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Časopis pro pěstování matematiky, roč. 105 (1980), Praha 

GROUPOIDS WITH A CLOSURE CONDITION 

NASEEM AJMAL, Delhi 

(Received March 23, 1977) 

I N T R O D U C T I O N 

J. ACZEL [1] while classifying regular algebraic nets corresponding to the classes 
of isotopic quasi groups and satisfying various closure conditions, T, R, B, Bi9 B2 

and H, also proved that in a quasigroup, associativity implies Reidemeister con­
dition R, i.e., for all xh yt (i = 1, 2, 3, 4) in the quasigroup, 

* i • y2 = * 2 • yi ( = q) > * i • y4 = *2 • y3 ( = r), x3 . y2 = x 4 . y1 ( = p) 

imply that 

* 3 • y4 = * 4 • y3 ( = S) . 

Further, Aczel [2] proved that Reidemeister condition is necessary and sufficient 
for associativity of loops. 

By putting xx = yi = e the identity of the loop in condition R we get condition R\ 
i.e., 

if y2 = x2 and >!4 = x2 . y3 , x4 = x3 . y2 then x3 . j ; 4 = x4 . y3 . 

R' is equivalent to Reidemeister condition I? in a loop; further, R' is equivalent 
to assiciativity in any groupoid. 

Here we define another closure condition N for a groupoid (G, •), namely, for all 
xh yt in G (i = 1, 2, 3, 4), 

* i • y2 = * 3 • yi ( = q) > * i • y4 = * 2 • y3 ( = r) x2 . y2 = x 4 . y1 ( = p) 

imply that 

* 3 . y 4 = ^ 4 . y 3 ( = s ) . * 

This condition is certainly diflFerent from Reidemeister, Bol and Hexagonal closure 
conditions. 

We observe that in a loop, closure condition IV is equivalent to associativity 
together with commutativity. In a groupoid with an identity, if we put xx = yx = e 

14 



the identity of the groupoid in condition IV then we get condition IV', i.e., 

if y2 = x3 and y4 = x2 . y3 , x4 = x2 . y2 then x3 . y4 = x4 . y3 . 

Here IV' is equivalent to IV^-associativity (discussed in [3]) in any groupoid. 
A groupoid (G, •) satisfies IVr-associativity [3] if (a . b). c = b . (a . c) for all 

a, b, c in G. 
In this paper we wish to investigate some of the properties of groupoids satisfying 

closure condition IV. We shall see under what conditions these groupoids are semi­
groups or groups. 

FOTEDAR in [6] has investigated necessary and sufficient conditions for an isotope 
of a given groupoid to be a semigroup or group. He appears to be successful in giving 
a partial solution of the problem, assuming the presence of an identity element in 
the given groupoid. In this connection he has stated that generalized associative law 
holds in a groupoid (G, •), if there exists a pair of elements (a, b) in G such that 

[{x(by)}a-]z = x[b{(ya)z}] 

for all x, y, Z in G, and then he has proved the following. 

Theorem. If (G, •) is a groupoid with unit element 1 then the groupoid (G, 0) 
isotopic to (G, •) under the isotopy x 0 y = xa . yp is a semigroup iff there exists 
a pair of elements a, b in G such that 

xa = xa , xp = bx 

for all x in G and (G, •) satisfies the g.a.l. 

[{x(by)}a-]z = x[b{(ya)z}] 

for all x, y, Z in G. Moreover, (G, 0) is a group iff in addition to the above conditions, 
(G, •) is a quasigroup. 

Finally, he remarks that the presence of an identity element in (G, •) introduces an 
element of incompleteness in the solution of the problem. In this context, we may 
invoke the following analogue of a famous theorem due to A. A. ALBERT, proved 
by N. J. S. HUGHES in 1957. 

If a groupoid with a unit element is isotopic to a semigroup, then they are iso­
morphic. 

This result rules out the possibility of finding necessary and sufficient conditions 
for an isotope of a given groupoid with a unit element to be a semigroup since in that 
case the groupoid itself becomes a semigroup. Therefore, the theorem proved in this 
regard states only the following. 

If a groupoid with a unit element contains a pair of right non-singular and left non-
singular elements such that the g.a.l, is satisfied then it is a semigroup. 

Theorem 6 of this paper gives us necessary and sufficient conditions for an isotope 
of a given groupoid to be an abelian group. 
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DEFINITIONS AND NOTATIONS 

Definition 1. A groupoid (G, •) is called left equally cancellative if and only if for 
all xl9 x2, yx in G, 

yi • xi = yi • x2 implies y . xx = y . x2 for all y in G . 

Similarly, right equally cancellative groupoids are defined. Further, a groupoid 
is said to be equally cancellative if it is both left and right equally cancellative. 

Definition 2. A groupoid (G, •) is called left cancellative if and only if for all 
xl9 x2, y in G, 

y • x i = y • x2 implies xx = x2 . 

Similarly, right cancellativity and (two sided) cancellativity are defined. 

Definition 3. A groupoid (G, •) is an N-groupoid if and only if for all x,, yt in G 
0 = 1,2,3,4), 

*1 • y2 = *3 • yl , *1 • y4 = X2 • y3 , 

x2 • y2 = *4 • yi imp ly x 3 . y 4 = X4 . }>3 . 

We shall denote this groupoid by (GN, •). 
When used in connection with a groupoid (G, •) the product xy will be equivalent 

to x . y. 
The first theorem gives us alternative axioms for an abelian group. 

Theorem 1. A groupoid (G, •) satisfies the conditions 

(i) for all x2, x3, y3 in G, 

y4 = *2y3 <™d x4 = x2x3 imply x3y± = x4>>3 ; 

(ii) x a = b is uniquely solvable in x for all a, b in G, if and only if (G, •) is an 
abelian group. 

Proof. If condition (i) holds in G then by putting the values of >>4 = x2y3 and 
x4 = x2x3 in x3>>4 = x4y3, we have, for all x2, x3, y3 in G, 

*3v*2y3) = 0*2*3) y3 (IVr-associativity). 

Next we prove that (G, •) is commutative. 
Let a, be G, by condition (ii) there exists a unique x in G such that x a = b. 
Now, 

a b = a(x a) = (x a) a = b a . 

Then commutativity of (G, •) and condition (ii) imply that ax = bis also uniquely 
solvable in x for every a, b in G, hence (G, •) is a quasigroup. Again commutativity 
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and IVr-associativity imply that (G, •) is associative as well. 
Therefore (G, •) is an abelian group. 
The converse of Theorem 1 is trivially true. 

Theorem 2. Every N-groupoid is equally cancellative. 

Proof. Suppose (GN9 •) is an N-groupoid and 

r1s1 = r2sx , r l s r2, st in GN . 

In closure condition N . 

* l y 2 = * 3 y l , * 2 y 2 = * 4 y l , * l y 4 = * 2 y 3 

imply 

put 

This gives 

* 3 y 4 = * 4 y З ; 

* 1 = * 2 = * 3 = Г l J * 4 = r2 ' 

yl = y2 = Sl > yЗ = y4 = 5 , S Іľí GN 

r i s i = r 2 s i implies rts = r2s for all s in G . 

Similarly, right equal cancellativity can be proved. 

Lemma 1. Every equally cancellative groupoid with an identity element is can­
cellative. 

Theorem 3. A groupoid with an identity element is an N-groupoid if and only 
if it is a cancellative abelian semigroup. 

Proof. Suppose (GN9 •) is an IV-groupoid with an identity element e. 
Let xl9 x2 in GN9 then by condition IV equations 

* 1 * 2 = ( * 1 * 2 ) e * x i e = e x i 9 ex2 = x 2 e 

imply 

( * 1 * 2 ) e = * 2 * i , 

i.e., x1x2 = x2xt. Hence (GN9 •) is commutative. 
Further, if xl9 x2, x 3 are in GN then 

* 2 * 1 = ( * 1 * 2 ) e , * 2 * 3 = ( * 3 * 2 ) e
 5 ( * 3 * 2 ) * 1 = ( ( * 3 * 2 ) * l ) e 

imply 

(*1* 2) *3 = (0*3*2) * i ) e -

This gives us (x xx 2) x 3 = (x 3x 2) xl9 which reduces to associativity in commutative 
groupoids. 
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Cancellativity follows from Theorem 2 and Lemma 1. 
Conversely, suppose (G, •) is a cancellative abelian semigroup. 
Let xi9 yteG (i = 1, 2, 3, 4) be such that 

*iy2 = *3y i , xxyA = x2y3 , x2>!2 = x4fy1. 
Then 

(xiya) (x4yi) (^2y3) = (x3yi) (x2y2) (xiy*) • 

Now applying associativity, commutativity and cancellativity we get 

*4y3 = X3y4 • 

Hence (G, •) satisfies condition IV. 

Corollary 3.1. A loop satisfies closure condition N if and only if it is an abelian 
group. 

Corollary 3.2. A groupoid (G, •) is an N-groupoid with an identity element e such 
that, for all b in G, a . b = e has a solution in a9 if and only if(G9 •) is an abelian 
group. 

Theorem 4. If (GN9 •) is an N-groupoid with elements r, s such that, for all y 
in GN9 there exists x in GN satisfying xy = s and rG = G then for each pair of 
elements c, d in GN the equations 

xc = d, cy = d 
are solvable for x and y in GN. 

Proof. We shall first prove that GNt = GN, where te GN is such that r t = s. 
For an arbitrary y in GN there exist xl9 yl9 x2 in GN such that x±y = s, xtt = ryl9 

x2yt = s. 
By closure condition IV, equations 

xtt = ryx , xxy = rt, rt = x2y± imply ry = x2t. 

As y is abitrary, we have GNt = GN. 
The next step is to show that for all x in GN9 xy = s has a solution in y. 
Let x e Gjy, then there exist yl9 xl9 yl9 x2 in GN such that xt = ryl9 x1y1 = rt9 

xxt = ryl9 x2y2 = rt. 
Due to closure condition IV, equations 

rt = x2y2 , rt = xxy±, and xxt = ry2 imply x2f = ryx ; 

from xt = ryt we get x2f = xt; but GN is equally cancellative by Theorem 2, there­
fore x2>>2 = xy2 and then x2>>2 = rt = s, which gives x>>2 = s. 

Now in order to complete the proof of the theorem, let x e GN; then there exist 
yi9 xx in GN such that 

xt = ryx and x ^ = rt; 
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and for arbitrary y2 in GN, there exist y3 in GN such that 

* i y 2 = ry3 . 

From these three equations, applying closure condition N, we get 

*y 3 = ry2 . 

As y2 is arbitrary and rGN = GN we have 

x . GN = GN for all x in GN . 

By symmetric considerations 

GN . y = GN for all y in GN . 

Thus the theorem is proved. 

Theorem 5. Let (GN, •) be an N-groupoid with elements r, s in GN such that for 
all y in GN there exists x in GN satisfying xy = s and rGN = GN. Then a new 
operation + can be defined on the elements of GN as follows: For arbitrary but 
fixed m and n in GN, define 

xn + my = xy for all x, y in GN . 

Then + is a well defined binary operation on GN, under which GN forms an abelian 
group. 

Proof. Consider the mappings from GN to GN, given by 

x -> xn ( = X) and y -> my (= Y) . 

Then it follows from Theorem 4 that these mappings are onto GN. 
Next, we shall show that + is a well defined operation. From Theorem 2 we see 

that 

xxn = x2n implies x ^ = x2y for all y in GN , 

so that 

(1) xly1 = x2yt . 

Similarly, myt = my2 gives 

(2) x2yt = x2>>2 

so that if xtn = x2n and myx = my2 then (l) and (2) imply that 

* l y l = *2y2 

and hence + is a well defined operation. 
Here mn acts as identity element for the groupoid (GN, +) . Indeed, 

mn + my = my, xn + mn = xn . 
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Groupoid (GN, + ) also retains the IV-groupoid property of (GN, >). Let 

Xi + y2 = X3~+ Y! , X, + Y4 = X2 + Y3 and X2 + Y2 = X4 + Y! , 

where Xi9 Yt in GN (i = 1, 2, 3, 4). . < 
Then there exist xt, yt in GN (i = 1, 2, 3, 4) such that 

xtn = Xi and myf = Yf 

and thus 
*iy2 = x3yi > *iy4 = x2yz and x2v2 = x ^ , 

which implies x3>>4 = xAy3, which in turn gives 

K3 + YA = K4 + Y3 • 

Then Theorem 3 implies that (GN, + ) is an abelian semigroup. For completing the 
proof of the theorem we have to establish the quasigroup property also in (GN, + ) . 

Let C, De GN, then we shall show that C + Y = D is uniquely solvable in Y. 
By Theorem 4 there exist c, y in GN such that en = C and cy = D. Assume my = Y, 
then C + Y = D. Further, Theorem 3 gives the uniqueness of the solution. The 
proof for the solution on the left is similar. 

Thus the theorem is proved. 
Now we shall take up the problem attempted by Fotedar [6]. 
Since we know that every isotope of a given groupoid is isomorphic to a principal 

isotope, there is no loss of generality in the theory of isotopy in restricting our atten­
tion to principal isotopes, a fact pointed out in various papers of Albert and Bruck. 

Here we start with 

Theorem 6. A groupoid (G, + ) isotopic to a given groupoid (G, •) under the 
isotopy x + y = x*yp is an abelian group if and only if the following conditions 
are satisfied: 

xa~l = xn , xp~l = mx for some n, m in G , 

for all x in G; and (G, •) is an N-groupoid such that there exists a pair of ele­
ments r, s in G satisfying rG = G and for all y in G,xy = s is solvable in x. 

Proof. Suppose (G, + ) is a groupoid isotopic to a given groupoid (G, •) under 
the isotopy 

(1) x + y = x a / . 

As a and /? are permutations of G therefore, without loss of generality, we can con­
sider the above equation in the form 

(2) x a _ 1 + X*"1 = x j ; . 

From the condition of the theorem 

x a _ 1 == xn and x^"1 =.mx 
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we obtain 
xn + my = xy for some n, m in G . 

Now, as (G, •) satisfies the conditions of Theorem 5, (G, + ) is an abelian group. 
Conversely, suppose (G, + ) is an abelian group isotopic to a groupoid (G, •) 

under the isotopy (l). We can consider (1) in the form of (2), i.e., 

jc*"1 + yP~l = Xy . 

Let e be the identity element of (G, + ) and denote ea = m and ep = n, then putting 
n^'1 = e and ma_1 = e separately in the relation (2) we get 

xa = xn and xp = my, 
hence 

(3) xn + my = xy . 

Thus, every element of (G, + ) can be obtained as right and left translations of n 
and m, respectively, by some elements of (G, •). Further, the composition + of G 
is defined by the relation (3). 

In view of Theorem 3, (G, + ) satisfies the iV-groupoid property. We have to show 
the EV-groupoid property in (G, •). Let 

*iy2 = *3yi > *iy4 = *2y3 and x2y2 = *4yl , 

where xh y{ in G (i = 1, 2, 3, 4); then there exist Xi9 Yt in G (i = 1, 2, 3, 4) such 
that 

xtn = Xt and myt = Yt 

and thus, 

X! + Y2 = X3 + Yx , X! + y4 = X2 + y3 and X2 + Y2 = K4 + Yx , 

which means X3 + YA = X4 + Y3 which in turn gives x3y4 = x4y3. 
Next, as the quasigroup property is invariant under isotopy, (G, •) is a quasi-

group, and further, this implies the conditions of the theorem. 
This proves the theorem completely. 
In addition, if we assume that (G, •) is a finite groupoid then we can restate our 

Theorem 6 with a slight modification. We start with 

Theorem 6'. If (G, •) is a finite groupoid then (G, •) is isotopic to an abelian 
group (G, + ) under the isotopy x + y = x*yp if and only if(G9 •) is an N-groupoid 
and there exists a pair of elements r, s in G such that rG = G and xy = s has 
a solution in xfor all y in G. 

Proof. In a groupoid (G, •) satisfying the conditions of Theorem 5, we define 
a composition + by 

xn + my = xy for some n9 m in G . 
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Further, denote the mappings 

x -> xn (= X) and y -» my (= Y) 

by a"1 and /T1 , respectively. Then a"1 and /T 1 are bijections as G is finite. Hence a 
and P ate also bijections, and we can write x + y == xV* for all x, >> in G. Con­
sequently (G, +) is isotopic to (G, •); further (G, +) is an abelian group by 
Theorem 5. 

The proof of the converse part of the theorem is the same as that of Theorem 6. 
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