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ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Matematický ústav ČSAV, Praha 

SVAZEK 104 * PRAHA 12.2.1979 * ČÍSLO 1 

KNESER'S THEOREM FOR MULTIVALUED 
DIFFERENTIAL DELAY EQUATIONS 

P A V E L K R B E C and JAROSLAV K U R Z W E I L , Praha 

(Rece ived April 23, 1976) 

I. Introduction and Definitions. Let P and Q be metric spaces. The set of all 
nonempty and compact subsets of P is denoted by Q(P), the set of all nonempty, 
compact and convex subsets of the Euclidean n-dimensional space Rn is denoted 
by Jf(n). The closed convex hull of a set A, A c Rn is denoted by co A. The interior 
of B, B c P is denoted by Int B. A mapping F : Q -» Q(P) is upper-semicontinous 
on Q if for every x e Q and for every e > 0 there exists a d > 0 such that F(BQ(x, $)) cz 
c BP(F(x), e), where BQ(x, d) and BP(F(x), e) are respectively the ^-neighbourhood 
of x in Q and the e-neighbourhood of the set F(x) in P. 

If P is compact then F : Q -* Q(P) is upper-semicontinuous if and only if lim xn = 
H-+00 

= x, lim yn = y, yne F(xn) implies y e F(x) (see KURATOWSKI [6], vol. II, p. 69). 
n-*co 

Let I be a compact interval in R and let Cj be the space of all continuous functions 
from I to JRn with the maximum norm, let us write simply C for C<-i,o>- Similarly, 
the ball {x e Rn \ \\x - >>|| <£ r} is denoted by B(y, r). 

Let / = <?, />>, ? < P, and let F : J x C -> Jf(n). We shall investigate certain 
solution sets of the multivalued differential delay equation 

(1) x(t)eF(t,xl-)) 

where xt(s) = x(t 4- s), s 6 < — 1,0> and F fulfils the usual conditions for the existence 
of solutions. A continuous function x(') : <? — 1, /?> -*• Rn is called a solution 
of equation (1) on J = <?, /?> if it is absolutely continuous on J and if 
x(f) e F(f, x,(*)) a. e. on J. Let x e C. The set of all solutions x(*) on J with the 
property x-(*)|<^1>0> = *(•) will be denoted by «9"(?, x, J). We shall pro\e that the 
set 6fQ, x, J) is a continuum, j? being sufficiently close to ?. This assertion was proved 
by KNESER [5] for ordinary differential equations and is well-known as Kneser's 
theorem. 



II. Some Preliminary .Lemmas. To prove the generalization of Kneser's theorem 
the following three lemmas are needed: 

Lemma 1* Let P be a compact metric space, let Pk c P, k = 1, 2, . . . be continua. 
Let 

Q = {x e P | there exists a sequence {pki}?ll9 pki e Pki, x = lim pki} 
and 

QczPk, fc = l ,2 , . . . 
(i.e. Q = lim P„). 

Then Q is a continuum. 
For the (easy) proof see Kuratowski [6] vol. II, p. 179, th. 4. 

Lemma 2. Let I be a compact interval, % el, let functions pk : I ** Rn, k = 1, 2 , . . . 
be integrable and let there exist an integrable function £ :I -» R such that for 
every k = 1,2, ... the inequality \\pk(t)\\ < £(t) holds for all tel. 

00 

Let Pt(t) = co {pi(t), pi + 1(t),...} i = 1, 2, ... and let P(t) = f) P^t). Suppose 
i=l 

that 

qk(0 = PÁ?) < ! àa -> q(t) for к -> oo, t e J , 
J т 

Then 

I«(0-?(-)flš I ['«(*)<•-' 
\J s 

for each s, tfrom I and q(t) e P(t) a. e. on I. 
Sketch of the proof: We have qk(*) -» q(>) in Q for k -> oo. Let tt, t2 el. 

Then 

Hh) - <z(OII ̂ ^ H A W I d * = f V ) d * . 
*-*°°Jfi Jfi 

Hence the function q(>) is absolutely continuous which implies the existence of the 
derivative q(t) a. e. in /. The sequence {qk}k=i has the following properties 

1) sup [\ijfi\at 

f*2 f t 2 

2) lim 4*(0 d ř == #(O d ř for every T̂ , T2 
*-°°Jti Jti 

< 0 0 , 

ЄІ. 

Hence lim JM 4* e JM 4 for every measurable M, M c I which implies g* -+ 4 
weakly in Lj (see DUNFORD-SCHWARTZ [7] p. 316). The set Ph = {ueL1(I)\ 
I u(t) e Pk(t) a. e. in 1} is convex. Let u„ e Pk for n = 1, 2,... and M„ -+ u in Li(i) 



for n -» co. Then there exists a subsequence {M«,}S-I
 w^ tn t n e property Mni(f) -> u(t) 

a. e. in7 for i -* oo. The set Pfc(f) is closed. Hence w(f) € Pk(t) a. e. in L It means 
w e Pk, which proves that the set Pfc is strongly closed in Lt(l). The inclusion Pfc 3 

00 

-=> Pfc+1 for fc = 1, 2 , . . . implies that the set P = f) Pk is also convex and strongly 
*=i 

closed in Lt(l). Hence the set P is also weakly closed in LX(I). But qk -+ q weakly 
in LX(I) and qk e Pk for k = ' 1, 2, . . . which implies qeP. 

Lemma 3. Let P and Q be metric spaces, Q connected and let a mapping 
0 : Q -> Q(P) be upper-semicontinuous with the property that 0(a) is a continuum 
for every a e Q. Then the set \J 0(a) is connected. 

aeQ 

Proof: If the assertion were false there would exist two nonempty sets Pu P2 

such that Pi n P2 = 0 = Px n P2 and U ®(a) = p i u P 2 - I f a e 2, 0(a) n Ps * 0 
aeQ 

then #(a) c Py forj = 1, 2. Hence the sets 

Q, = {aee |<P(a)cP,}, ; = 1, 2 

are disjoint, nonempty and Q = Qx u Q2. The set Q is connected, hence Qi n 62 + 0 
or 5i n 62 + -̂ Le t u s suppose Qx n g2 4= 0 and let a e g i H Q2. Then there 
exists a sequence {aJJLi of elements from Q2 such that a,- -> a as j -> 00. The 
mapping 4> is upper-semicontinuous. Hence for every e > 0 there exists a positive 
integer n such that for eveiy positive integer j,j > n, the relation 0(aj) c B(0(a), e) 

~oo 00 

holds which yields \J 0(aj) n 0(a) + 0. Since U 0(aj) cz P2 and 0(a) c Px we 
1=1 1=1 

obtain P2 n Px 4= 0 and this contradiction proves the assertion of the lemma. 
It is well-known that Kneser's theorem is of a local character and we may formulate 

it without loss of generality as follows: 

Theorem 1. Let 1 and ft be real numbers, 1 < ft, and let J = <?, j8>. Let tj : 
: J -* <0, 00) be a real function such that Jf tj(t) dt < 1 and let F : J x Bc(o, 2) -+ 
-> X(n) be a mapping with the following properties: 

(i) F(t, •) is upper-semicontinuous on Bc(o, 2) for almost every t e J; 

(ii) ifxj/ : <? — 1, )8> —• B(o, 2) is continuous then there exists a measurable function 
£:J~+Rn such that 

Z(t)eF(t,il/t(>)) a.e.onJ; 

(iii) F(t, *,(•)) c B(o, rj(t)) on J x Bc(o, 2) . 

Let M c Bc(o, 1) be a continuum in C. Then the set &(l M, J ] = U £?(!, x, J) 
XeM 

is a continuum in Cj. 



Remark 1. The image of a connected set by a continuous function is a connected 
set. Hence the section {y = y(t) j y(*) e S?(1, M, J)} is connected in JR" for every 
teJ. 

Remark 2. The assumptions of Theorem 1 imply that 

<?(lo,J)cIntBCj(o,l). 

Remark 3. The supposition (ii) is valid if (i) is valid and if the 
set {t e J | F(t, u) nK + 0} is Lebesgue measurable for every u e C<-1>0> and for 
every compact set K, K c Rn. For the proof see HUKUHARA [4] and CASTAING [1], 
[2] . Moreover, the assumption (ii) may be replaced without loss of generality by 
a stronger assumption 

(iv) to every e > 0 there exists a measurable set At e J such that \i(J - Ae) < e 
and the function F\AitXBc(0t2) is upper-semicontinuous. See JARN{K,KURZWEIL[7] . 

Proof of the theorem. Let us suppose that S?(1, x, J) is a continuum. It follows 
from (iii) that the functions from S?(1, Bc(o, 1), J) are equibounded and equicon-
tinuous. It is an easy consequence of Lemma 2 that Sf(l, Bc(o, 1), J) is closed in Cj. 
Hence Sf(1, BJ(o, 1), J) is compact. This and Lemma 2 yield upper-semicontinuity 
of the mapping Sf(l, •, J). The assertion of the theorem is then a consequence of 
Lemma 3. 

It remains to prove that for an arbitrary xe C, &*(1, x, J) is a continuum. It will 
be convenient to introduce some notation. Let fc be a positive integer and let numbers 
0"i» 02> •••> 0* be such that 1 = <r0 < <rt < ... < <rk = />and<rl+1 — <T{ = (l/fc)(/? — ?), 
i = 0,1,*..., fc — 1. Let &kj> I = 1, 2 , . . . , fc denote the set of all pairs (v, u) of 
mappings from <cr0 - 1, OJ> into B(o, 2) with the properties 

1) v(t) = u(t) = x(t) for every t e <<r0 - 1, <r0>; 

2 ) IK'a) "" K*i)ll = ?(0 & for every ^, t2 such that <r0 = t1 = f2 = <r y ; 

3) ||n(r2) - w(fi)|| ^ ^(r) d* for every tl9 t2 such that there exists i e { 0 , 1 , . . . , 

...,j — 1} such that <rt ^ tt ^ t2 < <ri+l; 

4) t<0 eF(f, t;{+1(-)) a. e. on (<r„ <r,+ 1), 1 = 0,1, 2, ...J - 1 where vi+i(<r) - u(<r) 
on <<Tj, <rl+1) and ir*+1(<r) = t?(<r) on <<r0 - 1, <r(); 

5) u(<rt) = t̂ <r,) for every 1 e { 0 , 1 , . . . , ; - l } . 

First we need to show that the set 2tkJ is nonempty for all positive integers fc 
and all./ = 1 ,2 , . . . , fc. Let a positive integer fc be chosen and let u(') = t?(-) -» *(•) 
on <<r0 - 1, <r0>, M(*) = t?(<r0) for all t e (<r0, <rx). It follows from (ii) that there 
exists a measurable selection {*(•) such that <J1(r)€F(r, !??(•)) for a. e. f e(<r0, a^ 



(where v^a) = const = v(a0) for all <x 6 <<x0, at)) and v%(a) = v(a) = x(<x) for every 
<xe<<x0 — 1, <x0>. We define v(t) = v(a0) + j ^ 0 ^(x)dx for every t in <<r0, aty 
and u(at) = v(at). Thus J? M is nonempty. From (iii) we obtain v(t) e B(o, 1 -F 
+ Hi rj(t) dt) c B(o, 2) for every * e <tx0, a,}. 

Assume that &ki is nonempty for some j < k. Then there exist functions u, v de­
fined on <cx0 — 1, <Xy>, with properties 1),..., 5). We define u(t) = v(a/), vJ+i(t) = 
u(t) for all t e <<xJ., aj+1) and vJ+i(t) = v(t) for all t in <<r0 — 1, aj). Then it is 
clear that the mapping vJ+1(*) : <<x0 — l,aJ+1)-* S(o, 2) is continuous and as a 
consequence of assumptions (ii) and (iii) we obtain a measurable function £J + 1(*) : 
: <<Tf, <xi+1) -• H" such that lJ+1(t) e F(t, ut(-)) c B(o, r\(t)) for a. e. re (ap aj+1}. 
Hence it is possible to define 

v(t) = v(aj) + £J+1(a) d<x for all t e <<xi, <ri+1> , 
J <fj 

uicrj+i) = v(aj+1) 

and it is clear that the relations 

u(t) e B (o, 1 + tj(x) di j c B(o, 2), 

v(t) eB (o, 1 + Y\(X) dx\ c B(o, 2) 

hold for every t e <tr0, aj+1}. 
Therefore, the functions «(•) and v(') with properties 1),..., 5) can be defined on 

the interval <<r0, aJ+1}. Hence every set $?ktj, k = 1,2,..., j = 1, 2,. . . , fc is nonempty. 
00 

Let 3T = U JfM and let us define for j = 1,2,..., fc the sets ^ j = 
fc=i 

= {(t;, w)| t? e C<<ro.lt<rj>, u: <a0 - 1, cfr -> Rn, u(at) = v(a() for every i = 
= 0, 1, ...,j, u(t) = v(t) = x(r) for every te <<x0 — 1, <r0>, for every i = 1, 2, . . . , j 
there exists ul e C<<fi_1>ffi> such that u\<<ti_u9i) = fl1}, 

^ = U «*, 
k=-i 

and 

£i(0i>Wi)> (^2^2))= sup ||t>i(0 - 02WII + SUP W O - tt2(0I 
t€<ff0,<ri> te(<ro,<Tj) 

for (t?l9 Mt), (t>2, u2) e ^kj where || * | denotes the Euclidean norm in Rn. 
Then the pairs i^€ktj, gkfJ) and (*$, Qktk) are metric spaces; let us denote them %!ktJ 

and <€, respectively. It is easy to see that a set A closed in *€ktJ is compact if and only 
if the first components of elements from A are equicontinuous and equibounded 
on <<x0, aj} and the second components are equibounded on <<x0, asy and equicon-



tinuous on (s^t-u &i) for every i = 1, 2, ...,I. We prove that the set 2£kJ is compact 
in *$k j . In view of the conditions 1), 2), 3) it is sufficient to prove that 2£kJ is closed 
i n ^ M . 

Lemma 4. Let k and j be positive integers, j <J fc. Then the set 2£kJ is closed in 
^kj-

Proof of the lemma. Let (vn9 un) e 2£kJ and (vn9 un) -• (v9 u) in ^kJ. Then the 
conditions 1), 2), 3) and 5) hold for (v9 u) and it is sufficient to prove 4). Applying 

00 

Lemma 2 to {vn}n==l we obtain v(t) e P(t) a. e. on <(70, cr,) where P(t) = f) Pn(t) and 
n = l 

Pw(f) = co {v„(t)9 vn+1(t)9...}. As (vn9 un) -> (i>, u) in # k J , it follows that v\(t) -> t>'(f) 
for i = 1, 2, . . . , j , te <<r0, cri>, n -* oo. Choose r\ > 0. (i) implies that for almost 
every f€<(Tf_1, a^)9 i = 1, 2, ..., j there exists such an n0(t) that F(f, t?i.,(-))e 
e B(F(r, t>*(-)), .7) for n > n0(t). We have vn(t) e F(f, !&(•)) a. e. on ^ - - j , cr,>, there­
fore vn(t) 6 B(F(f, t>j(*))> rj) for n > n0(f) a. e. on <o"f_ j , crf>, i = 1, 2,...,j. The set 
B(F(t9 v

l
t('))9 rj) is compact and convex, hence 

P„(0 = co K(f), vn+i(t)9...} c B(F(t9 v\(-))9 n) 

00 

for n > n0(t) a. e. on <o,
i-1, <r*>. Since t;(f)eP(f) = (] Pn(t) a. e. on <c0, <ry> we 

n-=l 

obtain i(t)e B(F(t9 v\('))9 rj) a. e. on <tr^1, <rf> for every r\ and for every i = 1, 

2, ...,j. The set F(r, #{(•)) is compact. Hence v(t)eeF(t9 v*t(')) a. e. on <o,
i.1, (Tf> 

for every z = 1, 2,. . . , j . Therefore (v, u) e j ^ y and Lemma 4 is proved. 

Now we can go back to the proof of the theorem. 

Let us denote 

9 = {{v9 u) e 2£ I v = u] . 

It is clear that v is a solution of (1) if and only if (v9 v) € <W so that ^ = «Ŝ (?, x, J) 
and 2£ktk ^> <& for every k = 1, 2,.. . . We want to prove <& = Lim .2?&>k in # i. e. 
^ = {(v9 u) € 3£ J there exists (%., fitj) e 2£kjikj9 j = 1,2,... such that (vkj9 ukj) -» 
-» (t?, w) in «*}. 

It is sufficient to prove that if 

(vkj9 ukj) e %kj%kj and (vkj9 ukj) ~* (», u) in ^ for j -» 00 

then t? = u and the function 0 is a solution of (1). Since vkj(tt) = ukj(tt) for tt = 
« ? -f i . (j? - ?)/&/, 1 = 0 ,1 , . . . , fc, it follows from 2), 3) and 5) that ukj -> v for 
j --> 00 uniformly on <?, j8>. Hence u = 1? on <? — 1, /?>. It remains to prove that t; 
is a solution of (1) — the iJroof parallels that of Lemma 4 and is omitted. 

15 



Our goal now is to prove that the set <& = « (̂?, x9 J) is a continuum; we shall 
apply Lemma 1. 

00 

Observe that 3£ = U &*& is a compact in #. Let P = {(vn9 wn)}^=i be a sequence 
fc=i 

in «3T. If there exists such an i that (vn9 un) e 3£iti for n = 1, 2, ..., then there exists 
a convergent subsequence (3£ i%i being compact). Otherwise for every positive integer i 
there exists k(i) such that k(i) —- i and (vk(i)9 uk(i)) e 3fk(i)Mi) then the subsequence 
P' = {t?/t(0}^L t is compact in C<?,/3> (i. e. relatively compact) and there exists a sub­
sequence of P' which is uniformly convergent on <?, /?>. 

Let us denote it again {t;fc(l)}^-i and let vk(i) -» v in C<r,/j> as i -* oo. Then uk(i) -> i? 
uniformly on <?, /?> as i -> oo i. e. (%(*>, wfe(0) -» (v, v) in ^ as i -> oo. Hence 
(t;, i;) e <y c ^ and therefore the set 3£ is compact. 

To apply Lemma 1 we must prove that the set 3£ktk is a continuum for every 
k = 1, 2,. . . . In Lemma 4 we have proved that 3£kyk is a compact. Let us prove by 
mathematical induction that 3£kj is connected for; = 1, 2, ..., k. Let 

Q0 = {u : <(T0 — 1, c^) -» B(o, 2) | both conditions 1) and 3) with j = 1 are valid} . 

The set Q0 is convex. Hence it is connected. For ue Q0 let 

$0(u) = {(v,u)\(v,u)e3£kA}. 

The set $o(u) is convex (cf. the definition of 3£ktJ) and compact (as 3£k%1 is compact). 
For (t>, u) e 3£k j , 1 ^ j <£ fc let us denote 

^ «) = {(*, «) e Jf&,.+1 | v\<O0t<tJ> = fc W|<ff0,ffi> = u} . 

The set 5^(0, u) is compact as ^fe)J + 1 is compact. 
Let us prove that Wj(09 u) is connected. Let us denote 

Q.(ti) = {u : <<T0, tri+1> -> B(o9 2) | u<<ro><ri> = u and condition 3) is valid} 

and for u e Qs(u) let 

*j(u) = {(v9u) | (v9u)eVs(t9u)} 
i. e. 

* X « ) = {(*>u) I ( " > w ) 6 ^*J+-> "U..,> = ^ «L,*,> - " } • 
Then V$, u) = U #/«)» t l i e set Q/fl) is convex and for any u € QJ(u) the set 

#,(w) is convex (cf. the Definition of 3£ktJ) and compact (as Y/p, u) is compact). 
To apply Lemma 3 it remains to prove that the mapping $j is upper-semicontinuous. 
Let un -* M in Qj(u), (v„9 w„) -> (v9 w) in 3£kj+t for n -> oo, (t?rt, wn) € <Pj(un). Then 
w» = un9 w = M. Hence (v9 u) e 3£kj+1 i. e. (v9 u) e $j(u) and #y is upper-semicontinuous. 
Applying Lemma 3 we observe that Wj(t9 u) is connected and 3£ktl = U #o(w) 

ueQo 



is connected. The mapping Wp j = 1,2,... is an upper-semicontinuous mapping 
from 3tktj into the space of compact subsets of compact space &kfj+x. To 
prove this let (0*, un) -+ (0, u) in 3?kJ, (vn, un) -+ (v, u) in 2£kfj+x for n -+ oo and 
\vn, un) € Wj(f>„, iin)for n = 1, 2,.... Then v\<<TOiffJ> = 0, u\<eQt9J> = uand (v, u) e a r w + 1 
i. e. (v, u) 6 f'/fi, w) which proves upper-semicontinuity of ¥^. Applying Lemma 3 
we observe that the set &k,j+i — U ^//(̂ » w) is connected, provided the set &kj 

(e,6)e&kfJ 

is connected. The set &kfX is connected and the principle of mathematical induction 
implies the connectedness of 2tkik. 

00 

Since we have already proved that the set & = U &k,k
l% compact it follows from 

Lemma 1 that <& = Lim £fkfk is a continuum and the proof is complete. 

Remark 5. Together with Kneser's theorem we have also proved the existence 
theorem. 
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