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A N E W METHOD FOR OBTAINING EIGENVALUES 
OF VARIATIONAL INEQUALITIES BASED 

ON BIFURCATION THEORY 

MILAN KUCERA, Praha 

(Received April 8, 1977) 

0. INTRODUCTION 

Let H be a real Hilbert space with inner product < •, • > and with the corresponding 
norm || • ||. Let K be a closed convex cone in H with its vertex at the origin, We shall 
suppose that A : H -* H is a linear symmetric completely continuous operator. We 
shall consider the following problem: 

(I) UEK9 

(II) (Xu - Au,v - w> ^ 0 for all v e K , 

where X is a real parameter. A real number X is said to be an eigenvalue of the varia
tional inequality (I), (II) if there exists a nontrivial u satisfying (I), (II). In this case 
the element u is said to be the corresponding (to X) eigenvector of the variational 
inequality (I), (II). The aim of this paper is to study the existence of eigenvalues and 
eigenvectors of the variational inequality which are not eigenvalues and eigenvectors 
of the operator A. The basic idea is the following. We shall introduce a penalty 
operator p (for the properties of p see Section 2) and consider an eigenvalue A(0) of A 
corresponding to an eigenvector u ( 0 ) $K of A. Starting with X0 = A(0), u0 = w(0), 
we want to prove the existence of branches Ae, ut (e e <0, + oo)) satisfying the equation 
with the penalty 

Xtut - Aut + eput = 0 

and converging to an eigenvalue X^ and an eigenvector u^ of (I), (II). The original 
idea was to prove the existence of such functions Xe, ut on the basis of the abstract 
implicit function theorem. A result of this type was announced in [8] (without 
proof) and a complete version of this part of the theory is given in [9]. However, 
this approach requires very strong assumptions (it is supposed that the linear operator 
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A — e P'(u) for an arbitrary fixed u e H and e j£ 0 has only simple eigenvalues) and 
only very simple examples covered by the theory are known to the author. In the 
course of investigation, it turned out that it is possible to use the known global results 
of the bifurcation theory to prove the existence of branches of eigenvalues and 
eigenvectors of the equation with the penalty. This approach seems to be substantially 
more effective. Under certain assumptions it is possible to start with the eigenvalue 
A(0) of A of an arbitrary multiplicity and with the corresponding eigenvector u(0) £ K 
and to prove the existence of a closed connected (in a certain sense) and unbounded 
in e set S0 of triplets [A, u, e] e R x H x R satisfying the conditions [A(0), u(0), 0] e 50, 

HI = 1, A^ArgA*, u$K9 

Xu — Au + spu = 0, 

where A*, A* are some suitable eigenvalues of A. Such a set S0 contains at least one 
sequence [Aw, un9 aM] such that An -> A ,̂ un -> u^, where A^ and u^ is an eigenvalue 
and an eigenvector of (I), (II), respectively. Moreover, u^edK and it is a "new eigen
vector of (I), (II)", i.e. UOQ is not an eigenvector of A. In certain cases, this method 
yields an infinite sequence of eigenvalues and "new" eigenvectors of (I), (II). In 
special cases the set S0 can be described by smooth functions Ae, uE (see [9]). 

In this paper we shall study the case of a simple initial eigenvalue A(0). It is easier 
than the case of a multiple eigenvalue A(0) which will be treated in the paper [10]. 
The proof of existence of an unbounded branch S0 for a simple eigenvalue A(0) is 
based on a global bifurcation result of E. N. DANCER [3] (see Section 3). 

A classification of eigenvalues of (I), (II) and of A is given and their basic properties 
are explained in Section 1 of this paper. The main result is formulated in Section 2 
(Theorems 2.1, 2.2, 2.3). Further, general properties of the branches S0 of the above 
mentioned type with the exception of the fact that S0 is unbounded are proved. 
This represents the first part of the proof of the main results. Section 3 contains an 
explanation of the above mentioned result of E. N. Dancer [3] (which is a streng
thening of Rabinowitz's result [14]). Further, on the basis of this result it is proved 
that under certain assumptions the branch S0 is unbounded. This is the second part 
of the proof of the main theorems. Applications to the case of variational inequalities 
describing a beam which is supported by fixed obstacles are given in Section 4. 

A very special situation occurs if K is a halfspace. This corresponds to the case 
of "one point obstacle" (i.e. n == 1 in the notation of Example 1.1 and Section 4). 
In this case, the method from the papers [8], [9] can be used and Ae is a decreasing 
function. Moreover, the eigenvalues of (I), (II) can be calculated in concrete examples 
on the basis of a method given by S. FUCIK, J. MILOTA [7] and therefore our theory 
has no practical significance for this special case. 

The eigenvalue problem for variational inequalities in a more general setting is 
studied in [11], where we use a modification of the Ljusternik-Schnirelamann theory 
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for the corresponding penalty problem. We obtain formally infinitely many eigen
values (or critical levels in a more general situation) but it is not clear if they all are 
mutually different. A better situation occurs again in the case of a halfspace. Using 
a certain special trick, we prove the existence of an infinite set of mutually different 
eigenvectors lying on dK with the corresponding critical levels (or eigenvalues) 
converging to zero. 

Let us remark that E. MIERSEMANN investigated a more general variational ine
quality than (I), (II) (with nonlinear operators) on a cone. He proved the existence 
of n bifurcation points, where n is determined by the parameters of the problem (see 
[12]). The proof is based on a Krasnoselskij's sup-min principle. 

Speaking about the eigenvalue problem for variational inequalities, we should 
mention also other papers about this topic (for example [1], [2], [4], [5], [6], [13], 
[15]). However, the approach to the problem in these papers is completely different 
from that explained above and the existence results are of the other type than in the 
present paper. 

1. TERMINOLOGY AND GENERAL REMARKS 

Denote by dK and K° the boundary and the interior of K, respectively. The sets 
of all eigenvalues of the operator A and of the variational inequality (I), (II) will be 
denoted by AA and AVi respectively. Analogously, we shall denote by EA and Ev the 
sets of all eigenvectors of the operator A and of the variational inequality (I), (II), 
respectively. The strong convergence and the weak convergence will be denoted by -+ 
and - s respectively. 

Remark 1.1. It is easy to see that EAnK a EV9 Ev n K° = EAn K°. The 
second assertion follows from the fact that if u e K° then there exists 8 > 0 such that 
v = w 4- u e K for all w e H, || w|| ^ <5 and therefore (II) implies 

(Xu-Au, w> = 0 for all wetf , ||w|| = 8 . 

The last inequality holds also for all w e H which means Xu — Au = 0. 

Definition 1.1. We shall say that 

(1) X e Av is a boundary eigenvalue of (I), (II) if there exists a corresponding 
eigenvector uedK n Ev and there is no u e K° n Ev corresponding 
to X; 

(2) X e Av is an interior eigenvalue of (I), (II) if X is not a boundary eigenvalue 
of (I), (II) and there exists a corresponding eigenvector u e K° n Ev; 

(3) X e AA is a boundary (with respect to K) eigenvalue of A if there exists a cor
responding eigenvector uedK n EA and there is no u e K° n EA cor
responding to X; 
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(4) X e AA is an interior (with respect to K) eigenvalue of A if there exists a cor
responding eigenvector ueK°nEA; 

(5) X e AA 1s &n external (with respect to K) eigenvalue of A if u^K for all the 
corresponding eigenvectors u e EA. 

The set of all interior eigenvalues of (I), (II) (or A*}) will be denoted by At. Further, 
we shall denote by AVM Ah and Ae the set of all boundary eigenvalues of (I), (II), 
the set of all boundary eigenvalues of A and the set of all external eigenvalues of A, 
respectively. 

Remark 1.2. It is clear that Av = Atu Av>b, Atn AVtb = 0. Analogously, 
AA = A{ u Ab u Ae, /If n Ab = 0, Ab n Ae = 0, At n Ae = 0. Further, Ab a Av>b. 
On the other hand, if X e AVb, then there are three possibilities (the concrete illustra
tion will be given in Example 1.1): 

(a) X e Ab, i.e. X is simultaneously a boundary eigenvalue of A; in this case there is 
a common eigenvector uedKn EAn Ev of A and of (I), (II) corresponding 
to X; 

(p) X e Ae, i.e. X is simultaneously an eigenvalue of A but the corresponding eigen
vectors of A are not in K, i.e. they are different from the corresponding eigenvec
tors of (I), (II); 

Remark 1.3. In general, the set of eigenvectors of (I), (II) corresponding to a given 
eigenvalue X e AVib need not to be convex. (See Example 1.1.) A certain information 
about the structure of the set of eigenvalues of (I), (II) corresponding to a given 
eigenvalue X e Av n AA is given by Lemma 1.1 below. 

Lemma 1.1. Suppose that X e AA and there is a corresponding eigenvector u0 e 
eEAnK. If ut eEv is an arbitrary eigenvector of (I), (II) corresponding to X, 
then for arbitrary t0 ^ 0, tt 2> 0 the point u = t0u0 + t1u1 is an eigenvector 
of (I), (II) corresponding to X, too. Moreover, if u0e EAn K°, then EjX) n K = 
= EV(X), where EjX) and EV(X) denote the sets of all eigenvectors of A and of (I), 
(II), respectively, corresponding to X. 

Proof. It is easy to see that the conditions (I), (II) are equivalent to the condition 
(I) and 

(1.1) (Xu - Au, v) ^0 for all veK; 

(1.2) (Xu - Au, t*> = 0 . 

*) A number X is an interior eigenvalue of A if and only if it is an interior eigenvalue of (I) 
(II). The corresponding eigenvectors of (I), (II) lying in K° are those of A. This follows from 
Remark 1.1. 
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Clearly, (I) and (1.1) are true for w = f0w0 + ^wx (t0 = 0, tx = 0). Using (1.2) for 
WoJ ul9 we obtain 

(X(t0u0 + tiUx) - A(t0u0 + f ^ ) , r0w0 + f ^ ) = 

= 2i>0f1<Aw0 — Au0, w2> = 0 

because w0 is an eigenvector of A. Thus (1.2) is proved and that means ueEv. 
Further, let w0 e K°. It is clear that EA(X) n K c EK(A). On the other hand, if 
wx EEV(X), then we have proved that tu0 + (1 — ^)wx e£F (2) for all Je<0, 1>. 
Moreover, it is clear that tu0 + (1 — t) wx eK° for t e (0, l) and therefore fw0 + 
+ (1 - t) uY e EA(X) for all t e (0, 1) (cf. Remark 1.1). The set EA(X) is closed and 
therefore ux e EA(X). 

Remark 1.4. It is possible that there are eigenvalues in AVb which are not simple*) 
even in the case that the operator A has only simple eigenvalues (see Example 1.1 
and [6, Section 1]). Nonetheless, it follows from Lemma 1.1 that X e At is a simple 
eigenvalue of (I), (II) if and only if A is a simple eigenvalue of A. 

The definitions and assertions mentioned in this section can be best illustrated by 
the following Example 1.1, in which the set of eigenvalues and eigenvectors of (I), 
(II) can be completely described in an elementary way (see [6, Section 1]). 

Example 1.1. Denote by 17 = W\(Q, 1) the well-known Sobolev space of all 
absolutely continuous functions on <0, 1> vanishing at 0 and 1 whose derivatives are 
square integrable over <0, 1>. Introduce the inner product on H by 

<w, v> = u'v' dx for all u,ve H 'w, v> = u'v' 

(instead of the usual equivalent inner product (w, v) = JJ (u'v' + uv) dx). Set 
K = {ueH; u(xt) = 0, i = 1, . . . ,«}, where ^ 6 ( 0 , 1 ) (i = l , . . . , n) are given 
numbers (n is positive integer). Let us define the operator A by 

(Au, v)=( uv dx for all u,vєH . 

It is easy to see that X e AA and a nontrivial u is a corresponding eigenvector from EA 

if and only if w has a continuous second derivative on <0,1> and 

(1.3) Xu" + w = 0 on (0,1), 

(1.4) w(0) = w(l) = 0 . 

*) By a simple eigenvalue of (I), (II) we mean a number A e Av such that there exists only one 
corresponding eigenvector ue Ev with || u || = 1. 
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Further, denote x0 = 0, x.,+1 =-= 1, u'(xt±) = lim u'(xt). It is easy to show that 
X-*Xi± 

XeAv and u is a corresponding eigenvector from Ev if and only if u is a nontrivial 
continuous function on <0,1> with a continuous second derivative on (x,, x i + 1 ) 
(i = 0,..., n) satisfying 

(1.5) Xu" + u = 0 on (xf, xi+l), i =-0,..., n, 

(1.6) u(0) = u(l) = 0, 

(1.7) u ( x g ) ^ 0 , i = l , . . . ,n , 

(1.8) u ' ( x f ~ ) - u ' ( x . + ) = 0, i = l , . . . , n , 

(1.9) u(xf) [u'(x f-) - u'(x f+)] = 0 , i = 1,..., n . 

Moreover, X e AVb if and only if each corresponding eigenvector u satisfies 

u(xf) = 0 at least for one i. 

Analogously, X e At if and only if the corresponding eigenvector satisfies the con
dition 

u(xf) > 0 for all i = 1,..., n . 

Let us show that all the situations described in Remark 1.2 are possible. 
If we take n = 1, xt = i, then X = ( |) 2 (1/TT2)e AVb is the second eigenvalue 

of (I), (II) corresponding to the eigenvector uve Ev, 

y 0 on <0, xt) , 
uv(x) = < 

x — sin|7r(x — i) on <x1? 1> , 

but it is not an eigenvalue of A (see Fig. 1.1). 

Fig. 1.1 

If we choose n = 2, xx = i, x2 = f, then X = (i) 2 (1/rc2) e Av>b n /le is the second 
eigenvalue of (I), (II) and simultaneously the second eigenvalue of A. However, we 
have uA$K9 -uA$K9 uA * uv 4- -uA, where 

on <0, xt) u <x2,1> , 

sin 27r(x - J) on <x1? x2) , 

uA(x) ss sin 2TCX on <0,1> , 
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uA 6 EA is a corresponding eigenvector of A and uv e Ev is a corresponding eigen
vector of (I), (II) (see Fig. 1.2). 

Fig. 1.2 

By the same choice of xl9 x2, the value X = (J)2 (1/rc2) 6 .Aj, (i.e. also X e Av b) is 
the fourth eigenvalue of A and simultaneously the third eigenvalue of (I), (II), cor
responding to a common eigenvector u e EA n Ev, u(x) = sin 47rx. 

Fig. 1.3 

If we set K = {u e W^(0, 1); u(i) = 0, w(|) = 0}, then the functions uu u29 

/sin f 7rx on <0, £) , 
«i(x) 

«2(x) = 

N) on < i l > , 

/ 0 on <0, i) , 

\ - s i n f ( x - i ) on <i,l> 

are eigenvectors of (I), (II) corresponding to the eigenvalue X = (J)2
 (1/TT2) G AV 

(Fig. 1.4), but for arbitrary fe(0,1) the point tu1 + (1 — t)u2 is not an eigen
vector. That means that X is not simple (although A has only simple eigenvalues) 
and the set of the corresponding eigenvectors is not convex. 

Fig. 1.4 
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2. BRANCHES OF EIGENVALUES FOR THE EQUATION WITH PENALTY 

In the sequel, we shall consider a nonlinear continuous operator /?: H -> H 
satisfying the following assumptions: 

(P) j8w = 0 if and only if w e K, <j3w, w> > 0 for all w ^ K (i.e. p is the penalty 
operator corresponding to K); 

(H) fi(tu) = t/3u for all t _ 0, w e H (i.e. P is positive homogeneous); 
(CC) p is completely continuous; moreover, if sn > 0, un e H (n = 1, 2, ...) are 

such that the sequence {s„Pun} is bounded then {snPun} contains a strongly 
convergent subsequence; 

(M) </?w — pv, w — v> _ 0 for all u9veH (i.e. /? is monotone); 
(P, K°) if w G K°, v £ K, then <£v, w> * 0. 

The points w e H satisfying the following "symmetry condition" will be useful for 
our further considerations: 

(SC) there exists a neighborhood U of u such that 

<0M, vy = (pV9 uy for all v e U . 

The eigenvalues k e AA with the following property will play a special role: 

(SC) if w is an arbitrary eigenvector of A corresponding to X and w £ K, then w 
satisfies the condition (SC). 

Remark 2.1. IfH and K are the space and the cone from Example 1.1, then we 
can define the operator /? by the formula 

n 

ipu.vy = - J]u-(xi)o(xi)9 
1 = 1 

where w~ denotes the negative part of w. It is easy to see that the assumptions (P), 
(H), (CC), (M), (p, K°) are fulfilled and that (SC) holds for each w e H. In particular, 
all eigenvalues of A satisfy the assumption (SC), where A can be an arbitrary linear 
completely continuous operator in if. 

Now, let us consider the situation from Example 1.1 but with the cone 

Kt = {ueH;u(x) = 0 on <|, f>} 

instead of K. We can define the operator p by 

f3/5 

</?w, v> = — w (x) v(x) dx for all u,veH . 
J 2/5 

It is easy to see that the function ueH satisfies the condition (SC) if and only if 
|w(x)| > 0 for all x e <|, f >. All the other assumptions mentioned above are obviously 
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fulfilled. Hence, if-A-. > A2 > ... is the sequence of all eigenvalues of the operator A 
from Example 1.1, then only the eigenvalues Xi9 A3 satisfy the condition (SC). (The 
eigenvector un corresponding to Xn is given by un(x) = sin nnx.) 

The main results formulated in Theorems 2.2, 2.3 are somewhat formally compli
cated and therefore we shall first formulate Existence Theorem 2.1. In fact, Theorem 
2.1 is a part of the assertion of Theorems 2.2 and 2.3. Theorems 2.2, 2.3 explain how 
the eigenvalues and eigenvectors from Theorem 2.1 can be obtained by a limiting 
process from the branches of eigenvalues and eigenvectors of the equation with 
penalty. 

Theorem 2.1. Let A(1), A(0) e Ah 0 < A(1) < A(0), (A(1), A(0)) n (Ab u At) = 0. 
Suppose that A(0), A(1) are simple and u (0) is an eigenvector corresponding to A(0), 
M(0) 4 K, — u(0) e K°. Assume that there exists an operator ft satisfying the conditions 
(P),(H),(CC),(M),(P,K°) and such thatX{0\X^ satisfy thecondition(SC). Then there 
exists X^ e AVb n (A(1), A(0)) with a corresponding eigenvector u^e dK n (Ev \ EA). 

Definition 2.1. We shall denote by 5 the set of all triplets [X, w, e] e R x H x R 
satisfying the conditions 

(a) Hull = 1 , e = 0 

(b) Xu - Au + epu = 0 . 

Now we are able to formulate the main results. An additional explanation to 
Theorems 2.2, 2.3 will be given in Remark 2.2 below. 

Theorem 2.2. Let all the assumptions of Theorem 2.1 be fulfilled and let 
(A(1), A(0)) n AA = 0. Denote by S0 the component of S containing the point 
[A(0), u(0), 0]. Then for each e > 0 there exists at least one couple [A, u] e R x H 
such that [A, w, e] e S0. For all [A, w, e] e S0, the following conditions are satisfied: 

(c) u$K9 

(d) if [A, II, c] * [A(0), u(0), 0] , then A 6 (A(1\ A(0)). 

If [An, un, en] e 5 0 (rt = 1,2,...) is an arbitrary sequence such that en -*• +oo, 
then there exists a subsequence of indices rn (n = 1, 2, . . .) such that rn -> +oo, 
Xrn -> A*,, urn -• uoo, where A^ 6 (AVtb \ AA) n (A(1), A(0)) and w^ e (Ev \ EA) n 5K 
is a corresponding eigenvector of (I), (II). 

Theorem 2.3. Let all the assumptions of Theorem 2.1 be fulfilled. Then there 
exists a set S0 c S having all the properties of S0 from the assertion of Theorem 
2.2 with A^ G AVfb instead of X^ e AVb\AA. S0 is either closed and connected or 

X 

So = U $i (H > 1 integer), where S£ are closed connected sets with the following 
i = i 
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property: there exist Xt e (A(1), Xw), uf £ K, ut$ K (i = 1,..., * - 1) such that each 
Si contains the points [Xt^l9 Ui-u 0], [Af, «*, 0] /or i = 1, ..., x — 1, where X0 = 
= A(0), M0 = M(0), and Sx contains [Ax_t, t**-!, 0] and is unbounded. 

Remark 2.2. Theorems 2.2, 2.3 guarantee the existence of an unbounded in s and 
(in a certain sense) connected branch S0 a S joining the given eigenvalue A(0) and 
the eigenvector u(0) with an eigenvalue X^ and eigenvector u^ of (I), (II). If 
(A(1), A(0)) n AA = 0, then [A(0), u(0), 0] is the only point of the type [A, u, 0] lying 
on S0 and the branch S0 is connected in this case (Theorem 2.2). In the general case, 
we admit the existence of some external eigenvalues of A in (A(1), A(0)) (Theorem 2.3). 
In this case the branch S0 can contain points of the type [X, u, 0], X e (X(1), X(0)) n Ae, 
u is the corresponding eigenvector, and the connectedness in the variable u can be 
violated at these points. In other words, S0 consists of the (connected) components St 

joining points of the type \Xi^1,ui-l,0], [Xh uh0], where X0 = A(0), w0 = u(0), 
Xt e Ae n (A(1), A(0)) and ui9ut are the corresponding eigenvectors. The branch S0 

will be obtained in Section 3 by a transformation from a bifurcation branch C0 for 
a suitable bifurcation equation (B") which is an extension of the penalty equation (b). 
The branch C0 will be connected in every case and .the points [X, u, e] e S0 at which 
the connectedness of S0 can be lost will be obtained from the points [1/A, 0, 0]. 

Remark 2.3. The proof of Theorems 2.2, 2.3 consists of three parts. As we 
mentioned in Remark 2.2, the existence of S0 will be proved in Section 3 on the basis 
of Dancer's global bifurcation result (the last part of the proof). However, for the 
use of the known bifurcation results, the validity of the basic conditions (c), (d) is 
essential and therefore we shall prove that the conditions (c), (d) are a priori satisfied 
on S0 (if it exists). An investigation of the properties of S0 is the subject of the next 
part of this Section. Roughly speaking, the proof of the conditions (c), (d) is based 
on the following assertions: 
(a) S0 starts at A(0) > A(1), u(0) $K (by the assumptions); 
(P) the values X are locally decreasing along S0 near X = A(0), e = 0 (Lemma 2.2); 
(y) S0 cannot intersect the lines X = A(0), A(1) (with the exception of the point 

[A(0), M(0), 0]) and it cannot intersect dK (Lemmas 2.1, 2.3). 
On the whole, the conditions (c), (d) follow from (a — y) if the branch S0 under 
consideration is connected. In the case of Theorem 2.3, (c), (d) will be preserved 
because the set S0 will be "connected in A" and "connected in u except for the 
points [Xi9 ut, 0], \Xi, ut, 0]" (cf. Remark 2.2) and uif ut$K because Xt e Ae by the 
assumptions. The fact that the branch S0 gives the eigenvalues and the eigenvectors 
of (I), (II) (for a --> + oo) can be proved by a modified penalty method technique 
(see Lemma 2.4). 

Lemma 2.1.1/ A(0) e A{ and the condition (P, K°) is fulfilled, then 

(2.1) A(o>u _ Au + Bpu + o for all u$K, e > 0 . 
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Proof. There exists an eigenvector u(0) e X ° n EA corresponding to A(0). If (2.1) 
is true, then we have 

X(0)u - Au + efiu = 0 , 

A(0)u(0) - ^u ( 0 ) = 0 

for some u$K, e > 0. This implies 

X{0\u, u(0)> - <Au, u(0)> + £<jSu, u(0)> = 0 , 

A(0)<u(0), u> - <Au(0), u> = 0 , 

and therefore in virtue of the symmetry of A we obtain <J?u, u(0)> = 0. But this 
contradicts the assumption (j8, K°). 

Remark 2.4. It is clear from the condition (P) that if [A, u,e~\eS and e = 0 or 
ueK, then A 6 AA and u is a corresponding eigenvector. In particular, if A0 6 AA, 
then there exists 5 > 0 such that if [A, u, e\ e S, 0 < |A — A0| < 5, then e > 0, 
u$K. (We use the fact that the eigenvalues of A are isolated.) 

Lemma 2.2. Let [A0, u0, 20] e S, [An, u,,, 2n] e S, en 4= e0 (n = 1> 2> •••)> 
[A„, urt, 2rt] -> [A0, u0, e0~\ in R x H x R, let u0 satisfy the condition (SC) and let 
(M) be fulfilled. Then 

(2.2) lim ^ - ^ ° = - </?u0, u0> g O . 
n-+oo 2 n 2 0 

If u0$K and (P) is fulfilled, then the last expression is even negative. 

Proof. If [A, u, e~] e S, then the conditions (a), (b) from Definition 2.1 imply 

A = A<u, u> = <Au, u> — ^<JSu, u> . 

Hence using the symmetry of A, we obtain 

K " *0 = <^«> "n ~ W0> - 2n<J?Un, Un - U0> + <AU0, Un - U0> -

- e0(pu0, un - u0> + (e0 - 2n) <i8w0, un - u0> + 

+ £n«Pu0, un> - <j8un, u 0 » + (e0 - en) <J?u0, u0> = 

= An<un, un - u0> + A0<w0, wn - w0> + (e0 - en) <j8w0, wn - w0> + 

+ Sn«0Mo, wn> - <j3un, w 0» + (e0 - en) <j8w0, w0> = 

= An - A0 + (A0 - An) <un, u0> + (e0 - ^n) <0uo, un - u0> + 

+ ^ ^ o , « 0 - <j?wn, u0>) + (e0 - ^n) <j8u0, u0> . 

Dividing this equation by ^ n — ^0) and using the assumption (SC), we obtain (for 
n g: n0, n0 sufficiently large) 

An — A0 

ß и "" ßn 
<"„, "o> = - <ßu0, "„ - "o> - <ßu0, u0> 
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This implies (2.2) because of un -* u0 and (M). The last assertion of Lemma 2.2 is 
a consequence of the assumption (P). 

Lemma 2.3. Let the assumptions of Theorem 2.1 be fulfilled. Let Sc be a connected 
subset of S containing a point [A, u, 0], where I e (A(1), A(0)>, u $K. Then for all 
[X, u, e] G Sc the conditions (c), (d) are fulfilled. 

Proof. Denote by Sx the component of the set 

{[A,u ,£]eSc; X e <A(1), A(0)>} 

containing [A, u9 0]. First, we shall prove that (c), (d) are true for all points from St. 
We have u$K9 [A, u9 0] e St and Sx is connected. Thus, if (c) is not true on Sl9 

then .there exists [X, u9 e] e Sx such that u e dK. We have pu = 0 by (P) and (b) 
implies I e Aife n <A(1), A(0)>, This is a contradiction with the assumptions and hence 
(c) is proved for the points from S±. Now, let us suppose that (d) is not true on S t. 
Then there exists [A, u9 e] e Sx such that either 

(2.3) X = X^9 [u , e ]#[u ( O ) ,0 ] 
or 
(2.4) X = A(1). 

If X = A(0), then £ = 0 with respect to Lemma 2.1 and (c). On the other hand, the 
only normed eigenvector of A corresponding to A(0) and satisfying (c) is w(0). Thus 
(2.3) is not possible. If X = A(1), then e = 0 with respect to Lemma 2.1 again. The 
set St is connected and therefore there exists a sequence [Xn, un, £„] e Sx such that 
Xn > A(1), en ^ 0, Xn -» A(1), ew -* 0, un-> u. In virtue of Remark 2.4 we have en > 0 
and u e £^. But this is not possible due to Lemma 2.2 and (P) because A(1) satisfies 
the condition (SC) and u $K since (c) holds for the points from Sx. Hence, neither 
(2.3) nor (2.4) can occur which proves (d) for the points from St. 

Now we shall show that Sc = St and the proof of Lemma 2.3 will be complete. 
Let us suppose that Sc * St. Then there exists [X, u, e"] e Sc such that X $ <A(1), A(0)>. 
Simultaneously, the set {[A, u, e] e Sc; Xe <A(1), A(0)>, [A, u, e] $ S j is either empty 
or separated from the set Sx. This together with the connectedness of Sc implies that 
there exist [A„, un, en] e Sc such that Xn $ <A(1), A(0)> (n = 1, 2,...), Xn -> A, un -• w, 
£„ -> £, where [A, w, fi] e S^ We have A G <A(1), A(0)> from the definition of Sl9 i.e. 
we obtain A = A(1) or A = A(0). Moreover, (d) holds for the points from S1 which 
implies A = A(0), u = M(0), £ = 0. That means Xn > A(0), A„ -» A(0), £n > 0 *), £w -> 0 
and this contradicts Lemma 2.2 because A(0) satisfies the assumptions (SC) and w(0) <£ 
^ K. Hence we have Sx = Sc and Lemma 2.3 is proved. 

Lemma 2.4. Let A(1), A(0) e At be simple, 0 < A(1) < A(0) and /ê  the assumptions 
(P), (CC) and (M) be fulfilled. Suppose that there exist en, un, Xn (n = 1, 2, ...) sat-

*) We use Remark 2.4 again. 
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isfying the conditions 

(a') K B - 8 - . " = 1.2 a , - + 0 0 , 

(b') Xnu„ - Aun + sjun = 0 , n = 1, 2 , . . . , 

(C) " „ £ K ° , n = l , 2 , . . . , 

(d') A„6(A<»,A<0'), n = l , 2 , . . . . 

7/ {rM} is an arbitrary sequence of indices such that rn -> oo, Xrn -> A^, wrn -* w ,̂ 
/or some A^, WQQ, ^en k^ e Avb n (A(1), A(0)), wfn -> w^ and u^e Ev n 5K is a cor
responding eigenvector of (I), (II). 

Remark 2.5. It follows from the boundedness of <A(1), A(0)> and the weak com
pactness of the unit sphere in H that there exists at least one sequence rn mentioned 
in the assumptions of Lemma 2.4. That means that Lemma 2.4 guarantees the 
existence of at least one couple A^, w^. 

P roof of Lemma 2.4. The sequences {knun}, {Aun} are bounded and therefore 
{enfiun} is bounded by (b'). The assumption (CC) implies that there exists a strongly 
convergent subsequence of the sequence {erjSwrn}. This together with (b'), (d') and 
the fact that A is completely continuous implies that there exists a strongly con
vergent subsequence of {wfn}. But we have wrn -* w^ and therefore wfn -> w^. (If this 
were not the case, we could obtain another subsequence of {wrn} strongly convergent 
to the point w^ 4= w^, which is not possible.) Using the assumptions (b'), (P), (M) 
we obtain for an arbitrary veK that 

<^ooWoo - ^"oo> v - w0 0> = l i m <Arnwrn - Awrn, v - wrn> = 
n-*oo 

= lim ern($v - purn, v - wrn> = 0 . 
n->oo 

Further, /3wrn -> 0 because {enPun} is a bounded sequence and en -> oo. Hence we 
have by (M) 

(pv, v - w00> = lim ifiv - purn, v - wrn> = 0 
n-*oo 

for an arbitrary veH. Setting v = «w + tw for an arbitrary t > 0, w e H, we obtain 

<i8(w00 + tw), w> = 0 . 

Passing to the limit for t -> 0 + , we obtain the last inequality for t = 0 and for each 
weH. This is equivalent to ^(w^) = 0, i.e. w^ e K by (P). We have proved that 
Aoo, Moo satisfy (I), (II). Moreover, un £ K°, \\un\\ = 1, wrn -> w^ and therefore u^ e dK, 
||Woo|| = 1. This together with the assumption A(1), A(0) e At implies that neither the 
case A^ = A(1) nor A^ = A(0) is possible. (We use also the assumption that A(1), 
k(0) are simple and Lemma 1.1.) Hence we obtain k^ e(A(1), A(0)) and the proof is 
complete. 
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3. USING A GLOBAL BIFURCATION RESULT. 

First we shall explain a result of E. N. Dancer [3] which is a strengthening of 
Rabinowitz's result [14]. Let X be a real Hilbert space*) with an inner product (•, •) 
and with the corresponding norm |||*|||, L:X -• X a linear completely continuous 
selfadjoint*) operator in X. Further, let G be a nonlinear completely continuous 
mapping ofl? x l into X such that 

(3.1) lim ^ ' = 0 uniformly on bounded subsets of R . 

lll*-oj|| |||x||| 

We shall consider the bifurcation problem for the equation 

(B)' x - /i L(x) + G(n, x) = 0 , 
where [i is a real parameter. A point [/i0> 0] is said to be a bifurcation point of (B) 
(with respect to the line {[n, 0]; ft e R} of trivial solutions) if for each neighbourhood 
U(fi0, 0) of [n0, 0] in R x X there exists [jx, x] e U(JX0, 0) satisfying (B) and |||x||| #= 0. 
Denote by r(L) the set of all characteristic values of L, i.e. the set of the reciprocals 
of the non zero eigenvalues of L: 

r(L) = {fie R; x — \i L(x) = 0 for some xeX, |||x||| =f= 0} . 

Remark 3.1. It is well-known that if [fi, 0] is a bifurcation point of (B) then 
fier(L). Indeed, there exist \in, xn (n = 1,2,...) such that |||x„||| > 0, ftn -> \i, 
|||xn||| -> 0 and 

(BO xn - fin L(xn) + G(fin, xn) = 0. 

We can suppose that yn = xrt/|||xn||| -* j ; for some yeX. (In the opposite case we 
can pass to suitable subsequences.) Dividing (Br) by ||[A:„|||, passing to the limit with 
n -* oo, using (3.1) and the complete continuity of L we obtain that yn -> y, y — 
- fi L(y) = 0, Iy\\\ = 1. That means \i e r(L). 

Now denote by C the closure of the set of all nontrivial solutions of (B), i.e. 

C = {0 , x] e R x X; |||x||| * 0 , (B) is fulfilled} . 

Remark3.2. A point [/x, 0] is a bifurcation point of (B) if and only if [pi, 0] e C. 
It follows directly from the previous definitions. 

Further, let /i0 be a given simple characteristic value of L with a corresponding 
eigenvector x0, |||x0||| = 1. Then [fi0, 0] is a bifurcation point of (B) (see [14]). Denote 
by Co the component of C containing th& point [ju0, 0]. Thus, C0 is non-empty. 

*) In the papers [3], [14], a general Banach space and a non-selfadjoint operator L are con
sidered. We are formulating the results for symmetric operators in a Hilbert space because it is 
simpler and fully sufficient for our purposes. 
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Moreover, roughly speaking, C0 "consists of two branches C0 and C0 starting in 
the direction x0 and — x0, respectively". This situation will be useful for our pur
poses and we shall describe it precisely. 

Let us choose r\ e (0,1) and define 

Kn - { 0 , * ] e * x X; | ( * , * o ) | > # f | | | } , 
Kn ""{[ft * ] € « , ; ( x , x o ) > 0 } , 
Kn ~ Kn^Kn • 

There exists R > 0 such that 

(C\{[fi0,0]})nBR(fi090)czKn, 

where BR(ii09 0) = {[/*, x] e « x X; \pt - ^0| + |||x||| = R} (for the proof see [14, 
Lemma 1.24]). For each re(0, JR> denote by Dr and Dr9 respectively, the com
ponents of the sets {[fi0, 0]} u (C n Br(fx09 0) n K*) and {[ju0, 0]} u (C n 
n -~V(i"o> 0) n K~) containing [//0, 0]. Further, denote by C0>r and C 0 r respectively, 
the components of C0 \ D~ and C0 \ Z)r

+ containing [li0, 0]. Set 

c0 — u c 0 r , c0 — \j c 0 r . 

This definition of C0 , C0 is independent of the choice of rj e (0, 1) (see [14, Lemma 
1.24]), the sets C0 , C0 are connected and 

C-o -= C0 u C0 

(for the proof see [14]; cf. [3]). Further, the following implications are true (they 
follow directly from [14, Lemma 1.24] and from the definition of C0 , C0 ): 

(3.2) if [pin, x„] e C0 \K~ n Bd(pi09 0) for some 5 > 0, 

Vn~* Vo> IWI -* 0 > then —5- -» x0 ; 

IWI 
(3.3) if [fin, x„] € C0 \ K ; n Bd(fi0, 0) for some (5 > 0, 

Vn-+Vo> \\xn\\~+0> then --—- -• - x 0 . 

IWI 
Theorem 3.1. (E. N. Dancer [3, Theorem 2]). Either C0 and C0 are both unbound

ed or C£ nC0 *{[>o,0]}. 

Remark 3.3. Let us consider the situation from Theorems 2.2, 2.3. Let us define 
X = H x R and introduce the operators L, G from X into X by 

L(x) = L([v, e]) = [Av, 0) for all x = [v, e] e X , 

G(/x, x) = G([ii9 v9 e]) = [̂ ej8v, - flpfl2] for all x = [ u , e ] e l . 
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We shall study the situation from the beginning of this Section with these special 
operators and with pi0 = 1/A(0). It is easy to see that L, G satisfy all the assumptions 
mentioned above. The equation (B) can be written as 

(B*) [»,«] - utAv, 0] + [>/to, - HI2] = 0 

or in the form 

(a") H 2 = s, 

(b") v - fiAv + fiepv = 0. 

In particular, we have 

C = {[ji, v9 e] 6 R x H x R; e > 0, (a"), (b") are fulfilled} . 

Remark 3.4. It is clear that \i is a characteristic value of L with a corresponding 
eigenvector [u9 e] if and only if e = 0 and li is a characteristic value of A with a cor
responding eigenvector u. In this case, the multiplicities of ju as a charactetistic value 
of L and A are equal. Especially, ju0 = 1/A(0) is a simple characteristic value of L 
with a corresponding eigenvector [u(0), 0] under the assumptions of Theorem 2.L 

Remark 3.5. If we write X = 1/ju, u = vjy/e9 then the conditions (a"), (b") together 
with JJ. 4= 0, jlvl > 0 (or e > 0) are equivalent to the conditions (a), (b) from Defini
tion 2.1 and X + 0, e > 0. This together with Remarks 3.2, 3.4 yiedls 

{[X, u9 fi] e S; X * 0} = | | i , -L-, £ 1 ; [>, v, e] e C, A* * 0, e > ol u 

u {[X9 w, 0]; X #= 0, XeAA9 u corresp. eigenvector, ||w|| = 1} . 

Remark 3.6. The implications (3.2), (3.3) are equivalent to the following ones 
in the situation of Remark 3.3: 

(3.2') if [/in, vn9 e„] G Co \K~ n Ba(/i0, 0) for some S > 0 , 

^ ^ A ^ o , lk„| |-^0, then T T ^ ^ O , -A--->w
(0); 

11^1 IP«I 
(3.3') if [nn9 vn9 e j e C0 \K+ n B (̂/x0, 0) for some 5 > 0 , 

fl.-*ft>. IWI-^0, then T j^ r^O, J ^ - ^ - u ^ . 

I l^l l . I k - I 
Remark 3.7. If [fi9 v9e\eC and e = 0 or v eK9 then /i is a characteristic value 

of A and either |i?|| = 0 or v is an eigenvector of A corresponding to /i. This follows 
from Remarks 3.1, 3.2, 3.4, from the equations (a"), (b") (see Remark 3.3) and the 
assumption (P). In particular, if fi e r(A)9 then there exists 8 > 0 such that if [pt9 v9 e] e 
€ C, 0 < \fi — JJL0\ < 59 then e > 0, v $K. (We use the fact that the characteristic 
values of A are isolated; cf. also Remark 2.4.) 
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Proof of Theorem 2.3. Let X, Land G be the space and the operators introduced 
in Remark 3.3, y0 = 1/A(0), fix = 1/A(1). We shall show on the basis of Theorem 3.1 
that the set C0 is unbounded. The set S0 will be obtained by a transformation 
from C0 and the conditions (c), (d) for S0 will be proved. Hence it will follow 
that S0 is unbounded in e and this will be the essential part of the proof. 

First, we shall show that 

(3.4) C0 = {[fi, v, e] e R x H x R; fi = JI0, e = 0, v = - V(fi) w(0)} • 

It is easy to see that the set on the right-hand side of (3.4) is a subset of C0 . (It is 
sufficient to use the fact that tui0) e K for all t g. 0, i.e. p(tu{0)) = 0 by (P), and that /x0 

is a characteristic value of A with a corresponding eigenvector u(0).) On the other 
hand, if C0 contains some elements of the other type, then in virtue of the con
nectedness of C0 there exists a sequence {[/in, vn, enJ\ c C0 \K* such that 

(3.5) \\vn\\ > 0, \nn- fi0\ + rr + M ( 0 ) > 0 , џn -> џ0 

(3.6) vn -> tu(0) for some t ^ 0 . 

It follows from (3.6) that 

(3.7) Vn 

v„ 

Indeed, this is clear in the case t < 0 while in the case t = 0 this follows from (3.3') 
(see Remark 3.6). But we have — w(0) eK° by the assumptions, therefore i>-,/||tf,,|| eK 
for n sufficiently large by (3.7). The conditions (P), (3.5), (3.7) and (b") imply that 
H„ 4= ^o because jn0 is simple. This is not possible due to Remark 3.7. Hence (3.4) 
is proved. Now, it is easy to show by an analogous argument using the definition 
of C0 that 

(3.8) C^ n C0 = [n0, 0, 0] . 

Theorem 3.1 implies that the set C0 is unbounded. 

Now let us consider the set 

{[>,t?,e]eC+; \i =j= 0, ||i>|| > 0} . 

This set consists of a system of components Ca (a € J, / is a suitable set of indices). 
Let us define 

S« = W> ". «]; A = - , u = ~ , Гju, v, e] є cЛ, 

l l1 IN J 
s 0 = U s« 
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It is Sa c S and Sa is closed and connected for each a € /. We have [^0,0,0] e Cao 

at least for one <x0 e / and therefore there exist [/*„, vm ew] e Cao such that [nm vm e j -» 
-» [*i0,0,0]. It is Ca <= C0 which together with (3.8) implies that [}im vm en] £ 
# JC~ n J3a(/J0,0) for some 5 sufficiently small. Now we obtain vH\\vn\ -* w(0) by 
(3.2') and that means [A(0), a(0), 0] G S^. Thus Lemma 2.3 implies that (c), (d) are 
fulfilled for all [A, u, e] e Sao. We shall show that this is true for all Sa, a el. Let us 
suppose the contrary. We have C0 == (J Ca and this set is connected. Therefore there 

ael 

exist al9 OL2EI such that Cai n Ca2 #= 0, (c), (d) are fulfilled for all [A, w, e] e Sai but 
not for all [A, «, e] e Sa2. Let [/I, v, e] e Cai n Cai. It follows from the definition of 
Cai, Ca2 that either /i = 0 or ||g|| = e = 0. We have fx e <//0, nx) as (d) holds for the 
points from Sai and therefore ft =# 0, ||S|| =- e = 0. Remarks 3.1, 3.2 imply fi e r(L). 
If p, = JU0, then we obtain [A(0), w(0), 0] e Sai n Sa2 as above for Sao. If p. e (fi0, jux), 
then'there exist [nn'\ vn*\ en

i}] e Ca£ such that [^f>, vn
{\ e(l)] -> [/i, 0, 0] (i = 1, 2) and 

we obtain t '̂YU^i0! -+ uh where u{ (i = 1, 2) are eigenvectors of A corresponding 
to X = ljp,eAA (see Remarks 3A, 3.4). Hence it follows that [I, I/!, 0] eS a i , 
[I, w2,0] e Sa2. We have i^ $ K, u2 $ K be cause we assume (A(1), Af0)) n ( 4 u y i f ) = 0. 
Consequently, in each case Sa2 contains an element [X, u, 0] with Ie(A(1), A(0)>, 
w ^ K and Lemma 2.3 implies that (c), (d) are fulfilled for all [A, u, e] e Sa2, which is 
a contradiction. Hence (c), (d) hold for all [A, u, e] e S0 = (J Sa. 

ore/ 

We have proved that Ĉ " is unbounded. It follows from here and (a), (d) that S0 

is unbounded in e. Using the connectedness of C0 and the previous considerations, 
it is easy to see that we can choose a finite subsystem Su ..., Sx of the system Sa 

with the properties mentioned in Theorem 2.3. The last part of the assertion of 
Theorem 2.3 follows from Lemma 2.4. 

Remark 3.8. It is easy to see from the proof of Theorem 2.3 that Theorem 2.2 
can be proved in the analogous way, only some steps of the proof will be easier. 

4. APPLICATION TO THE SUPPORTED BEAM 

Let us denote H = {u e Wi(<0,1»; u(0) = w(l) = 0}. It is a Hilbert space with 
the inner product 

<» (и, »> = ľ u"(x) v"(x) dx 

Let A be an operator in H defined by 

(Au, u> = u'(x) v'(x)dx foг all u,vєH . 
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A real X is an eigenvalue and u e H is a corresponding eigenvector of A if and only 
if the function u has a continuous derivative of the fourth order on <0,1> and 

(4.1) 

(4.2) 

A«(4) + u" = 0 on <0,1> , 

u(0) = u(l) = u"(0) = u"(l) - 0 . 

The problem describes the behaviour of a beam which is simply fixed on its ends and 
compressed by a force P (see Fig. 4.1). It is A = IEJP, where E is the Young modulus 
of elasticity and I is the moment of inertia. The beam can bend if and only if the 
force P is such that X is an eigenvalue of A (i.e. of (4.1), (4.2)) and the bending is 
described by a corresponding eigenvector. 

ч > 

Fig. 4.1 

Now let us consider the eigenvalue problem for the variational inequality (I), (II) 
with the convex closed cone 

K = {u e H; u(x() = 0, i = 1, 2, ..., n) , 

where xt e (0, 1) (i = 1,..., n, n positive integer) are given numbers. 
It is easy to show that X is an eigenvalue and u is a corresponding eigenvector of (I), 
(II) if and only if u has a continuous second derivative on <0, 1>, a continuous fourth 
derivative on (xi9 xi+l) for all i = 0, 1, ..., n (where we set x0 = 0, xn+l = 1) and 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Au(4) + u" = 0 on (xь xi+í) , i = 0, 1,..., n , 

"(**) .ž ° , i = 1, ..., n , 

Иm u'"(x) - lim u'"(x) = 0 , i = 1,..., n , 
X-»Xi + 

[ lim u'"(x) - lim u'"(x)] u(x,) = 0, i = 1 п 

Fig. 4.2. 1) Possible bending 2) Impossible bending 
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The problem corresponds to a beam which is simply fixed on its ends, compressed 
by a force P and, moreover, supported by fixed obstacles from below at the points xt 

(see Fig. 4.2). The parameter X has the same meaning as above. The beam can bend 
if and only if X is an eigenvalue of the variational inequality (I), (II) (i.e. of (4.3)—(4.6)) 
and the bending is given by a corresponding eigenvector u of (I), (II). 

Let us introduce the penalty operator ft by the formula 

n 

(4.7) <j8u, v} = - £ u~(xi) v(xi) for all u, v e H , 

where u~ denotes the negative part of u. It is easy to see that the operators A, f} satisfy 
all the assumptions of Theorems 2.1 and 2.3. The assumption (S) is fulfilled for each 
u e H (see also Remark 21). The eigenvalues of A (i.e. of (4.1), (4.2)) are the numbers 

(4.8) 2 k = * 
fcV 

and the corresponding eigenvectors are the functions 

(4.9) wfc(x) = sin knx 

(k = 1, 2, . . . ) . All eigenvalues of the operator A are simple. 

Example 4.1. Let us consider the case n = 2, xx = J, x2 = J. Then we have 

A4k e Ab , A4k_3 e /l,-, X4.k^1 e A-x, /-4k_2 e Ae, /c = 1, 2, ... , 

because 

sin 4k7ixl! = 0 , i = 1, 2 , fc = 1, 2, ... , 

sin (4fc - 1) Xj = sin (4fc — 1) x2 + 0 , sin (4fc - 1) xx = sin (4k - 1) x2 + 0 , 

sin (4fc - 2) xx = - sin (4fc - 2) x2 =f= 0 , fc = 1, 2, .. . . 

Thus Theorems 2.1 and 2.3 can be used for each couple 

A ^ A ^ , A<°> = A4k..3. 

For each fc = 1, 2 , . . . , we obtain an eigenvalue Ak>00 e AVtb n (X^k-^ A4fc_3) with 
a corresponding eigenvector wfc>00 e (EV\EA) n 3K. That means Mfcoo is a "new" 
eigenvector of the variational inequality (i.e: it is not simultaneously an eigenvector 
of A) and u(xt) ^ 0, i = 1, 2, u(xt) w(x2) = 0. In particular, there exists an infinite 
sequence of eigenvalues of (I), (II) such that there exist corresponding eigenvectors 
which are not eigenvectors of A. 
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Example 4.2. Let n ^ 3 be arbitrary and let x, (i = 1,..., n) be such that 

x i e ( O , a > u ^ - i ) i + 0 u < l - e ) l ) 

and each of the intervals (0, 8>, <i - is, i + £e>, <1 - e, 1) contains at least one xh 

where s e (0, i). We shall consider the eigenvalues kk with k < 1/e only. We have 

A4fcezlc, XAk^leAe9 A4fc_2e/lc, A4fc_3eAi for fc = 1,2,..., — 

(where [l/4s] is the entire part of l/4e), because 

sin 4k7ix > 0 on <0, £> , sin 4k7ux < 0 on <1 — s, 1> , 

sin (4k — 1) nx > 0 on <0, £> u <1 — e, 1> , 

sin (4k - 1) nx < 0 <i - is, i + is} , 

sin (4k - 2)nx > 0 on <0, e> , sin (4k - 2) nx < 0 on <1 - e, 1> , 

sin (4k - 3) nx > 0 on <0, e> u <£ - £e, i + K> u (l - e, 1> , 

k = 1, 2,.. . , [l/4e]. Theorems 2.1, 2.3 can be applied for each couple A(0) = A4fc_3, 
A(1) = 24fc+1, k = 1, 2, ..., [l/4a] - 1. Thus there exists Afc>00 e AVtb n (A4(fc+1)_3, 
A4fc_3) with a corresponding eigenvector ukooe(Ev\EA) n dK for k = 1, 2,.. . , 
..., [l/4e] — 1. That means that uko0 is a "new" eigenvector of (I), (II) (i.e. it is not 
simultaneously an eigenvector of A) and ukoo(xi) _t 0, i = 1, , n, u(x^) u(xn) = 
= 0. 

Analogously, we can consider a beam supported not only in a finite number of 
points but, for example, on some intervals. This situation corresponds to the varia
tional inequality (I), (II) with the cone 

K = {u e H; u(x) ^ 0 for x e <xf, yt}, i = 1,..., n} , 

where xt, yt are given numbers, 0 < xx < y^ < ... < xn < yn < 1. In this case, we 
can use the penalty operator defined by 

n ryi 

</?w, v) = — £ w"~(x) i?(x) dx for all u,veH . 

The assumptions of Theorems 2.1, 2.2 are fulfilled again. A point u fulfils the assump
tion (SC) if and only if |w(x)| > 0 on <xi? yt}, i = 1,..., n (cf. Remark 2.1). In 
particular, an arbitrary interior eigenvalue of A satisfies (SC). 

Example 4.3. Set 

K = {w e H; u(x) = 0 for x e (i - id, \ + id}} , 
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where 5 e (0, | ) is given. Then we have 

X2keAe, X2k_xeAi9 k = 1,..., [1/25] , 

AfceAL_, k>[l/<5] 

because sinIkitx for k = 1, ..., [1/25] and sin knx for k > [1/5] change their signs 
on <i — $8, \ + i<5>, sin (2k — 1) nx does not change its sign on <| — i<5, -_- + ̂ <5> 
for k = 1,..., [1/25]. Thus Theorems 2.1 and 2.3 can be used for the couples A(0) = 
= A2fc-_, A(1) = A2fc+1, k = 1,..., [1/25] - 1. For each k = 1,..., [1/25] - 1, we 
obtain an eigenvalue Xkf(X} e AVtb n (A2fc__, X2k+1) with a corresponding eigenvector 
uk,ao e (£V N EA) n ^K. Hence ufcj00 is a "new" eigenvector of (I), (II) and w(x) __ 0 on 
<i - i5, \ + i5>, w(x) = 0 at least for one x e <f - ^5, \ + i5>. 

Example 4.4. Set 

K = {w e H; u(x) _> 0 for x e <15, 5> u <i - ±5, i + i5> u <1 - 5, 1 - ^5> . 

Similarly as in Example 4.2, we obtain 

MkeAe9 A4fc__eAe, X4k-2 e Ae 9 A4fc_3eAf, 

fc = 1,..., [1/45], AkeAe, k> [1/4,5]. 

Hence we obtain A*(K> e /1F 6 n (A44+1, A4/k_3), wtj00 e (£v \ Ex) n dK, /c = l , . . . 
..., [1/4.5]-1. 

Example 4.5. Let 

X = { « e H ; w(x) = 0 for x e <0, 5>} , 

where 5 e (0, i) is given. Then Afc e /lf for all k = 1,2,..., [1/5]. Theorem 2.2 can 
be used for each couple A(1) = Afc, A

(0) = Afc__, k = 1, 2,.. . , [1/5] and we obtain 
Afe.co e (-4K,fr \ AA) n (Afc, Afĉ  _). 
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