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ON FORMS AND CONNECTIONS ON FIBRE BUNDLES

ANTON DEKRET, Zvolen

(Received October 20, 1977)

Let n : E > M be a fibre bundle. Let J'E be the first prolongation of E, i.e. J'E
is the set of 1-jets of all local cross-sections of E. Let us recall (see for example [1],
[4]) that a connection on E is a global cross-section I' : E — J'E, that is a distribu-
tion of horizontal tangent subspaces I',, where T.E = T,E, ® I',, u€ E, nu = x.
In this paper we find some relations between forms and connections on E. Our
considerations are in the category C*. ’

1. Let M be a differentiable manifold. Let L(M) or A(M) or S(M) be the algebra
of all forms or of all antisymmetric or of all symmetric forms, respectively, on M.
Let yy : TM —» TM or ¢ : A"*'TM — TM be a vector bundle morphism or an anti-
symmetric vector bundle morphism, respectively. Let w or ¢ be a form or an anti-
symmetric form, respectively, of degree p on M. Let f be a function on M. Put

Dyf =0, d,f=0,
P
(D.'lw)(Xl"“’Xp)=.Z:1w(X1""’¢XI'""’Xp)’

(d(pe) (Xb AR Xr+p) = Zssgn 08[(p(Xdl’ LR Xa(r+ 1))’ R Xa(r+p)]
where S is the set of all such permutations of the set {1, e T+ p} that o1 < ...
o<o(r+1)0(r+2)<...<0or+p).
Let us recall the following properties.

Lemma 1. The mapping D, : @ - Dywisa differéntiation of degree 0 on algebras
L(M), A(M), S(M).

Lemma 2. The mapping d, : @ — d,w is a differentiation of degree r on A(M),
that is

dy(0; A wy) = dyw; A @, + (=1 0, A dyo,,
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where w, is a p-form on M i.e., if r is even or uneven, then d, is a differentiation
or antidifferentiation of degree r on A(M).
For ¢ e A(M) dge = Dye.

2. Let n : E > M be a fibre bundle. Let (x/, y*) or (x, )% »3), i = 1, ...,dim M,
a=1,...,dim E,, be a local chart on E or on J'E, respectively. Let a connection
I' : E - J'E be locally given by (x%, y*) = (x%, %, ¥ = ai(x, y)). Denote by I', the
horizontal tangent subspace determined by I (u), ueE. Then TE=T,® T,E,,
x = nu. There are two canonical projections v : T,E —» T,E,, h : T,E - I', and we
have two canonical vector bundle morphisms h:TE —» TE and v: TE - VTE,
where VTE denotes the fibre bundle of all vertical tangentvectors on E. Let w be a form
on E. Denote by h*w and v*w the forms wh and wv, respectively.

Proposition 1. Let w be a form of degree p on E. Then
(1) Dyw + Do = po,

v*D,w = p(v*w) = D,(v*w),

h*Dyw = p(h*w) = Dy(h*w).

......................................................................

By summation we get D, + D,w = pw. Then v*D,w = p(v*w), h*Dyw = p(h*w)
and by the definitions of D,, D, we get D,(v*w) = p(v*w), Dy(h*w) = p(h*w).
Since v.h = h.v = 0, the definitions of D, and D, immediately yield

Proposition 2. The composition of D, and D, is commutative,i.e. D,. D, = D, . D,.

A form w of order p on E will be said to be I'-vertical or total I'-vertical, if h*w = 0
orif w(X,, ..., X,) = 0 when at least one vector of the set {X, ..., X,} is horizontal.
This implies

Proposition 3. The form v*w or D,w is total I'-vertical or I'-vertical, respectively.

Proposition 4. If a form o is total I'-vertical then Dyw = 0 and D,w = pw.

It is easy to see that  — h*w is I'-vertical.

Let us recall (see [2]) that a form  is semi-basic if o(Xy, ..., X,) = 0 when
Jie{l,..., p} : X, € VTE. Therefore an antisymmetric p-form is semi-basic if and
only if iyw = O for any vertical tangent vector Y, where i,» denotes the contraction
of @ by Y. Locally, a form w is semi-basic if

0 =a; . dx"Q..Q®dx".
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If w is semi-basic then D,w = 0 and D,w = pw.

An antisymmetric p-form on E will be said to be quasi-semi-basic if iy is semi-
basic for any Ye VTE. Locally, w is quasi-semi-basic if and only if
3) O =a; ;dx'" Ao Adx" +oag o LdX A LA dxT A dY*
By the definition of D,, D, we have D,(dx’) = 0, D,(dy*) = dy* — a%dx’, Dy(dx’) =
= dx’, D,(dy") = ajdx’. This gives

Proposition 5. If w is quasi-semi-basic but not semi-basic then D,w and D,w are
quasi-semi-basic but not semi-basic. :
Recall (see for example [1], [4]) that the curvature form of I is an antisymmetric
2-morphism
®:TE® TE —» TE

#(X,, Y,) = u([hX, hY]),

where [hX, hY] is the Lie bracket of such fields X, Yon E that X, € X, Y,e Y,u € E.
Locally '

4 ¢=1[(ﬂ‘a”—a—a’;a£+aa".—%>dxjAdx"]@ 0 =

2|\ay? 7 ayf ox)  oxk 0y* .

= 3A45dx’ A dx* @ 9 .
ay*

The mapping dg is an antidifferentiation of the first degree and
() do(dx’) = 0, do(dy®) = 345dx) A dx*.
Proposition 6. Let @ be the curvature form of the connection I'. Then dgdg = 0.

Proof. The mapping dy being an antidifferentiation of A(E) with the property
dof = 0 for any function f on E, it is determined by its action on A'(E). Using (5)
we get our assertion.

Denote H, = {&(X, Y) : X, Ye T,E}.

Proposition 7. Let w be a (p — 1)-form on E. Let iyw = O for any vector tangent
field, the value of which lie in the spaces H,. Then dgw = 0.

Proof. dow(Xy, ..., X,4+1) = Y sgn oo D(X,, X,,), Xy oo0s X L)) =

s Aspey
oeS

= ), sgn oigx, , xsz)a)(ij, .-+, X, ,,)- This completes our proof.

oeS

Quite analogously, if iyw = 0 for any horizontal tangent vector Y then w € Ker D,
Let d denote the exterior differentiation on A(E). Then d = D,d — dD, is an anti-
differentiation of degree 1 on A(E). By Proposition 3 we get

(6) w*d = —h*dD, .
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Proposition 8. Let w be a p-form on E. Then
. h*(dw) = —h*dyo .

PI‘OOf. h*dew(Xx, ooy Xp+x) = de(D(hXI, ceny th+1) =
N N
= - Z(-l)’-*"Duw([h.Xh hXj], th, ceay hXi, ooy hXj, ceny th+ 1) =
i<j

N N
- a;,(‘ 1) o(o[hX;, hX ] hX gy ooy BX oy oo BXy oy BX ) =

AN A
= Y (-1)"1"2¢(d(hX;, hX;), hXy, ..., hX,, .., hX;, ., hX ) =
i<j

= dew(hXy, ..., hX ;1) = h*dew(Xy, ..., X,.1), Where the symbol  indicates
that a vector X is dropped. The relation (6) completes our proof.

Proposition 9. If the form D,w is closed then dw is I'-vertical. If the form w is
closed then D,w is closed if and only if dw = 0.
Proof follows from the definition of d.

3. In the sequel we are going to study in detail some relations between bilinear
forms and connections on E. Let = a;dx’ @ dx’ + a,dy* ® dx' + a;dx’' @
® dy* + a,pdy* ® dy” be a bilinear form on E. Then D,w is quasi-semi-basic. Let
Y = b%(0/dy~) be a vertical tangent field. Then

iyw = a,b%dx' + a,b°dy?, h*(iyw) = (a, + agaf) b%dx’.

The form  will be said to be associated with a connection I' on E if h*iyw = 0 for
any vertical tangent vector Y. Locally, a bilinear form o is associated with a connec-
tion I on E if and only if

(7) ay + azaf =0.

Let °T, = {X e T,E : iy o(X) = O for any Ye T,E,, nu = m}. The bilinear form
on E will be called connecting if the distribution of the tangent subspaces “T,
determineds a connection on E. If w is connecting then the connection of the tangent
subspaces “T, will be denoted by “I".

Asdim {iyw : Ye T,E,} < dim E,,, we have dim “T, = dim M. Then the mapping
u — “T, is a connection if and only if the assertion

(ZeTE, A Ze“T)=>Z =0

is true for any u € E. Locally, let Z = ¢%(0/0y"). Then Z € “T,, if and only if iy o(Z) =
= 0 for any Ye T,E,, i.c. if and only if a,5¢* = 0. Then w is connecting if and only if
det (a,p) * O, i.e. if and only if the restriction of w to vertical tangent vectors is
a regular form. This yields
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Proposition 10. Let w be connecting. Then  is associated with a connection I' if
and only if ' = “TI. ’

Let us recall that if w is quasi-semi-basic then it is not connecting. If w is a 2-form
(i.e. antisymmetric of the second order) then it can be connecting only if dim E,
is even.

Proposition 11. Let w be a connecting 2-form on E. Then the connection “I is
integrable if and only if
h*(Lyw — iydw) = 0

for any vertical tangent field Y.

Proof. By definition I is integrable if and only if h*(diyw) = 0 for any vertical
tangent field Y. The known relation Ly = iyd + diy completes our proof.

Let w or I" be a bilinear form or a connection, respectively, on E. Denote by
W10, W0, W14, W4 the following forms:

wo(X, Y) = o(hX, Y), (X, Y)=(vX,Y),
woy(X, Y) = w(X, hY), » wo2(X, Y) = (X, vY),
0,5(X, Y) = o(hX,vY), @,y(X,Y) = o(vX, hY).

Lemma 3. Let w or I be a bilinear form or a connection, respectively, on E. Then

(8) W0 = h*w + w,,, Wy = V*0 + 0, ,
Wy, = h*ow + ®,,, Woy = V0 + @4, ,
Dyw = wyo + oy » Dw = wyy + Wo3 ,

Dyw — Do = 2(h*o — v*w), o = h*ow + D,Dyw + v*w,

D,Dw = w;, + w,;,, D,Dw= Dw + 2v*w,
D,Dyw = Dyw + 2h*w . ‘
Proof. wo(X,Y) = w(hX, hY + vY) = w(hX, hY) + o(hX,vY) = h* (X, Y) +

+ w,,(X, Y). The other relations can be proved analogously.

Proposition 12. A bilinear form w is associated with a connection I if and only if
w21 = O.

Proof. Let w,;; = 0. Then h*iy w(X) = iy w(hX) = (Y, hX) = w,,(Y, X) =0
for any vertical tangent vector Y. Let w be associated with I'. Then a)n(Y, X)=
= w(vY, hX) = h*i,y o(X) = 0.

Corollary. The forms wg,, w9, W2, h*w, v*w are associated with I.

Lemma 4. Let o be either antisymmetric or symmetric. Then w,, = 0 if and
only if w;, = 0.

77



Proof is obvious.

Proposition 13. Let w be either antisymmetric or symmetric. Then w is associated
with a connection I if and only if D,w is semi-basic.

Proof. w,(Y,X) = w(vY, hX) = Dyo(vY, X) = i,yD,w(X). Then the definition
of the semi-basic form and Proposition 12 complete our proof.

Proposition 14. Let w be either antisymmetric or symmetric. Then  is associated
with I if and only if iw is semi-basic for any horizontal vector Z.

Proof. w;,(X,Y) = w(hX,vY) = i,3o(vY). Proposition 12 and Lemma 4

complete the proof.
By the relation (8) we get

Proposition 15. Let w be either antisymmetric or symmetric and associated with I'.
Then
D,Dw =0, Dw=2w*w, Dw=2h*w, o=h*o + v*o.

Corollary. If w is associated with I', I'-vertical and either antisymmetric or sym-
metric then D)w = 2"w.

Lemma 5. Let w or I’ be a bilinear form or a connection, respectively, on E.
Then

(‘U - h*w)ZI = (D,,w)“ = (th)u = (wzo)n = (w01)21 = Wy -

Proof. (0 — h*co)u (X, Y) = (0 — h*o) (vX, hY) = o(vX, hY) = 0,(X, Y).
The other relations can be proved analogously.

Corollary of Lemma 5 and Proposition 12, Let w or I' be a bilinear form or a con-
nection respectively on E. Then the forms w, ® — h*w, D,w, D,w, w,,, Wy, are
associated with I if and only if one of them is associated with I'.

Proposition 16. Let w be a bilinear connecting form on E. Let I' be a connection
on E. Then the forms ® — h*w, D,w, 0,4, Wy,, v*w determined by I' are con-
necting and I' = ®2[ =", ‘

Proof. Letlocally w = a,;dx' ® dx’ + a,dy* ® dx' + a,,dx' ® dy* + a,dy* ®
® dy*. Let _
Qe {D,w, Wy, wy,, ® — h*w, v*w} .
Then Q = C;dx' ® dx/ +.C,idy* @ dx' + Cdx’ @ dy* + cazdy* ® dy? where

¢ % Ois a constant. As det (ca,p) % 0 we conclude that Q is connecting. By Proposi-
tion 10 and Corollary of Proposition 12, I' = ®2°[" = **“T",
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Proposition 17. Let w be a bilinear connecting form on E. Let ® — h*ow, D,w, ©,,
be determined by “I'. Then

or = w-h‘wr = Dumr = @0

Proof. The form w is associated with “I". Therefore by Lemma 5 and Proposition
12 the forms o — h*w, D,w, w,, are associated with “I". Then Propositions 16 and
10 complete our proof.

Proposition 18. Let w be a connecting 2-form on E. Then a connection I' on E is
integrable if and only if dyw is semi-basic.

Proof. Let us recall that I' is integrable if and only if the curvature form @ of I’
vanishes, i.e. if 4; = 0. Let @ = }a,;dx* A dx/ + a,dy* A dx' + }a,dy* A dy*.
Then dew = auA3dx’ A dx* A dx' + a,zA%dx) A dx* A dy? is semibasic if and
only if a,A4% = 0. As det (a,g) =+ 0, it holds a,44% = 0if and only if 4% = 0.

Remark. Using the local expresion of dgw we obtain: If w is a connecting 2-form
and I is a connection on E then dgw is semi-basic if and only if dgw = 0.

Let Q be a ternary from on E. Let I' be a connection on E. Denote by 2,,, the
form determined by )

Q,1:(X, Y, Z) = Q(hX, hY, vZ) .

Lemma 6. Let @ be a connecting 2-form on E. Let I be a connection on E. Let &
be the curvature form of I'. Then dew = 0 if and only if (dew);,, = 0.

Proof. Locally, (dgw)y;, = —apdhaldx! A dx* A dx' + a,pA%dx) A dx* A
A dy®. This yields our assertion.

Proposition 19. Let w be a 2-form on E. Then
(d(v*®))112 = —(do®)112
for any connection I' on E.
Proof. (dv*w),;, (X, Y, Z) = dv*w(hX, hY,vZ) = hX(v*w(hY, vZ)) —
— hY(v*o(hX, vZ)) + vZ(v*w(hX, hY)) — v*o([hX, kY], vZ) + v*o([X, vZ], hY) —
— v*o([hY, vZ], hX) = —w(v[hX, hY], vZ) = —(dew),12(X, Y, Z).

Corollary of Proposition 18, 19 and Lemma 6. Let w be a connecting 2-form on E.
Then a connection I' is integrable if and only if (dv*w),;, = 0.

Proposition 20. Let w be a connecting 2-form on E. Then the connection “I is in-
tegrable if and only if

(dde)IIZ = 0 .

79



Proof. The form w is associated with “I". Therefore d,w = 2v*w. The previous
corollary completes our proof.
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