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Časopis pro pěstování matematiky, roč. 105 (1980), Praha 

CONJUGATE CYCLIC (v, k, ^-CONFIGURATIONS*) 

V£ROSLAV JURAK, PodSbrady 

(Received July 6, 1977) 

I. BASIC DEFINITIONS AND THEOREMS 

Definition 1. Let 9C = \x0, xl9 . . . ,x„- i} be a set of distinct integers modulo v 
and B0, Bl9..., Bb_l a system & of distinct subsets (blocks) of X. If the system $ 
satisfies the following axioms: 

(I) \B\ = fc (i = 0 , l , . . . , b - 1), 
(II) each pair of distinct elements of X occurs together in exactly A distinct sets 

of ®, 

(III) the integers v, k, X satisfy the inequalities 0 < X,k < v — \, 

then $ is called a (b, v, r, fc, ̂ -configuration. (As in [1].) 

For the (b, v, r, fc, ̂ -configurations we have the following theorems: 

(IV) each element of X occurs in exactly r sets of 08, 

(V) bfc = vr, 

(VI) r(fc - 1) = X{v - 1), 

(VII) b = v (=>r = fc). 

(The proofs are in [1].) 

Definition 2. Let X =- [x0, xi9..., x ^ . J be a set of distinct integers modulo v and 
f?0, _? l s . . . , Bv_! a system 31 of distinct subsets (blocks) of X. If the system ^ satisfies 
the following axioms: 

(1) |2^| = fc(i = 0 , l , . . . , i > - 1), 

(2) IB, n Bj\ = A, i # I, (i,I = 0 , 1 , . . . , i; - 1), 

(3) the integers t;, fc, A satisfy the inequalities 0 < A < f c < u — 1, 

*) The author had presented this result in another form at the Conference on Graph Theory — 
Smolenice (Czechoslovakia), March 1976. 
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then £& is called a (v, k, X)-configuration. (As in [1].) The system & is also called the 
(v, k, X)-configuration (X, $). We note that any (v, k, ^-configuration is in fact 
a (v, v, k, k, ^-configuration. (See [1].) 

Definition 3. Two (v, k, .^-configurations (X, $), (X, J") are said to be identical 
if and only if # = # ' , and we write (X, ») = (X, # ' ) . 

Proposition 1. Given a (v, k, X)-configuration (X, 08), there exists no (v + l,v, k, 
k, X)-configuration (X, &*) such that i l* = l u 5 where B c X, B + B(e08 
(i = 0, 1,...,!? - 1) and |B | = /c. 

Proof. From Theorem (V) we get 

(v + 1) k = vk 

and this implies fc = 0; a contradiction with Axiom (3). 

Definition 4. An isomorphism a of a (v, k, ^-configuration (X, J*) is a permutation 
of X such that if x eX and B e J , then 

x e B o a(x) e a(B). 

(As in [2].) If a(08) — 31, then the isomorphism a is called an automorphism of the 
(v, k, X)-configuration (X, 08). 

Definition 5. A (v, k, ^-configuration (X, 08) is called cyclic if there exists its auto­
morphism a such that 

a : i i-> i + 1 (mod v) for each i e X 

and the system 08 is denoted so that 

B{ i—> B i + J , i + 1 (mod v) for each B{ e 08 . 

(As in [2].) 

Proposition 2. For a given integer j define a mapping a of the given cyclic (v, k, X)-
configuration (X, 08) onto (X, 08) by 

ot : i h-> i + j (mod v) for each ieX , and 

Bt h-> Bi+j , i + j (mod v) for each Bte 08 . 

Then a is an automorphism of(X, 08). 

Proof. This Proposition follows from a composition of automorphisms from 
Definition 5. 
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Definition 6. A set D = {al9 al9..., ak} of integers modulo v is called a (0, fc, A)-
difference set, if for each d ^ 0 (mod 0) there are exactly A distinct ordered pairs 
(ai9 aj)9 where ai9 aj e D9 such that at — aj = d (mod 0). (As in [2].) 

Theorem 1. A set D = {al9a29..., afc} 0/ integers modulo v is a (v9 fc, X)-difference 
set if and only if a system of v sets Bp = {at + p,a2 + p, ...,ak + p} modulo v 
(p = 0, 1, . . . , v — 1) is a cyclic (v9 fc, X)-configuration. (Cf. the proof in [2].) 
Hence B0 = D and each set Bp is a (v9 fc, X)-difference set. 

We shall use the (v9 k, A)-configuration (3C, $) where the system J^ = {Bp} 
(p = 0, 1, . . . , v — 1) is the system of sets from Theorem 1, and its isomorphism a 
which is given by the following definition: 

OL:X\-+ v — x (mod v) for each x e 3C . 
Theorem 1 implies 

Bp = {fli + P, a2 + p, ...9ak + p} (modi;) (p = 0, 1,...,0 - 1). 

Let p be a fixed integer. Then to each d ^ 0 (mod v) there exist exactly A distinct 
ordered pairs (ai + p, aj + p) where at + p9 aj + p e Bp such that 

(at + p) - (aj + P) = at - aj = d (mod 1;) . 
We get 

oc(Bp) = {v - (a! + P), 1; - (a2 + p), ..., v - (ak + p)} (mod v) 

(p = 0 , l , . . . , i ; - 1) . 

Let p be a fixed integer. Then to each d -£ 0 (mod 0) there exist exactly A distinct 
ordered pairs (1; — (ay + P), 1; — (af + P)) where v — (a,- + p), v — (at + p)e 
e a(Bp) such that 

(v - (ay + p)) - (v - (at + p)) = af - ay s d (mod 1;) . 

The foregoing remarks yield 

Proposition 3. Let a set D = {al9 a29..., ak} 0/ integers modulo v be a (v9 fc, A)-
difference set. Given a fixed integer p9 then the set 

a(5i>) = iv - ( a i + P)> v ~ (a2 + P),..., 0 - (a
k + p)} (mod v) 

is a (v9 fc, X)-difference set. The system of sets 

^ = {a(Bp)} (p = 0 , l , . . . , » - l ) 

is a cyclic (v, fc, X)-configuration. 
It is easy to see the validity of the following two propositions: 

Proposition 4. Let ai9aj9 p, v be integers. Then 

v — at = aj + p (mod v) o at + aj = v — p (mod v) . 
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Proposition 5. Let p be an integer and let & = {x0, xl9..., x ^ . J be a set of distinct 
integers modulo v.Jhen the congruence 

(*) v — x = x + p (mod v) 

has at most one solution from % for v odd and at most two solutions from 2E for v 
even. 

These facts are important for the formulation of suppositions in the following 
considerations. 

II. OBSERVATIONS FOR v ODD 

Now, we shall prove the following 

Lemma 1. Let v be an odd integer and let the set D = {al9 al9..., ak} of integers 
modulo v be a (v, fc, X)-difference set. We have here a cyclic (v9 fc, ^-configuration 
(%9 @) with the system @ = {Bp} (p = 0, 1, . . . , v - 1) where Bp = {a1 + P, 
a2 + P> •••> ak + P}- U ™e define an isomorphism of (<%9 $) as follows: 

a : x »-> v — x (mod v) for each of x e X , 

then Bp 4= cc(B0)for all p = 0, 1, . . . , v — 1. 

Proof. To prove this lemma we consider four cases. 
1. Let k be an odd integer. Let each ateB0 satisfy the condition at + a{ = 

= v — p (mod v). Next, let the elements of B0 be suitably denoted so that 

air-i + a2r = v — p (mod v) , 

where r = 1, 2 , . . . , (fc — l)/2. Hence we get that 

V — a2r-l
 = a2r + P (mod v) 

and also 

v - a2r = a2r-i + P (mod v), 

where r = 1, 2 , . . . , (fc — l)/2. Then a(f*0) and Bp have fc — 1 elements in common. 
Since 

' ak + ak ^ v — p (mod v) 

(cf. the suppositions and Proposition 5), it follows that 

v — ak $ ak + p (mod v) . 

That is, Bp * a(B0). 

2. Let again fc be an odd integer. Let the elements of B0 be suitably denoted so that 

ax + a1 = v — p (mod u) 
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and 

(a) a2r + a2r+i = v — p (mod v) 

for all r = 1, 2 , . . . , (k - l)/2. Hence and from Proposition 4 it follows that Bp = 
= a(B0). 

2 t . Now, let also A be an odd integer. The number of congruences (a) is (k — l)/2, 
the number of differences a2r — a2r+i>a2r+i _ airy (r = 1,2, . . . , (k — l)/2) is 
k — 1 and in view of Axiom (3) it is k — 1 < v — 2. Hence there exists at least one 
number d -£ 0 (mod v) for which 

«2r - a2r+U a2r+l ~ a2r ^ d (mod t;) 

for aU r = 1, 2, ..., (k — l)/2. Then it is possible that there exists a convenient 
s = 1, 2, ..., (k - l)/2 such that 

either a2s — ai = d (mod v) or ax — a2s = d (mod v) . 

This s fulfils 

«2s + a2s+i = v - p (mod i?) . 

Hence in the first case we have in fact also 

ai ~ a2s+i — d (modi;) 

and in the second case also 

a2s+i ~ ai — d (mod v) . 

Then to d in the first case there exist two pairs (a2s, aj), (au a2s+ -) satisfying 

a2s ~ au ai ~ a2s+i = d (mod v) 

and in the second case there exist two pairs (al9 a2s), (a2s+1 , ai), satisfying 

ai - a2s> a2s+i - ai = d (mod i?). 

For each at, t = 2, 3, ..., k, t 4= 2s, it is 

either at — ax =f= d (mod v) or at — at -# d (mod v) . 

If there exists no s with the above properties, then there are necessarily such m,n = 
= 1, 2 , . . . , (k — l)/2, where m + n, that either the equivalence 

a 2m ~ a2n = d (mod v) o a2n+l - a2m+л = d (mod i?) 

or 
a2m - «2«+i = ̂  (mod v) o a2n - a2m+1 = d (mod г;) 

holds. This means that to d there exist either two pairs (a2 m, a2„), (a2n+1, a2m+1) 
satisfying 

a2m - a2n> a2n+l " a2m+1 = d (mod v) 
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or two pairs (a2m, a2n+1), (a2n, a2w+1) satisfying 

* a2m ~ a2n+U a2n ~ a2m+l = d (mod v) . 

Altogether, we have that the number of pairs (ah aj) with ah aj e B0 such that 

at — aj = d (mod v) , 

is even; a contradiction with A odd, Hence Bp + a(B0). 
22. Now, let A be an even integer. By congruences (a) we have 

a2r - a2r+i - ^a2r ~ v + P (mod v), a2r+1 - a2r = 2a2r+1 - v + p (mod v) 

Since all elements of B0 are different, the same holds for all numbers 2a 2r — v+ p, 
2a2r+1 — v + P(mod v) for all r = 1, 2,. . . , (fc — l)/2. None of these numbers are 
congruent with 0 (mod v) by the assumption and Proposition 5. Then to some d #= 
^ O(modv) there exists a convenient r = 1,2, ...,(fc — l)/2 such that the con­
gruence 

a2r — a2r+l =" d (mod V) 

holds. To complete the proof we use the same argument as in 21 of this, proof, now 
with this d. However, now the number of pairs (ah aj) with aha}e B0 such that 

a( — aj = d (mod v) 

is even or zero. Hence we conclude that the number of these pairs (ah aj) is odd; 
a contradiction with the assumption that it is even. Thus Bp + a(f*0). 

3. Let fc be an even integer. Let each ateB0 satisfy the condition at + at^ 
^ v — p (mod v). Next, let the elements of B0 be suitably denoted so that 

(b) tf2r~i + a2r = v - P (mod v), 

where r = 1, 2,. . . , fc/2. Hence and from Proposition 4 it follows that Bp = a(f?0). 
3 t . Let us consider the integer A to be odd. The number of congruences (b) is fc/2, 

the number of differences a2r — a2r_1? a2r_t — a2r (r = 1, 2,. . . , fc/2) is fc and in 
view of Axiom (3) it is fc < v — 1. Hence there exists at least one number d ^ 
.£ 0 (mod v) for which 

«2r - tf2r-1> a2r-l ~ a2r ^ ^ (mod v) 

for all r = 1, 2,. . . , fc/2. Then there are necessarily such s,t = 1,2,..., fc/2, where 
s =t= t, that either the equivalence 

a2s ~ a2t = d (mod v) o a2r_j — a2s_t = d (mod v) , 
or 

a2s — a2,_i = rf (mod v) o a2t — a2s_x = d (mod v) 

holds. This means that to d there exist either two pairs (a2s, a2t), (a2r_1, a2s_j) 
satisfying 

a2s - a2t, a2t-i - «2s- i = d ( m o d v ) 
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or two pairs (a2s, a2t.j), (a2t, a2s_j) satisfying 

«2s - ^ r - i , a2t - a2s_! = d (mod v). 

Hence we conclude that for this d the number of pairs (ah aj) with ai9 aj e B0 such 
that 

ax — a^ = d (mod v) 

is even; a contradiction with k odd. Thus 2?p #= a(50). 
32 . Let .4 be also an even integer. By congruences (b) we have 

a2r ~ 02r-i = 2a2r - v + p (mod v), a2r_1 - a2r = 2a2 r_1 - D + p (mod v). 
As in 22 of this proof these diiTerences are distinct, in fact -£ 0 (mod v), for all 
r = 1,2,..., fc/2. Then to each d -̂  0 (mod v) there exists a convenient r = 1,2,... 
..., fc/2 such that the congruence 

a2r-i — a2r = d (mod u) 

holds. Now we proceed with this d in the same way as in 31 of this proof. We have 
here that the number of pairs (ai9 aj) with ai9ajeB0 such that 

at — aj = d (mod v) 

is even or zero. Hence we conclude that the number of these pairs (at, aj) is odd; 
a contradiction with the assumption that X is even. Thus Bp =# oc(B0). 

4. Let fc be an even integer. Let the elements of B0 be denoted in a suitable way 
so that 

al -F ax = v — p (mod v) 
and 

a2r + a2r+l = v - p (mod v) 

for all r = 1, 2, ...,(fc — 2)/2. Hence and from Proposition 4 it follows that Bp 

and oc(B0) have fc — 1 elements in common. In view of Proposition 5 the congruence 
(*) is satisfied for precisely one element. With regard to the supposition we may 
assume that this occurs exactly for x = al9 and thus it is 

v — ak -£ ak + p (mod v) . 
Then Bp 4= a(B0). 
This completes the proof of Lemma 1. 

III. OBSERVATIONS FOR v EVEN 

It is quite easy to verify 

Proposition 6. Let v be an even integer. Then the equation 

X(v - 1) = fc(fc - 1) 
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(which follows from Theorem (VI)) is satisfied only for even k. 
Now, we shall sketch the proof of the following 

Lemma 2. Let v be an even integer and let a set D = {ax, a2,..., ak} of integers 
modulo v be a (v9 fc, k)-dijference set. We have a cyclic (v, k, ?,)-configuration 
(%, @) wtth the system & = {Bp} (p = 0, 1, . . . , v - 1) where Bp = {ai + p, 
a2 + p, ...,ak + p}. If we define an isomorphism of (2£, @) as follows: 

0L\xr-*v — k (mod v) for each of x e 2£ , 

then Bp #= a(B0)for all p = 0, 1 , . . . , v — 1. 

Proof. 1. Let fc be an odd integer. Let each ate B0 satisfy the condition at + a( ^ 
-£ v — p (mod v). Further, let the elements of B0 be denoted in a suitable way so 
that 

a2r-i + a2r = v — p (mod v) 

where r = 1, 2, ...,(fc — l)/2. If we proceed in the same way as in part 1 of the 
proof of Lemma 1 then we have also Bp 4= a(B0). 

2. Let fc be an odd integer. Let the elements of B0 be denoted so that 

at + at = v — p (mod v) 
and 

a2r + a2r+l =V — p (mod v) 

for all r = 1, 2, ...,(fc — l)/2. Now we proceed in the same way as in 22 of the 
proof of Lemma 1. Here we have that Bp =j= a(B0). 

3. Let fc be an odd integer. Let the elements of B0 be denoted so that 

a t + ax — v — p (mod v), 

a2 + a2 = v — p (mod v) 
and 

a2r-i + a2r = v — p (mod v), 

where r = 2, 3,..., (fc — l)/2. Then Bp and OL(B0) have fc — 1 elements in common. 
Since 

ak + ak #. v — p (mod v) 
it is 

v — ak --}- ak + p (mod v) 

in view of Proposition 4. Hence Bp =# oc(B0). 
4. Let k be an even integer. Let at + at -£ v — p (mod v) for each a(e B0. Further, 

let the elements of B0 be denoted so that 

a2r-l + a2r — v — P (mod v) 

where r == 1,2 , . . . , fc/2. Now we proceed in the same way as in 32 of the proof of 
Lemma 1. Here we have Bp + <x(Ba). 
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5. Let fc be an even integer. Let the elements of B0 be denoted so that 

ax + at = v - p (mod v) 
and 

a2r + a2r+x = v - p (mod v) 

for all r = 1, 2 , . . . , (fc — 2)/2. We proceed in this case in the same way as in 4 of the 
proof of Lemma 1. Here we have that Bp + a(B0). 

6. Let fc be an even integer. Let the elements of B0 be denoted so that 

a! + a! = v — p (mod v) , a2 + a2 = v — p (mod v) 
and 

(c) a2r_1 + a2r = v - p (mod v) 

for all r = 2, 3 , . . . , fc/2. From the congruences (c) we obtain 

a2r — a2r-i — 2a2r — v + p (mod v), a 2 r - i — a2r = 2a2 r_1 — v + p (mod v) . 

As in 22 of the proof of Lemma 1 these differences are distinct, and -£ 0 (mod v) 
and here even -f- v/2 (mod v) for all r = 2, 3 , . . . , k/2. Then to some d -£ 0, v/2 (mod v) 
there exists a convenient r = 2, 3, ..., fc/2 such that the congruence 

a2r_1 — a2r = d (mod v) 
holds. Note that 

ai — a2, a2 — at =£ d (mod v) . 

If we proceed in the same way as in 3 x of the proof of Lemma 1 with this d, we have 
again Bp + a(B0). 

This completes the proof of Lemma 2. 

IV. CONCLUSION 

Let, in this section, the set D = {al9 a2, ..., ak} of integers modulo v be 
a (v, fc, /l)-difference set. Hence, the system & = {Bp}, p = 0 , 1 , . . . , v — 1 where 
Bp = {at + p, a2 + p,..., ak + p} is a cyclic (v, fc, /^-configuration (^ , ^ ) and 
the system @ = {a(£p)}, p = 0, l , . . . , v — 1 where oc(Bp) = {v — (ax + p), 
t̂  — (a2 + P),..., v — (a* + p)} is also a cyclic (v, fc, ̂ -configuration (̂ *, ^ ) . 

We may summarize the results of the foregoing observations: 

Proposition 7. In view of Proposition 1 we can prolongate a cyclic (v, k, ^-con­
figuration (3£, 8$) neither by a(B0) nor by any one of oc(Bp) (p = 1, 2 , . . . , v — 1). 

Proposition 8. Given a cyclic (v, fc, ̂ -configuration (2£, &) and its isomorphism 

a : xI—> v — x for each x e f , 
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then a is never an automorphism of(2C, 0$). 

Theorem 2. If there exists a cyclic (v, k, X)-configuration (SC, 0$), then if we define 
an isomorphism of(9C, 36) by a : x h-> v — xfor each xe9C,we get a cyclic (v, fc, A)-
configuration (3C, W), where a(^) = !% and both the configurations (3C, $), (3C, ~gj) 
are distinct. 

Corollary. Let v, fc, A be positive integers. If there exists a cyclic (v, fc, X)-con-
figuration (2C, $) then the number of distinct cyclic (v, fc, X)-configurations is even. 

Consider now a cyclic (v, fc, A)-configuration (2C, $). Since v — (i; — x) = x, 
there exists an automorphism of (2C, 8$) 

a 2 : x H u - x H u - ( i ; - x ) for each x e i . 

All this entitles us to express the results of this paper in the following way: 
Two cyclic (v, fc, A)-configurations (SC, $) and (9C, $) may be called conjugate. 
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