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PaverL KrBEC and JAROSLAV KURZWEIL, Praha

(Received April 23, 1976)

1. Introduction and Definitions. Let P and Q be metric spaces. The set of all
nonempty and compact subsets of P is denoted by Q(P), the set of all nonempty,
compact and convex subsets of the Euclidean n-dimensional space R" is denoted
by o'(n). The closed convex hull of a set A, A = R" is denoted by co 4. The interior
of B, B = P is denoted by Int B. A mapping F : Q — Q(P) is upper-semicontinous
on Qif for every x € Q and for every ¢ > Othereexistsa 6 > 0such that F(By(x, §)) =
< Bp(F(x), &), where By(x, 8) and Bx(F(x), &) are respectively the é-neighbourhood
of x in Q and the e-neighbourhood of the set F(x) in P.

If P is compact then F : Q — Q(P) is upper-semicontinuous if and only if lim x, =

n—>wo

= x, lim y, = y, y, € F(x,) implies y € F(x) (see KURATOWSKI [6], vol. JI, p. 69).

n— oo
Let I be a compact interval in R and let C; be the space of all continuous functions
from I to R, with the maximum norm, let us write simply C for C(_, oy. Similarly,
the ball {x e R" | |x = y|| < r} is denoted by B(y, r).
Let J = (I, B>, T < B, and let F:J x C — A(n). We shall investigate certain
solution sets of the multivalued differential delay equation

o X(1) e F(t, x())

where x,(s) = x(t + s), se {—1,0) and F fulfils the usual conditions for the existence
of solutions. A continuous function x(+):<{# — 1, > —» R" is called a solution
of equation (1) on J =<1, B) if it is absolutely continuous on J and if
x(t) € F(t, x(*)) a. e. on J. Let % € C. The set of all solutions x(-) on J with the
property x{*)|¢-1,0, = %(*) will be denoted by (%, %, J). We shall prove that the
set #(1, X, J) is a continuum, B being sufficiently close to . This assertion was proved
by Kneser [5] for ordinary differential equations and is well-known as Kneser’s
theorem. '



II. Some Preliminary Lemmas. To prove the generalization of Kneser’s theorem
the following three lemmas are needed:

-

Lemma 1. Let P be a compact metric spdce, let P, c P,k =1,2,... be continua.
Let

Q = {x € P| there exists a sequence {p, }iZ1, py, € Py, x = lim p,,}
and
Qo P, k=1,2,...
(i.e. Q = lim P,). -
Then Q is a continuum.
For the (easy) proof see Kuratowski [6] vol. II, p. 179, th. 4.

Lemma 2. LetI be a compact interval, T €1, let functions p, : I =» R, k = 1,2, ...
be integrable and let there exist an integrable function £ : I — R such that for
every k = 1,2, ... the inequality | p(1)|| < &(t) holds for all te.

Let P(t) = co {p{(t), pi+1(1), ...} i=1,2,... and let P(t) = N P{t). Suppose
i=1
that
t
alt) = j p(o)do > g(t) for k- o, tel.

Then
la(®) — a(s9)] =

for each s, t fromI and §(t) € P(t) a. e. on I.

Sketch of the proof: We have g,(+) —» ¢(+) in C; for k — co. Let t;, t, €l.
Then

f :é(a) do

la(t2) — a(z,)] < EE f :2 |pilo)|| do = f :z (o) do.

Hence the function g(+) is absolutely continuous which implies the existence of the
derivative 4(?) a. e. in I. The sequence {4i}e> 1 has the following properties

1) sup Lllék(t)ll dt < oo,

12 12
- 2) limf di(t) dt =J d(t) dt forevery 1,,1,€l.
k~ o -

T3 1

Hence lim [y g, = [y 4 for every measurable M, M < I which implies g, — §
weakly in L, (see DUNFORD-SCHWARTZ [7] p. 316). The set Py = {ueL(I)|
| u(t) € P(r) a. e. in I} is convex. Let u, € P, for n = 1,2,... and u, - u.in L,(I)
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for n — co. Then there exists a subsequence {u, };%; with the property u,(f) - u(t)

a. e. in.I for i » co. The set P,(t) is closed. Hence u(f) € P,(t) a. e. in I. It means

u € P,, which proves that the set P, is strongly closed in L,(I). The inclusion P; o
-]

> Py for k =1,2,... implies that the set P = () P, is also convex and strongly

k=1
closed in L,(I). Hence the set P is also weakly closed in Ly(I). But g, — ¢ weakly
in Ly(I) and g, € P, for k =1, 2, ... which implies ¢ € P.

Lemma 3. Let P and Q be metric spaces, Q connected and let a mappfng
@ : Q - Q(P) be upper-semicontinuous with the property that ®(a) is a continuum

for every a € Q. Then the set U @(a) is connected.
aeQ

Proof: If the assertion were false there would exist two nonempty sets P, P;
such that P, " P, =0 =P, nP,and U ®(a) = P, UP,. Ifae Q, D(a) " P; + 0
asQ

then ®#(a) = P; for j = 1, 2. Hence the sets
Q;={aeQ|®a) =P}, j=1,2

are disjoint, nonempty and Q = Q, U Q,. The set Q is connected, hence @; N 0, + 0

or 0, nQ, + 0. Let us suppose @, N Q, + 0 and let ae Q; N @,. Then there

exists a sequence {a;}j~( of elements from Q, such that a; - a.as j - co. The

mapping @ is upper-semicontinuous. Hence for every ¢ > 0 there exists a positive

integer n such that for evety positive integer j, j > n, the relation &(a;) = B(%(a), ¢)

holds which yields U ®(a;) n ®(a) + 0. Since | &(a;) = P, and P(a) = P; we
j=1 ji=1

obtain' P, N P, + 0 and this contradiction proves the assertion of the lemma.
It is well-known that Kneser’s theorem is of a local character and we may formulate
it without loss of generality as follows:

Theorem 1. Let i and B be real numbers, T < B, and let J = (%, B). Let n:
: J = €0, ) be a real function such that [§ n(t)dt < 1 and let F : J x B0, 2) -
— X#'(n) be a mapping with the following properties:

(i) F(t, *) is upper-semicontinuous on B0, 2) for almost every t € J;

(ii) if ¥ : <¥ — 1, B> = B(o, 2) is continuous then there exists a measurable function
& :J - R"such that

d)eF(ty() a.eonJ;
(iif)  F(t, x(*)) = B(o,n(t)) on 'J x Bc(o, 2).
Let M < B((o, 1) be a continuum in C. Then the set (1. M, J] = U (1, %, J)
XeM

is a continuum in C,.



Remark 1. Theimage of a connected set by a continuous function is a connected
set. Hence the section {y = y(f) | »(*) € #(, M, J)} is connected in R” for every
tel. .

Remark 2. The assumptions of Theorem 1 imply that
(1,0, J) = Int B o, 1).

Remark 3. The supposition (ii) is valid if (i) is valid and if the
set {te J| F(t,u) N K #+ 0} is Lebesgue measurable for every u € C(,,o, and for
every compact set K, K = R". For the proof see HUKUHARA [4] and CASTAING [1],
[2]. Moreover, the assumption (ii) may be replaced without loss of generality by
a stronger assumption

(iv) to every & > O there exists a measurable set 4, = J such that u(J — 4,) < ¢
and the function F|,, x p(,,2) is upper-semicontinuous. See JARN{K, KURZWEIL[7].

Proof of the theorem. Let us suppose that (%, X, J) is a continuum. It follows
from (iii) that the functions from (%, B{o, 1), J) are equibounded and equicon-
tinuous. It is an easy consequence of Lemma 2 that #(%, B(o, 1), J) is closed in C,.
Hence (1, B(0, 1), J) is compact. This and Lemma 2 yield upper-semicontinuity
of the mapping &(7, -, J). The assertion of the theorem is then a consequence of
Lemma 3.

It remains to prove that for an arbitrary X € C, .V(?, X, J) is a continuum. It will
be convenient to introduce some notation. Let k be a positive integer and let numbers
0y, 63, ..., 0 besuchthat? = 6y < 0y < ... <oy, = fand o, — 0, = (1/k)(B ~ 1),
i=0,1",k—1 Let 2, j=1,2,...,k denote the set of all pairs (v, u) of
mappings from {oy — 1, g;> into B(o, 2) with the properties .

1) ot) = u(t) = %(1) for every t€ {0, —1,00);

t2
2) |u(tz) = ofty)] = f n(t) dt for every t;, t; such that oo < t; < t; < 03

t

12
3) |u(t:) — u(t)| = J‘ n() dt for every 1y, t, such that there exists i {0, 1,...,
t
...,j - 1} such that g; é t __-<= t, < Oi+1;

4) o) eF(t,v;*(*)) a.e.on (o4, 0,4), i = 0,1,2,...,j — 1 where v'**(0) = u(0)
on {0y, 6;4,) and v'*!(¢) = v(c) on <o ~ 1, 0));
5) u(o)) = v(o,) forevery ie {0, 1,...,j — 1}.

First we need to show that the set 2, ; is nonempty for all positive integers k
and all j = 1,2, ..., k. Let a positive integer k be chosen and let u(*) = o(*) = %(*)
on (oo — 1,00), u(t) = v(o,) for all te(do, ;). It follows from (ii) that there
exists a measurable selection £'(+) such that ¢(t) € F(t, v;(+)) for a. e. t €(00, 74)
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(where v'(c) = const = 1(6,) for all ¢ € (g, 7,)) and v'(¢) = v(¢) = X(o) for every
oce{dy — 1, 0o). We define v(t) = v(o,) + [4, £(t)dt for every t in (o, 0y)
and u(s,) = v(s,). Thus &, , is nonempty. From (iii) we obtain u(f)e Blo, 1 +
+ (3¢ n(r) dr) = B(o, 2) for every t € {a,, 01).

Assume that Z; is nonempty for some j < k. Then there exist functions u, v de-
fined on {o, — 1, 6;), with properties 1), ..., 5). We define u(t) = v(c;), v/*!(¢) =
u(t) for all te (o), 6;,,) and v/*'(f) = () for all tin (oo — 1, 6;). Then it is
clear that the mapping v'*!(+): (6o — 1, 6;4,) = B(o, 2) is continuous and as a
consequence of assumptions (ii) and (iii) we obtain a measurable function &/*(+):
140}, 6;41) = R" such that &*!(t) e F(t, u(+)) < B(o, n(t)) for a.e. te<a;, 0. ).
Hence it is possible to define

o) = ofe) + j (o) do forall 1oy 0501,

L8]
u(0;41) = 0(0;44)

and it is clear that the relations

u(i) e B (0, 1+ j "n(e) dr> < B(o,2),

ut)eB (o, 1+ j”“n(t) dv;) < B(o,2)

hold for every-t € {gq, 041).
Therefore, the functions u(+) and v(+) with properties 1), ..., 5) can be defined on
the interval (o, 6;, ;). Hence every set &, ;, k = 1,2, = 1,2, ..., kis nonempty.

Let =00 Z,; and let us define for j=1,2,...,k the sets %, ;=
k=1

= {(v, )| v € Cop-1,0;5 u: <G — 1,0, = R", u(o;) = v(o;) for every i =
=0,1,...,j, u(t) = v(t) = X(t) for every te{ao — 1,0,), for every i = 1,2,...,j
there exists @' € C(,,_, 0,y Such that ule,,_, ., = @'},

and

oi((v1, u1) s (v2,u2)) =, (S“P )"”1(‘) — oy(t)] +t (S“PJ) us(r) = ua(e)]
€{00,0; €{00,0

for (vy, uy), (v2, u3) € 6, ; where ||+|| denotes the Euclidean norm in R".

Then the pairs (%,,;, or,;) and (¥, g ) are metric spaces; let us denote them %, ;
and @, respectively. It is easy to see that a set 4 closed in €, ; is compact if and only
if the first components of elements from A are equicontinuous and equibounded
on {0y, 0;) and the second components are equibounded on (g, ;> and equicon-
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tinuous on {g;_, 0;) for every i = 1,2, ..., j. We prove that the set &, ; is compact
in %,,;. In view of the conditions 1), 2), 3) it is sufficient to prove that &, ; is closed
in €, ;. ‘

Lemma 4. Let k and j be positive integers, j < k. Then the set %, ; is closed in
€\

oJ*

Proof of the lemma. Let (v, u,) € 2, ; and (v, 4,) > (v, u) in %, ;. Then the
conditions 1), 2), 3) and 5) hold for (v, u) and it is sufficient to prove 4). Applying
<]

Lemma 2 to {v,};=; we obtain i(f) € P(t) a. e. on {a,, 6;) where P(t) = N P,(t) and
n=1

P,(t) = 0 {0,(1), Dy+1(?), ...} As (v, u,) = (v, w) in G, ,, it follows that v}(t) — v¥(7)
fori=1,2,...,j, te{ay, 0;), n - 0. Choose n > 0. (1) implies that for almost
every te<{o;-y, 0, i =1,2, ..., j there exists such an ny(t) that F(t, vj(*)) €
€ B(F(t, vi(+)), n) for n > no(t). We have 6,(t) € F(t, v;(*)) a. e. on {o;_;, 6;), there-
fore 9,(t) € B(F(t, vi(+)), n) for n > ny(t) a. e.on {o,_4,0,), i = 1,2, ..., j. The set
B(F(t, v}(+)), n) is compact and convex, hence

P,t) =co {ﬁ,(t);‘l3”+1(t), .} e B(F(t, vi(*)), 1)

for n > no(t) a. e. on {o;_4, 0;). Since i(t) € P(t) = ( P,(t) a. e. on (g, 0,> We
n=1

obtain i(f) € BiF(t, v,'(-)), 1) a. e. on {o;_y, o;> for every n and for every i = 1,

2,...,j. The set F(t, vj(+)) is compact. Hence i(t) € € F(t, v}(*)) a. e. on {o;_y, 0,
for every i = 1,2,..., . Therefore (v, u) € Z, ; and Lemma 4 is proved.

Now we can go back to the proof of the theorem.
Let us denote
Y ={v,u)e|v=u}.
It is clear that v is a solution of (1) if and only if (v, v) € ¥ so that ¥ = #(3, %, J)
and Z,; > ¥ for every k = 1,2, .... We want to prove # = Lim %, ; in ¥ i. e.

¥ = {(v,u) € Z | there exists (v, uy,)€ Ly, 4, j =1,2,... such that (v, u,)—
- (v, u) in €}.

1t is sufficient to prove that if
(ki) € Zi)x, and (vg, u,) = (v,u) inGfor j—

then v = u and the function v is a solution of (1). Since v, (t;) = u,(t;) for ¢, =
=t+i.(B=Yk,i=0,1,..,k; it follows from 2), 3) and 5) that u,, — v for
Jj = oo uniformly on <%, #>. Hence u = v on (¥ — 1, B). It remains to prove that v
is a solution of (1) — the proof parallels that of Lemma 4 and is omitted.
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Our goal now is to prove that the set ¥ = #(3, %, J) is'a continuum; we shall
apply Lemma 1.

Observe that 2 = |J 2, is a compact in €. Let P = {(v,, u,)}s>; be a sequence
k=1 —

in Z. If there exists such an i that (v,, u,) € &, ;forn = 1, 2, ..., then there exists
a convergent subsequence (Z; ; being compact). Otherwise for every positive integer i
there exists k(i) such that k(i) Z i and (v, k) € Zeciy k(i) then the subsequence
P’ = {v;)}> 1 is compact in C g4, (i. . relatively compact) and there exists a sub-
sequence of P’ which is uniformly convergent on <%, ).

Let us denote it again {vk(‘-)}‘f’:l and let v(;) = vin Cypy as i = 00. Then uyy = v
uniformly on <%, B) as i - o i. e. (Vg Ury) = (v, 0) in € as i — oo. Hence
(v, v) e¥ <= Z and therefore the set Z is compact.

To apply Lemma 1 we must prove that the set £, is a continuum for every
k=1,2,.... In Lemma 4 we have proved that %, is a compact. Let us prove by
mathematical induction that &, ; is connected for j = 1, 2, ..., k. Let

Qo = {u :<ao — 1, 3,) » B(o, 2) | both conditions 1) and 3) with j = 1 are valid} .
The set Q, is convex. Hence it is connected. For u € Q, let

Po(u) = {(v, u) | (v, u) € Z, 1} .

The set ®o(u) is convex (cf. the definition of Z, ;) and compact (as Z, , is compact).
For (0, #) € &, ;, 1 £ j < k let us denote

(0, 4) = {(v, u) € Ziju1 | theanory = B ooy = B} -

The set ¥, 4) is compact as Z ;4 is compact.
Let us prove that ¥,(9, @) is connected. Let us denote

Q(#) = {u : {00, 641> = B(0,2) | (s, ,,, = @ and condition 3) is valid}
and for u € Q;(4) let

@ (u) = {(v, u) | (v, u) € ¥(0, D)}

@(u) = {(v, ) | (v, 4) € s 3415 V)caoiey = s ¥|coo,apy = B} -

Then P40, 4) = U d),(u) the set Q,(#) is convex and for any u € Q(#) the set

IlEj

®(u) is convex (cf. the Definition of 2, ;) and compact (as ¥ (9, #) is compact).
To apply Lemma 3 it remains to prove that the mapping &, is upper-semicontinuous.
Let u, » u in Q,(#), (v, w,) = (v, W) in 24 ;,, for n — o, (v,, W,) € D,(u,). Then
W, = i, w = u. Hence (v, u) € 2}, ;+1i.€. (v, u) € D (u) and &, is upper-semicontinuous.
Applying Lemma 3 we observe that ¥,(9, 4) is connected and 2, ; = U Po(u)

ueQo

i.e.



is connected. The mapping ¥, j = 1, 2, ... is an upper-semicontinuous mapping
from Z,; into the space of compact subsets of compact space 2, ;,,. To-
prove this let (95 4,) — (0, 4) in 2, ;, (v, u,) = (v,u) in Z, ;,, for n > oo and
(0 ) € P (Dp, By)forn = 1,2, ... Then v|(sy 0,5 = 0, t|s0,0,, = #1and (v, u) € 2 ;41
i. e. (v, u) € ¥,(9, @) which proves upper-semicontinuity of ¥;. Applying Lemma 3
we observe that the set &, ;4; = U ¥,(9, @) is connected, provided the set % ;
0,0)eZy,

is connected. The set 2, , is connec)ted ajmd the principle of mathematical induction
implies the connectedness of % ;.

Since we have already proved that the set Z = {J %, , is compact it follows from
k=1

Lemma 1 that % = Lim £ ; is a continuum and the proof is complete.

Remark S. Together with Kneser’s theorem we have also proved the existence
theorem.
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