
Časopis pro pěstování matematiky

Anton Dekrét
On forms and connections on fibre bundles

Časopis pro pěstování matematiky, Vol. 105 (1980), No. 1, 73--80

Persistent URL: http://dml.cz/dmlcz/118048

Terms of use:
© Institute of Mathematics AS CR, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118048
http://project.dml.cz


časopis pro pěstování matematiky, roč. 105 (1980), Praha 

ON FORMS AND CONNECTIONS ON FIBRE BUNDLES 

ANTON DEKRET, Zvolen 

(Received October 20, 1977) 

Let 7i : E -> M be a fibre bundle. Let J1E be the first prolongation of E9 i.e. JlE 
is the set of 1-jets of all local cross-sections of E. Let us recall (see for example [l], 
[4]) that a connection on E is a global cross-section F : E -> JlE9 that is a distribu­
tion of horizontal tangent subspaces TU9 where TUE -= TUEX ® Tu9 ue £, nu = x. 
In this paper we find some relations between forms and connections on E. Our 
considerations are in the category C00. 

1. Let M be a differentiate manifold. Let L(M) or A(M) or S(M) be the algebra 
of all forms or of all antisymmetric or of all symmetric forms, respectively, on M. 
Let t/f : TM -> TM or q> : J\r+1TM -> TM be a vector bundle morphism or an anti­
symmetric vector bundle morphism, respectively. Let co or e be a form or an anti­
symmetric form, respectively, of degree p on M. Let/be a function on M. Put 

-V = °> <W=0> 

(ZV») (X l9..., Xp) = £ a ^ , . . . , •>*!,..., XF), 

(d^e)(X1?...,Xr+P) = J] sgn ae[cp(Xffl9 ...,X(r(r+1))9...,Xa{r+p)] 
aeS 

where 5 is the set of all such permutations of the set {1, ..., r 4- p] that a\ < ... 
... < a(r + 1); a(r + 2) < ... < a(r + p). 

Let us recall the following properties. 

Lemma 1. The mapping D$ :co -* D^co is a differentiation of degree 0 on algebras 
L(M)9 A(M)9 S(M). 

Lemma 2. The mapping d9 : co -> d9co is a differentiation of degree r on A(M)9 

that is 
dip(c01 A C02) » dyCO! A co2 + (-1)** a*! A d^<u2 , 
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where co± is a p-form on M; i.e., if r is even or uneven, then d9 is a differentiation 
or antidifferentiation of degree r on A(M). 

For e e A(M) d$e = D^e. 

2. Let n : E -* M be a fibre bundle. Let (x\ y*) or (x\ ya, yty, i = 1, ..., dim M, 
a = 1, ...,dimEx, be a local chart on E or on JXE, respectively. Let a connection 
T :E -* JXE be locally given by (x\ ya) -• (x\ y*, ya

t = at(x, y)). Denote by Tu the 
horizontal tangent subspace determined by F(w), ue E. Then TUE = FM © TUEX, 
x = %u. There are two canonical projections v : TUE -• TUEX, A : TUE -> FM and we 
have two canonical vector bundle morphisms A : TE -> TE and v : TE -+ VTE, 
where VT£ denotes the fibre bundle of all vertical tangentvectors on E. Let co be a form 
on F. Denote by A*cy and v*co the forms c0A and cov, respectively. 

Proposition 1. Let co be a form of degree p on E. Then 

(1) Dhco + Dvco = pco , 

v*Dvco = p(v*co) = Dv(v*co) , 

h*Dhco = p(h*co) = Dh(h*co) . 

Proof. 

co(Xl5 ...,Kp) = co(AX, + vXt,X2, ...,Xp) = ^(AX,, ...,Xp) + co(xXx, ...,Xp) 

co(Xu ...,Xp) = co(Xu ...,KP_1, AXp + vXp) = co(Xx,..., hXp) + co(Xx, ..., vXp). 

By summation we get Dhco + D̂ co = pco. Then v*Dvco = p(v*co), h*Dhco = p(h*co) 
and by the definitions of Dp, Dfc we get D^v*^) = p(v*co), Dh(h*co) = p(h*co). 

Since v . A = A . v = 0, the definitions of Dv and D/, immediately yield 

Proposition 2. TAe composition of Dv and Dh is commutative, i.e. Dv. Dh = Dh. Dv. 
A form co of order p on E will be said to be F-vertical or total F-vertical, if A*c0 = 0 

or if co(Xx,..., Xp) = 0 when at least one vector of the set {Xl9..., Xp) is horizontal. 
This implies 

Proposition 3. The form v*co or Dvco is total T-vertical or T-vertical, respectively. 

Proposition 4. If a form co is total T-vertical then Dhco = 0 and Dvco = pco. 
It is easy to see that co — A*co is F-vertical. 
Let us recall (see [2]) that a form co is semi-basic if co(Xu ...,Xp) = 0 when 

3ie{l , . . . , P} :Xte VTE. Therefore an antisymmetric P-form is semi-basic if and 
only if iyCo = 0 for any vertical tangent vector Y, where iyco denotes the contraction 
of co by Y. Locally, a form co is semi-basic if 

co = ah Jpdxh (g) ... ® dxip . 
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If co is semi-basic then Dvco = 0 and Dhco = pco. 
An antisymmetric p-fovm on E will be said to be quasi-semi-basic if iYco is semi-

basic for any Ye VTE. Locally, co is quasi-semi-basic if and only if 

(3) co = ailmmApdxil A ... A dxip + ah ip_l(Xdxil A ... A dxip~x A dya . 

By the definition of Dh, Dv we have Dv(dxl) = 0, Dv(dya) = dya - a\dxl, Dh(dxl) = 
= dxi, Dh(dya) = aadxl. This gives 

Proposition 5. If co is quasi-semi-basic but not semi-basic then Dvco and Dhco are 
quasi-semi-basic but not semi-basic. 

Recall (see for example [ l ] , [4]) that the curvature form of F is an antisymmetric 
2-morphism 

$ :TE ® TE -+ TE 

<P(XU9Yu) = v([hX,hY]), 

where [hX, hY~\ is the Lie bracket of such fields X, Yon E that Xu e X, Yu e Y, u e E. 
Locally 

/A\ ^ iVffal B da*J e Sal daa:\ . , _ hl ^ d 
(4) <P = - — \ a

p: ^ a{ + —--. ] dV A dxk ® = 

= iAy xJ' A t f ® — . 
3 dya 

The mapping d0 is an antidifferentiation of the first degree and 

(5) d0(dxl) = 0 , d*(dya) = iAa
jkdxj A dxk . 

Proposition 6. Let # be the curvature form of the connection F. Then d^d® = 0. 

Proof. The mapping d<-> being an antidifferentiation of A(E) with the property 
d<pf = 0 for any function / on E, it is determined by its action on A1(E). Using (5) 
we get our assertion. 

Denote Hu = {<*>(X, 7) : X, Ye TUE}. 

Proposition 7. Let co be a (p — i)-form on E. Let iyco = 0/or any vector tangent 
field, the value of which lie in the spaces Hu. Then d^co = 0. 

Proof. d0co(Xu ...,XP+1) = Xsgn(7(w(^(KSl,XS2),XS3, ...,XSp+1) = 
aeS 

= £ sgn <ri0(X ,* )Co(Xs39 •••> -*sp+1)- This completes our proof. 
<reS 

Quite analogously, if iYco = 0 for any horizontal tangent vector Ythen co e Ker Dj,. 
Let d denote the exterior differentiation on A(E). Then 3 = Dvd — dDj, is an anti-

differentiation of degree 1 on A(E). By Proposition 3 we get 

(6) fc*3= -h*dDv. 
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Proposition 8. Let (o be a p-form on E. Then 

h*(3(o)= -h*d*(o. 

Proof. h*dDv(o(Xl9 . . . ,X P + 1 ) « dDv(o(hXl9..., hXp+1) = 

= ~ £ ( - l ) l + ' - M [ * * i . hXj]9 hXl9..., & , , . . . , hXj9..., hXp+1) = 
i<J 

= - Z ( - i ) i + M # ^ > ^I]> hxl9..., fcxf,..., hx,,..., hXp+1) = 
i<j 

= E ( - i r i + J " M ^ ( ^ > ft*I)> ^i> •••> ^ > •••> *Xj,..., hKp+1) = 
.<1 

= d<j,(o(hXl9..., hXp+1) = h*d0(o(Xl9 ...9Xp+1)9 where the symbol ^ indicates 
that a vector ft is dropped. The relation (6) completes our proof. 

Proposition 9. If the form Dv(o is closed then 3(0 is T-vertical. If the form (o is 
closed then Dv(o is closed if and only if clco = 0. 

Proof follows from the definition of 3. 

3. In the sequel we are going to study in detail some relations between bilinear 
forms and connections on E. Let w = atJdxx ® dxj + aaidya (g) dxl + aiadxl ® 
® dya + aapdya ® dyfi be a bilinear form on E. Then Dhco is quasi-semi-basic. Let 
Y = ba(d\dya) be a vertical tangent field. Then 

iY(0 = a^dx1 + aafib
adyp , h*(iyO>) = (aai + a^a?) badxl. 

The form (o will be said to be associated with a connection F on E if h*iY(o = 0 for 
any vertical tangent vector Y. Locally, a bilinear form (o is associated with a connec­
tion T on E if and only if 

(7) aai + aaPa* = 0 . 

Let aTu = {X e TUE : iY (o(X) = 0 for any Ye TuEm9 nu = m}. The bilinear form o> 
on E will be called connecting if the distribution of the tangent subspaces WTM 

determineds a connection on E. If (o is connecting then the connection of the tangent 
subspaces "T,, will be denoted by T . 

As dim {/yea : Ye TuEm} :< dim Em9 we have dim mTu = dim M. Then the mapping 
u -• wTtt is a connection if and only if the assertion 

(ZeTuEm A Z e T t t ) - > Z = 0 

is true for any w e E. Locally, let Z = ca(d\dya). Then Z € aTu if and only if iY w(Z) = 
= 0 for any Ye TuEm9 i.e. if and only if aafic

a = 0. Then a> is connecting if and only if 
det(a^) 4= 0, i.e. if and only if the restriction of a> to vertical tangent vectors is 
a regular form. This yields 
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Proposition 10. Let co be connecting. Then co is associated with a connection T if 

and only if F = °T. 

Let us recall that if co is quasi-semi-basic then it is not connecting. If co is a 2-form 

(i.e. antisymmetric of the second order) then it can be connecting only if dim Ex 

is even. 

Proposition 11. Let co be a connecting 2-form on E. Then the connection "T is 

integrable if and only if 

h*(LY(o — iYdco) = 0 

for any vertical tangent field Y. 

Proof. By definition WF is integrable if and only if h*(diYco) = 0 for any vertical 

tangent field Y. The known relation LY = iYd + diY completes our proof. 

Let co or F be a bilinear form or a connection, respectively, on E. Denote by 

^IOJ W2O> Mil* w 2 i t r i e following forms: 

co10(X, y) = co(hX, Y) , co20(X, Y) = co(vX, Y) , 

co01(X, Y) = co(X, hY) , co02(X, Y) = co(X, vY), 

co12(X, Y) = co(hX, vY) , co21(X, Y) = co(t;K, hY) . 

Lemma 3. Let co or F be a bilinear form or a connection, respectively, on E. Then 

(8) co10 = h*co + co12 , 

co01 = h*co + co21, 

Dhco = co10 + co01 , 

Dhco — Dvco = 2(h*co — t;*co), co = h*co + DvDhco + v*co, 

DvDhco = co12 + co21 , DvDvco = Dvco + 2t;*co, 

DhDhco = Dhco + 2h*co. 

Proof. co10(X, y) = co(hX, hY + vY) = co(hX, hY) + co(hX, vY) = h* co(X, Y) + 

+ co12(X, Y). The other relations can be proved analogously. 

Proposition 12. A bilinear form co is associated with a connection T if and only if 
co21 = 0. 

Proof. Let co21 = 0. Then h*iY co(X) = iYco(hX) = co(y, hX) = co21(y,X) = 0 
for any vertical tangent vector Y. Let co be associated with F. Then co2t(Y,X) = 
= co(vY, hX) = h*ivY co(X) = 0. 

Corollary. The forms co02, co10, co12, h*co9 v*co are associated with F. 

Lemma 4. Let co be either antisymmetric or symmetric. Then co21 = 0 if and 
only if co12 = 0. 
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Û>02 = t;*co + co12 , 

D,;CO = co20 + o)02, 



Proof is obvious. 

Proposition 13. Let co be either antisymmetric or symmetric. Then co is associated 
with a connection T if and only if Dhco is semi-basic. 

Proof. co21(y,X) = co(vY, hX) = Dhco(vY,X) = ivYDhco(X). Then the definition 
of the semi-basic form and Proposition 12 complete our proof. 

Proposition 14. Let co be either antisymmetric or symmetric. Then co is associated 
with T if and only if izco is semi-basic for any horizontal vector Z. 

Proof. co12(X, Y) = co(hX, vY) = ihXco(vY). Proposition 12 and Lemma 4 
complete' the proof. 

By the relation (8) we get 

Proposition 15. Let co be either antisymmetric or symmetric and associated with F. 
Then 

DhDvco = 0 , Dvco = 2v*co , Dhco = 2h*co , co = h*co + v*co . 

Corollary. If co is associated with F, T-vertical and either antisymmetric or sym­
metric then Dn

vco = 2nco. 

Lemma 5. Let co or T be a bilinear form or a connection, respectively, on E. 
Then 

(co - h*co)21 = (Dvco)21 = (Dhco)21 = (co20)21 = (co01)21 = co21 . 

Proof, (co - h*co)2i (X, Y) = (co - h*co) (vX, hY) = co(vX, hY) = co21(X, Y). 
The other relations can be proved analogously. 

Corollary of Lemma 5 and Proposition 12. Let co or T be a bilinear form or a con­
nection respectively on E. Then the forms co, co — h*co, Dvco, Dhco, co20, co01 are 
associated with T if and only if one of them is associated with T. 

Proposition 16. Let co be a bilinear connecting form on E. Let F be a connection 
on E. Then the forms co — h*co, Dvco, co20, co02, v*co determined by T are con­
necting and T = ""r = "**T. 

Proof. Let locally co = a^dx1 ® dxj + aaidya ® dxl + aiadxl ® dy* + aaf}dy* ® 
® dy0. Let 

Q e {Dvco, CO20, co02, co — h*co, v*co} . 

Then Q = C^dx1 ® dxj + Caidy* ® dxl + Ciadxl ® dy* + ca^dy* ® dyp where 
c 4s 0 is a constant. As det (caap) + 0 we conclude that Q is connecting. By Proposi­
tion 10 and Corollary of Proposition 12, F = *2 or .= v*°r. 
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Proposition 17. Let co be a bilinear connecting form on E. Let co — h*co, Dvco, co20 

be determined by °T. Then 

op __ (o-h*a>p __ Dv(or> __ (O20T1 

Proof. The form co is associated with °T. Therefore by Lemma 5 and Proposition 
12 the forms co — h*co, Dvco, co20 are associated with °T. Then Propositions 16 and 
10 complete our proof. 

Proposition 18. Let co be a connecting 2-form on E. Then a connection F on E is 
integrable if and only if d0co is semi-basic. 

Proof. Let us recall that F is integrable if and only if the curvature form <P of F 
vanishes, i.e. if Ajk = 0. Let co = \aiidxi A dxJ + aaidya A dxl + \aa$dya A dyp. 
Then d^co = aaiA

a
kdxJ A dxk A dx{ + aaPAa

kdxJ A dxk A dy& is semibasic if and 
only if aaPAa

jk = 0. As det (aaP) + 0, it holds aaPAa
jk = 0 if and only if Aa

jk = 0. 

Remark . Using the local expresion of d0co we obtain: If a; is a connecting 2-form 
and F is a connection on E then d0co is semi-basic if and only if d0co = 0. 

Let Q be a ternary from on E. Let F be a connection on E. Denote by Q112 the 
form determined by 

Q112(X9 Y, Z) = Q(hX, hY, vZ) . 

Lemma 6. Let co be a connecting 2-form on E. Let F be a connection on E. Let 0 
be the curvature form of F. Then d0co = 0 if and only if(d^co)112 = 0 . 

Proof. Locally, (d0co)112 = — aaPAa
jka

p
idxJ A dxk A dxl + aapAa

kdxJ A dxk A 
A dyp. This yields our assertion. 

Proposition 19. Let co be a 2-form on E. Then 

(d(v*co))112 = -(d<r>co)112 

for any connection F on E. 

Proof. (dv*co)112 (X, Y, Z) = dv*co(hX9 hY, vZ) = hX(v*co(hY, vZ)) -

- hY(v*co(hX, vZ)) + vZ(v*co(hX9 hY)) - v*co([hX, hY], vZ) + v*co([X, vZ], hY)-

- v*co([hY, vZ], hX) = -co(v[hX, hY], vZ) = -(d0co)112(X, Y, Z). 

Corollary of Proposition 18, 19 and Lemma 6. Let co be a connecting 2-form on £ . 
Then a connection F is integrable if and only if (dv*co)112 = 0. 

Proposition 20. Let co be a connecting 2-form on E. Then the connection WF is in­
tegrable if and only if 

(ddvco)112 = 0 . 
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Proof. The form co is associated with T . Therefore dvco = 2t;*a). The previous 
corollary completes our proof. 
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