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-~

In this paper the set 2() of all quasi-orders of an arbitrary partial algebra & = (4, F)
is studied, in particular, properties of this set provided 2 is a group are shown.

In the first section it is proved that 2() ordered by inclusion is an algebraic lattice
and its compact elements are described. The methods and the results of Schmidt’s
book [2] are essentially used here. In the second section the lattice 9(®) for an arbi-
trary group ® = (G, +) is characterized by means of the set #(®) of all invariant
subsemigroups with 0 of G. Z(®) ordered by inclusion is a lattice isomorphic to 2(®).
Constructions of the lattice operations in both of these lattices are shown and it is
proved that, in general, this lattices are not modular.

BASIC CONCEPTS AND NOTATIONS

Let A + 0 be a set, n a positive integer, R an n-ary relation on A.- A mapping
f:R — A is called an n-ary partial operation on A. In this case let us write also
R = D(f, A). The arity of f is denoted by n,. If D(f, A) = A", then we call f an
n-ary operation on A.

A partial algebra % is an ordered pair (4, F), where A # Qis a set and F is a family

of finitary partial operations on- A. If each f € F is an operation on A, then U is called
an algebra. )
* If A = (A4, F)is a partial algebra, then the elements of F ate called fundamental
operations on U. Let i, n be positive integers, i < n. Then e'" denotes the i-th n-ary
projection on A, i.e. the operation on A such that for each a,, ...; 43 A'it is a, ..:
.ae”" =a; Let F*=FuU{e" i,neN, i < n}. Let X + 0 be a set and let
w = w(x}, ..., X,,) be a word generated by F* on X. Let ay, ..., a, (k < m) be ele-
ments of 4, 1 < i1,...,i; £ m, and let us substitute the elements a, ..., a; for
Xy, ... Xy Then we obtain an (n — k)-ary partial operation on A that we denote
by w(..., 8y, ..., Gy, ...). This partial operation is called an algebraic function on A
induced by w. If we F*, then each unary algebraic function induced by w will be
called an elementary translation on . Each product of elementary translations
on A is called a translation on A. .
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1. THE LATTICE OF ALL QUASI-ORDERS OF A PARTIAL ALGEBRA

Let A 4+ 0.be a set and let Q be a binary relation on 4. Q is a quasi-order of 4
if it is reflexive and transitive. An antisymmetric quasi-order of A is-called an order
of A. A quasi-ordered set (qo-set) is a pair (4, Q), where 4 + @ is a set and Q is
a quasi-order of A4. Similarly an ordered set (po-set).

For any binary relation R, aRb will denote (a, b) € R. Let A = (4, F) be a partial
algebra and let Q be a quasi-order of the set 4. Then Q is called a quasi-order of
the partial algebra U if it satisfies the property (C):

(C) If feF, both a,...a, f and b, ... b, f are defined and a,0b; (a;, b€ 4,
i=1,..,ny), then a, ... a, fQb, ... b, f. A quasi-order Q of U is called strong if,
whenever a,0b; (a;, b€ 4, i=1,...,n;)anda, ... a, f(b; ... b, f) exists, then also
by ... b, f(a, ... a,f) exists and a, ... a, fQb, ... b, f.

For a partial algebra % = (4, F), let us introduce the following notation:

2(A) denotes the set of all quasi-orders of the set 4,

() denotes the set of all quasi-orders of A,

92,(”) denotes the set of all strong quasi-orders of U.

We consider the sets 2,(4), 2(%) and 2,(A) ordered by inclusion. It is clear that
2,(A) is a complete lattice in which the infimum of each system of elements is formed
by its intersection and the supremum by its transitive hull. 4 x A is the greatest
element, 4, = {(a, a); a € A} is the smallest element in 2,(A). In the paper U and N
denote the set-theoretical intersection and union, respectively, v and A denote the
lattice operations sup and inf, respectively.

Lemma 1.1. Let % = (A, F) be a partial algebra, Q, € 2N) (x€I). Then ) Q, €
€ .@(QI). ael

Proof. It is () Q, € 24(A). Let fe F and let a( N Q,) b, (i = 1, ..., n;). Then
ael ael

a,0.b, for all ael and thus if a,...a,,f, by ... b, f are defined it follows that
ay...a, fQub, ... b, f for all « € I. This means a, ... a, f( N Q) by ... b, f.
ael

Corollary 1.1.1. For a partial algebra U = (A, F), 2(¥) is a complete lattice
that is a closed A-subsemilattice of the lattice 2o(A). The lattices 2(U) and 2,(A)
have the same greatest and smallest elements.

Lemma 1.2. If Q, (x €I) are strong quasi-orders of a partial algebra % = (A, F),
then the transitive hull of the system {Q,; « el} is also a strong quasi-order of .

Proof. Let us denote the transitive hull of {Q,; x €I} by Q. It is Q € 2,(A). Let.
feF,a,0b;(a,bed,i=1,..,n)andleta, ...q,f be defined. Then there exists
a sequence ‘

a,=1z4,25, ..., 2, = b,
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of elements of A4 such that
2,002, J=2 ...k, Qi e{Q;acl}.

From the reflexivity of quasi-orders it follows that we can suppose

ky=k,=..=k, and Q = Q2 =... =0,
Then

1 ny
alszZ’ sy an,QuIZZ .

If a, ... a, f exists, then there also exists zy ... Z¥fanditisa, ... a,,,fQ,lzi 4
Similarly we obtain z} ... z¥fQ,.7} ... Z¥f, etc. Therefore a; ... a, fQby ... b, f.
Analogously for the case that b, ... b, exists.

Corollary 1.2.1. If W = (A, F) is a partial algebra, then 2(N) is a principal ideal
in 9(N) that is a closed complete sublattice of 2o(A).

Corollary 1.2.2. If W = (A, F) is an algebra, then 2(N) is a closed complete
sublattice of 24(A).

Lemma 1.3. Let ¢ be a reflexive binary relation on a set A + Q. Then R = U Q"
is the smallest quasi-order of A that contains g. =1

Let (A, g) be a po-set. A family S of elements of A4 is called directed if each finite
subset = S has an upper bound in S.

Lemma 1.4. Let {Q,; ael} be a directed family of quasi-orders of a partial
algebra A = (A, F). Then ) Q, = V @, in 24(A) and ) Q, € 2(¥).
ael ael ael

Proof. Itis U Q, €V 20(4)%x -

ael ael

Let a( V 4,4)Q:) b- Then there exists a sequence
ael

a=2¢, Zyy,..452,= b
of elements of A such that
zi—lQuzi (l = 1’ (AR n)’ Q.ie {Q¢; GGI} .
Since {Q,; x €1} is a directed family, there exists an element Q of this family such

that Q, < Q (i = 1,...,n). Therefore z,_,Qz; (i = 1,...,n), and so aQb. This
means that a((J Q,) b and V 20)Qa S U Q.-

ael

Let us show that V _QB(A)Qa € .@(QI) Let fE F ai(v So(A)Qa) bi (au bi € A i=

ael
=1,..,n), and let a, ... a4, f and by ... b, f exist. Then for each i =1,...,n,
there exists a sequence

— i i i
A; = 20y 215 vuey Zk‘ = bi
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of elements of A such that z;Q, 2}, ,, Q;, € {Q,; « €1}. Since the family {Q,; a € I}
is directed, there exists, Q €{Q,; ael} for which @, s Q (i=1,...,n, j=

=1,. ,) Then szzH,, and so a,0b, By condition (C) we obtam a.
. ,,,be1 .,J» therefore also a, . a,,,f(\/l_,o(A,Q,) by ... b,f.

A complete lattice Lis called algebraic if each element of Lis the supremum of
a set of compact elements.

Lemma 1.5. Let A + ( be a set. Then the lattice 2,(A) is algebraic.

Proof. It is known that the lattice %,(4) of all reflexive relations on the set 4 + 0
is algebraic. The infimum (the supremum) in %,(4) is formed by the intersection
(by the union). The smallest element in %,(A4) is 4,, the greatest element is 4 x 4.
It is clear that 2,(A) is a closed A -subsemilattice of %,(4). By the proof of Lemma
1.4, every directed family {R,; x €I} of elements of 2,(A4) fulfils V 20y)Re = U R,,

thus V ao)Ra € 20(A4). 44, A % Ae 24(A), therefore by [2, Folgerung 4.7] .@o(A)

is an algebralc lattice.
Let (4, <) be a po-set. A closure operator in 4 is a function A : 4 — A such that
foreacha,be A4
(i) a < ai;
(ii) @ £ b implies al < bA;
(iii) (ad) A = ai;
(iv) if A contains the smallest element 0, then 04 = 0.

Let Lbe an algébraic lattice. A closure operator in Lis called algebraic if it holds
for each compact element a € L: If a < xJ, then there ex1sts a compact element x’ < x
such that a < x'A.

Let A = (4, F) be a partial algebra and let R < 4 x A. Since 4 x A e 2(Y),
then by Lemma 1.1 there exists a smallest quasi-order Qr of 2 that contains R.
It is clear that a function A : .@O(A) — 2,(A) such that RA = QR for each R € 2,(A4)
is a closure operator m QO(A)

- Theorem 1.6. A is.an algebraic opez;ator

Proof. By Lemina: 1. 5, .QO(A) is'an algebralc lattxce Then from Lemma 1.4 and
[2, Lemma 4.7] it follows that A is algebralc

‘. 7

Corollary 1.6.1. .@(‘l[) is an algebraic lattice.

Proof. The lattice 2,(4) and the operator 4 are algebraic, thus the assertion follows
from [2, Lemma 4.2].
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Corollary 1.6.2. The lattice 2,(%) is algebraic.
Proof follows from the fact that 2,(%) is a prmCIpal ideal in 2().

Lemma 1.7. Let A = (4, F) be a partial algebra and let R, R, (¢ €1) be binary
relations on A such that R = \J R,. Then Qg =V 5)Qr,-

ael ael

Proof. It is R, < R, thus VQR,, S Q. If Qe2(Y), Q=2 VQR , then Q 2 R,
for each a el and then also Q 2 |J R,. This implies Q = Q(Z 2 Qg. Therefore

ael
V Qr, 2 Qr,i€. Qg =V Qg,-

ael ael

For a, b e A we denote Q) by Qs p-

Corollary 1.7.1. If R € A x A, then Qp = V Q.
(a,b)eR
Let now U = (4, F) be a partial algebra and let R be a binary relation on 4. Then

RT denotes the transitive hull of R, i.e. RT = |J R

RF denotes the set of all (u,v)e A x A such that for an appropriate algebraic
function x, ... x,p there exist (a;, b;)eR (i = 1,...,n) such that u = a, ... a,p,
v=>b,...b,p;

RY denotes the set of all (u, v) € A x A such that for an appropriate unary algebraic
function p there exists (a, b) € R such that u = ap, v = bp;

RY" denotes the set of all (u, v) € A x A such that for an appropriate translation p
there exists (a, b) € R such that u = ap, v = bp.

It is clear that T, F, U, U’ are closure operators in the complete lattice exp (4 x A).

Let us denote

Ro=R, R, =R{, R, =R[, Ry =R}, ...,Ry;; =R}, , Ryyy; =R}, ...

It holds Ry S R, < .... Let us denote R = (J R; for R + 0 and § = 4. It is clear
i=1 .
that RT = RF = R.

Theorem 1.8. Let U = (A, F) be a partial algebra and let R = A x A. Then
Or = R.

Proof. It holds R = R = Q. Let us show that Re 2(%). Let ce 4, (x4, x,) € R
and let us consider the algebraic function xp = cxe'2. Then (c, c) € RF and therefore
(c, )€ R. This means R is reflexive. Further R,;_,R,;_; € R,;, thus RR = R.
Hence R is transitive.

Let now feF, a,Rb,, ..., an,Rb,, and let us assume that a, ... q,f, by ... b, f
exist. Then there exists i such that (a;, b)e R,; (j = 1,...,n,) and so ay ...
-+ An fR3i41by ... b, f. Therefore R satisfies the condition (C).
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Theorem 1.9. Let A = (4, F) be an algebra, R < A x A. Then (Rv)T = (R,
(R = (R)7Y"

Proof. Sinice RV < RF, then (RY)" < (R")". Let (c, d) € (RF)". Then there exists
a sequence :

C=12y, Zyy..n2,=d

of elements of A such that (z;-,, z;) € RF (i = 1, ..., n). This means that for an ap-
propriate algebraic function x,...xp it holds z,_; = a; ... q4p, z; = b, ... byp,
where (a;, b))eR (j = 1,..., k).

Let us introduce the following unary functions:
. xP; = xa,a;...a;p, xP, = byxay...a;p, ..., xP, = byb, ... b,_1xp.
It is alpl =Zi-1 bJPj = aj+1Pj+1, kak = Zi (j = 1, ...,k - 1), i.e. (Zi‘"l’ Zi)e
€ (RY)". Thus (RY)" = (RF)".

Let (¢, d) e (RY)")'. Thus there exist (ay, b,), ..., (a,, b,) € R such that for ap-
propriate unary algebraic functions p;, p,, ..., P», ¢ it holds

¢ = aypy, bypy = axp,, byp, = azps, ..., bp, = d’
and

Let P; = p,q. Then
01P1 =, bjP.l = a.i+1P.l+1’ ann =d (-] = 1’ et — 1)
Therefore (c, d) € (RY)", and so (RY)" = ((RY)")".

Theorem 1.10. Let A = (A, F) be an algebra and let R be a binary relationon A.
Then Qg = (RY)T (i.e. for c,d € A it holds cQgd if and only if there exist c =
=2zg,...z,=deA, (a,b)eR (i=1,...,n), and unary algebraic functions
P15 --- Py Such that a;p; = z;_y, bip; = z; for i = 1,...,n).

Proof. The assertion follows immediately from Theorems 1.8 and 1.9.

Corollary 1.10.1. Let U = (A, F) be an algebra, a,b,x, ye A. Then xQ,,y
if and only if there exist a sequence x = zy, Zy, .-., Z, = y 0of elements of A and
a sequence of unary algebraic functions pgy, Py, ..., P»—1 on F such that z; = ap,
zyy=bp,(i=1,..,n—=1). : '

Theorem 1.11. Let U = (A, F) be an algebra, a, b, x, y € A. Then xQ,,y if and
only if there exist elements x = 2o, z;, ..., 2, = y of A and translations p, ..., p—1
such that z; = apy, Zs41 =bp (i =1,.,n = 1)
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Proof. Let us show that (R”)T = (RY)". If (u, v) € RY, then there exist (a, b) e R
and an appropriate unary algebraic function p such that u = ap, v = bp. Therefore,
translations t,, ..., t, and a word w of A such that w(t,, ..., t,) = p must exist. Thus

xF; = w(bty, ..., bt;_y, xt;, atyyy, ..., at,)
is a translation such that _
bF;=aF;, (i=1,..,n—1), aFy=ap=u, bF,=bp=v,

ie. (u,v)e(RY)". Therefore RV = (RY')" and so (RY)" < (RY')". Finally, since
RY < RY, it holds (RY)" = (RV')".

Now we shall describe the set 2()* of all compact elements in the lattice 2()
of a partial algebra U = (4, F).

Theorem 1.12. Let Q be a quasi-order of a partial algebra W = (A, F). Then
Q € 9(N)* if and only if there exists a finite binary relation R on A such that
Q = Q.

Proof. Let Qe 2(A). Then 4, < Q. For R< A x A it is R & Qg and thus
Ry 4, = Q. Therefore Qg 4, S Qr, and so Qru4, = Q.

By Lemma 1.6, the closure operator RA = Qg on the lattice %,(4) of all reflexive
relations on A is algebraic. Thus, by [2, Lemma 4.3], R’ € 2(%) is compact in 2(%)
if and only if R” = R’ U 4 is a compact element in #,(4). But this is satisfied (by
[2, p. 33]) if and only if there exists a finite relation R < 4 x AsuchthatR'u 4, =
=Rud,

Theorem 1.13. Let A = (A, F) be a partial algebra. Then the lattice of all ideals
in 9(A)* is isomorphic to I(N).

Proof follows from [2, proof of Lemma 3.9].

2. THE LATTICE OF ALL QUASI-ORDERS OF A GROUP

Let & = (G, +) be a group, R € 2(®). Then the pair ®, R is called a quasi-ordered
group (qo-group). This qo-group will be denoted by ® = (G, +, R) = (G, R).
Let us denote Pz = {x € G; ORx}, where 0 is the zero-element of the group (G, +).
Pg is called the positive cone of the go-group (G, R).

For a system R, € 2(®) (« € A), we shall often denote the corresponding positive
cones by P, instead of Pg_ (x € A4).

Lemma 2.1. Let = (G, R) be a qo-group. Then Py is an invariant subsemigroup
with 0 of G. '
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Lemma 2.2. Let S be an invariant subsemigroup with 0 of a group ® = (G, +).
The the binary relation R defined by

aRb iff —a+beS (iff b—aeS) forall a,beG

is a quasi-order of the group .

Supplement. S = P;.

Proof. If aRb, xe€ G, then —x —a + b+ x€S, —a — x + x + be S, there-
fore —(a + x)+ (b + x)eS, —(x +a)+ (x + b)eS, and so (a + x) R(b + x),
(x + a) R(x + b).

Proof of Supplement. 1. If xe S, then —0 + x € S. Thus ORx, i.e. x € Pg.
2. Let y € Pg, i.e. ORy. Therefore —0 + y = y€e S.

Let us denote by 9’((5) the set of all invariant subsemigroups with 0 of G. It is
clear that the correspondence R — Py (for each R € 9(®)) is a one-to-one mapping
between 2(®) and 2(6).

Further, for Ry, R, € 2(®) it is R; = R, iff P, S Pg,. Therefore the ordered
sets (2(®), <) and (#(6), <) are isomorphic.

Theorem 2.3. 2(®) ordered by inclusion is an algebraic lattice.

Supplement. Let P, e #(6), x € A. Then

a) AP,=NP;
aed acA

b) VP, =Y P;
aeAd acA

in particular,
¢)P,VvP,=P, +P,=P,+P,.

Proof. Since #(®) is isomorphic to 2(6), Z(®) is (by Corollary 1.6.1) an algebraic
lattice. .
a) Let P, e #(6) (x€ A), P = () P,. It is evident that P € 2(6).
aeA

b) It is clear that P = ) P, is the smallest subsemigroup with 0 containing P,
acAd

(x € A). Let us show that P is invariant. If x = a,, + @, + ... + a, € P (a,,€ P,,,
i=12,..,n),zeG,then ;
—z+x+z=(—z+a,+2)+(-z+a,+2)+..+(-z+a, +2z)eP.

c) If A is an invariant subsemigroup of ®, then for each z € Githolds —z + 4 +
+ 2z S A, thus A + z € z + A. Therefore also 4 + (—z) = (—z) + 4, ie. z +
+A+(-2)s A thenz+ As A+ z andso 4+ z=2z+ A If now

X?a1+b1+az+b2+...+a"+bn
(ai€Py, bye Py, i=1,2,..,n),
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then
x=(a;+ay)+ (by +b))+ay+bs+..+a,+b,=
=a’1+b’2+03+b3+...+a,,+b"=._,_—_a+b’

where ae P, be P,.

Corollary 2.3.1. For the infimum and the supremum in the algebraic lattice
2(®) it holds: Let R, € 2(®) (x € A). Then

a) AR,=NR;

acA acAd

b) if a(V R,) b, then for each i€ A there exist x,x' €\ P, such that (a + X).
aeAd acA
. R‘(b - x');
c) if there exist x, x' €\ P, and i € A such that (a + x) R(b — x'), then a( V R,) b.
aeA

acA
Proof. a) The assertion a) follows from Lemma 1.1.

b) Let us denote R = V 4yR,, P = V 4(s)P,. Further, let aRb. Then —a + be
acA acA

eP, thus —a+b=x;, +...4+x, +x;+x;, +...+x;,, where x; €P; ,
X; €P;, x;€Py iy, ..., iy j1,...s jo i € A. (If in the partition there is no element
of P;, we can add x; = 0.) Let us denote x; + ... + x;, = x, (—x;,) + ... +
+ (=x;) = —x'. Then —(a + x) + (b — x') € P,, therefore (a + x) R{(b — x').

c) Let now x,x' € P, ie 4, (a + x) R{b — x’). Then —(a + x) + (b — x') = x;,
x;eP,andso —a+b=x+x;+x".Ifx=x; + ...+ x,,x" =x;, +... + x;,
then —a +b=x; + ...+ x;, + x; + X; + ... + x;,. This means —a + beP,
and thus aRb.

Theorem 2.4. The set 2,(®) of all invariant subsemigroups P with 0 of a group G
such that Pn —P = {0} is a closed A-subsemilattice of the lattice #(®).

Proof. In 2,(®) it holds
nPan_ﬂPﬂ=ﬂ(Pan_Pﬁ)={0}’
acAd BeAd a,feAd

thus A »e,P. € 24(6).
acAd

Corollary 2.4.1. The set 2,(®) of all orders of a group ® is a closed A-sub-
semilattice of the lattice 9(®). '

Theorem 2.5. Let 2,(®) be the set of all directed orders of a group & and let
32,®) + 0. Then the following conditions are equivalent:
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(2) 6 = {0}.
(b) 2(®) is a sublattice of the lattice 2(®).
(c) 24®) isan A-subsemilattice of the lattice 2(6).
(d) 246) is a v-subsemilattice of the lattice 2(®).
Proof. (c) = (a): Let R € 2,(6) and let P be the positive cone of R. Then — P is

the positive cone of the dual order of the group ® and P n —P = {0}. Thus {0}
is the positive cone of a directed order of ®, and so & = {0}.

(d) = (a): If P is the positive cone of a directed order of ®, then
Pv -P=P+(-P)=P-P=G and Gn -G=G.
Therefore & = {0}.
(a) = (b) = (c) and (a) = (d) are evident.
Similarly, we have

Theorem 2.6. Let 2,(®) be the set of all lattice orders of a group G and let
2,(®) + 0. Then the following conditions are equivalent:

(a) ® = {0}.

(b) 2(6) is a sublattice of the lattice 2(6).

(€) 2(®) is an A-subsemilattice of the lattice 2(®).
(d) 2(®) is a v -subsemilattice of the lattice 2(6).

Theorem 2.7. a) If R is a'directed order of a group ®, then R has complements in

the lattices 2(®) and 24(G).

b) If R is an order of a group ®, then its dual order is complement of R in 2(®)
(in 2,(G)) if and only if R is directed.

Proof. Parta)isa consequence of part b).
b) Let us denote the positive cone of R by P. Then

Pn-P={0}, PVpg—P=P+(-P)=P—P,

and P — P = Gifand only if R is directed. Thus, in this case, the dual order is a com-
plement of R in 2(®) and, by Corollary 1.2.2, in 24(G) as well.

Note. If & + {0} is a group and if R € 2,(®) has a complement in 2(®), then there
need not exist an element of 2,(®) among complements of R. Namely, if we can
order ® only trivially, then {0} n G = {0}, {0} + G = G, thus G is a complement
of {0} in #(®) and there exists no complement of {0} that belongs to 2,(®).

Theorem 2.8. In general, the lattice 2(®) is not modular.
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Proof. Let R, R’ € 2(®), R = R’. Then the corresponding positive cones P, P’
satisfy ' S '

Pn-P ={0}, P-P =G,
P'n—P’={O}, PP-P =¢G,
PcP, —-Pc -P,

and thus
Pn—-P cPn-P={0},
P+ (-P)2P+(-P)=G.

Therefore —P and — P’ are #(®)-complements of P and —P' > —P. This means
that 2(®) is not modular, and so 2(®) is not, either.

A group G will be called an 0}-group if each its directed order admits an extension
to a linear one. For example, each 0*-group (see [1]) is an 0}-group.

Corollary 2.8.1. Let ® be an 0F-group and let the lattice 2(®) be modular. Then
each directed order of ® is linear.

Proof. If there exist R, R’ € 2,(®), R = R’, then by proof of Theorem 2.8, 2(®)
is not modular. Therefore each R € 2,(®) is a maximal order of G. And since each
R € 2,(6) admits an extension to a linear one, R is linear.
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