lim (sup | J ii(A(x, t, c))dc; (x, t) e Rn+11 j = 0 

is fulfilled, where 

A(x, t, c) = {({, T) e Rn+1; G(x - {, t - T) > c} (c> 0) . 

For the uniform continuity of the adjoint heat potential G* we have an analogous 
condition under which G* is uniformly continuous: 

(4) lim (sup j I n(A*(x, t, c)) dc; (x, t)eRn+1\\=Q, 

where 
A*(x, t, c) = {(£, T) Rn+1; G*(x - t, t - T) > c} (c > 0) . 

However, the conditions (3), (4) are not "symmetric in the variable t" which raises 
the following question: are the conditions (3), (4) equivalent to each other, or in 
other words, is it right that the potential G* is uniformly continuous if and only if 
the potential GM is? The following example shows that the answer to that question is 
negative. 

If a measure /i in Rn+1 is of the form \i = 8Xo ® X, where x0 e Rn (8XQ is a Dirac 
measure in Rn), A is a measure on R1, then the conditions (3), (4) are reduced to the 
conditions 

(3') Ita (sup | £ , ( ( , - 1 « - . , ))dc; , . « j ) - 0 . 

(4') , i ; n ( S U p | p ( ( « , 1 + ^ - ) ) d c ; , e I ! . } ) . 0 

(cf. [4]). 
Let us now consider the case n = 1. Let A be a measure on R1 with its support 

supp X = <0, e^1), which is defined by the density h (with respect to the Lebesgue 
measure): 

*(0 = - 7 ~ » ^(O.e-1), 

h(t) = 0 for t e R1 - (0, e - 1) . First let us show that for each a > 0 

fA(K c i)d c = + r o; 
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i.e. the condition (4') (for n = 1) is not fulfilled. Let a > \ V( e /*0' T h c n 

[A(^")>'-r*&--
" J o J. V0)in'=Jo V0-*-'~ 

- i \df = +00 
2.y(it)Hnt/ 

since 
Л ( l / 4 Я ) в - - f ( 

— dí < +co, -
Jo V ( ' ) l n ř Jo 

p(l/4я)a-- d ř 

= + oo 
2 y/(n) t In f 

Note that if /x is a measure in .R2 which is, for instance, of the form n = So ® A 
(<50 is the Dirac measure in i?1 supported by the point 0), then one can even calculate 
the value 

G;(0,0) = f G*(-{, - t ) djitf, T) = f G*(0, - T ) fc(x) dT = 
J.R- JO 

f 1 1 1 
SB — I dT = •{- oo . 

J0 2V(**W(T)1IIT 
Now let us prove that the condition (3') (for n = 1) is fulfilled, i.e. for \x = <50 ® A 

the potential GM is uniformly continuous on R2. It is obvious that it suffices to show 
that 

(3") lim (sup j p i /Yf - — c~2, A^ dc; t e <0, e-1)!") = 0 

as (for any c > 0) 

A((' -;r'•')) '° t o r , s 0 ' 
{(•-ic",))si('"-ic"'"})for '*'"• 

Let t e (0, e~ x>. In order to calculate the value A(<* — (1/4 )̂ c"2, f>) let us distinguish 
the following two cases: 

a ) x - — c~2 < 0 (i.e. c < l(wf)""1/2) > 
4K 

b) f - — c~2 £ 0 (i.e.. c = i (*0~1 / 2) . 
An 
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In the case a) we have 

«.(/. _ J L c - M _ _ f * L _ 
. l\ 4» // W W tat 

and in the case b) 

i{-i*-))-L 
dт 

-(l/4«)c-- V( T ) l n T 

Thus 

» re-^-»*-r H7k<-
T dcf i7ir-='-+'' 

J(l/2)(«f)->/. J«-(l/4)i)c-2 v v v l n T 

for a < i(itt)" ,/2. In the case a ^ i(jti)"1/2 we have 

J- \\ 4TC ' /J J. J,_(1/4- )c-2 V(t)lnT 

The integral J. is evidently finite. The integrals I2,13 are also finite, since 

(1) I P dT I < ______ j " dr __ 
IJ r-(i/4.)c-> V(T) In 11 ~ \ln t\ ],-imn)c-2 Jv 

-M+-<'-i-)> 
1 1 l l 

2тtc2 

W ( .y ( , ) + ^ _ i . c - . ) ) - ^ ^ -

It is easily seen that for a fixed a > 0 the function 

«*-ГA(('-ì'"•'»* 
is continuous on the interval (0, e"1). Since the integral J3 is finite, it holds for each 
re (0 , e M ) that 

(8) fa{t)-+0 for a-> +oo 

monotonically. Let us show that for each a > 0 

(9) lim/XO-0. 
«-»0 + 

202 



It holds 

Г dт 

|J0V(*)lnт 
< ł Г d т = 2 ^ 

|íиí|JoVT 1 4 
and hence 

1 /.(ì/г)^)-'/2 rt 
(10) | Ii| = dc 

| Jtt Jo 

d t 1 ^ Л ( 1/2)(«)-V2

 V , ^ _ 1 /.(ì/г)^)-'/2 rt 
(10) | Ii| = dc 

| Jtt Jo VWlnтj-J,, |/лí|" 

i : 
] a J' -> 0 for ř -> 0 + . 
|lní| VWІЧ 
] a J' -> 0 for ř -> 0 + . 
|lní| 

We obtain fгom (7) that 

(11) ľ-l < , _ Л /. Í d c = / , 2 d ( я í ) - 0 
. 2 л _ i_ . / . V V / 

for t -* 0 + . (9) follows from (10) and (11). Since fa(t) -> 0 monotonically for a -> 
-* + oo and since the functions/- are continuous, it is seen from Dini's theorem that 

fa(t) -> 0 for a -> +00 uniformly on the interval <0, e""1). Thus we see that the con­
dition (3") is fulfilled and the potential GM (where fi = <50 ® X) is uniformly con­
tinuous on JR2. 
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