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časopІs pro pëstování matematiky, roč. 103 (1978), Praha 

ON PERIODIC SOLUTIONS OF NONLINEAR 
SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 

G. G. HAMEDANI, Tehran 

v (Received December 29, 1976) 

In our previous paper ([2], Theorem 1) we established the existence of w-periodic 
solutions of the differential equation x" + Kx = F(t, x, x') for the case K > 0. 
In this note we prove an existence (and uniqueness; Corollary 2) theorem for this 
differential equation for i\ + 0. This theorem is stronger than Theorem 1 of [2] 
in the sense that there is no restriction on w (except that [0, w] ^ [0, n/y/K] for 
K > 0, and [0, w] £ [0, + oo) for K < 0). Furthermore, its extension (which can 
be obtained with out difficulties) to a system of nonlinear second order differential 
equations provides a stronger theorem than Theorems 1 and 2 of [1]. 

Consider the scalar boundary value problem 

(1) x"+f(f,x,x') = 0, 

(2) x(0) - x(w) = x'(0) - x'(w) = 0, 

where f is a continuous real-valued function with domain [0, w] x R2. 

Theorem 1. Let there exist constants K #= 0 and C > 0 such that 

(3) M = Max {\Kx - f(t, x, x')\ : t e [0, w] , \x\ < C, 

\x'\<U\K\)C}<\K\C. 

Then in [0, w] £ [0, n\jK] if K > 0, and in [0, w] £ [0, + oo) if K < 0, the 
problem (i), (2) has at least one solution x(t) satisfying \x(t)\ < C, |x'(f)| < (V|^|) c 
for 0 :£ t <, w. 

Proof. IfJC>0, then problem (1), (2) is equivalent to the integral equation 

(4) x(t) = (WG(t, s) F(s, x(s), x'(s)) ds , 
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where F(t, x, x') = Kx — f(t, x, xf) and G(t, s) is Green's function 

(5) G(t,s) = 

1 cos UK) ttw + s - t) г . w ; v ; - '- for 0 < s < t < w 
2 yJK sin ЏK) w/2 

1 cos ЏK) (jw + t - s) 

2 V# sin (JK) W/2 

If iC < 0, then (1), (2) is equivalent to (4) where 

foг 0 < ř < s < w 

(6) G(f,s) = 

1 exp [- (V|Jg|)(r - s)]exp[(VlX[)w] + exp[(V|X|)(f - s)] 
2V|J-1' l - e x p [ ( V | J - | ) W ] 

for s < í 

1 e x p [ - (J\K\)(s - f)]exp[(V|Xl)w] + exp[(V|*l)(s - Q] 
2J\K\' l - e x p [ ( V | K | ) w ] 

for t < s . 

Let S = {x e c'[0, w] : ]x(f)| < C, |x'(r)| < (>J\K\) £} a n d d e f i n e a n operator U 
on 5 by 

U x(t) = ( G(t, s) F(s, x(s), x'(s)) ds 

From (3), it follows that 

sw\sc-\Ux(t)\ < M J |G(f,s)[ds 

£ U x(f)| < M j>,(f, ,)| ds < -JL < (VW) C . 

and hence U maps 5 continuously into itself. Therefore by Schauder's theorem (4) 
(and hence (1), (2)) has a solution with the desired properties. 

Corollary 1. If in addition to the hypotheses of Theorem 1, the function f(t,x,x') 
is w-periodic in t and locally Lipschitzian with respect to (x, x'), then (1), (2) has 
a w-periodic solution. 

Corollary 2. If in addition to the hypotheses of Theorem 1, the function f(t, x, x') 
is w-periodic in t and if 

\F(t, x., x[) - F(t, x2, x'2)\ á ci í |x, - x2| + — L |xi - x'2\\, 0 < í < w 
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for (x{, x\) e(- = {(x, x') : |x| = C, |x'| = (V|^|) C}, where Cx > 0 is a constant 
such that 

W 
fhen (1), (2) Zias a unique w-peribdic solution. 

Proof. If, for x e S, we let 

llxll = Max \ \x(t)\ + — — x'(t): 0 < t < wi , ..II II | l w i ^ | X | w | 

we can easily show that 17 is a contraction with respect to || • || on S. 

Applications. Three applications of Theorem 1 for the case K > 0 can be found 
in ([2], pp. 73 — 75). We give below three applications for the case K < 0. 

(A-) Consider the equation 

(7) x" + f(x) x'n + ax = \i p(t) , a < 0 , n > 2 

where n is an integer, all coefficients are continuous, f(x) is locally Lipschitzian 
in x, 0 < f(x) < b for all x, and \fi\ sufficiently small. If K < a/2 and if p(t) is 
periodic of period w, then (7) has a w-periodic solution. 

Proof. The hypotheses of Corollary 1 aresatisfied by choosing C = |^| I / n with \fi\ 
sufficiently small. 

(A2) Consider the equation 

(8) x* + a(t)x + b(t)f(x2) = >ip(t), 

and let 

(i) a(t), b(t), p(t) be continuous and a(t) non-positive, 

(ii) f(x) be locally Lipschitzian, non-negative, non-decreasing for x = 0 and 
for some C > 0 

where 

вm+]џì»LE_ 
c ' 'c 

£ - Max |6(ř)|, D = Max |p(f)|, £ = Max a(í) . 
«e[0,w] »e[0,w] !e[0,w] 

J/ K < A = Min a(r) and i/ a(t), b(t), p(t) are periodic of period w then (8) has 
te[0,w] 

a w-periodic solution. 
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Proof. The hypotheses of Corollary 1 are satisfied by choosing C as in (ii). 

(A3) Consider the equation 

(9) x" + x'(l - x2) - x = fi p(t) , 

where p(t) is continuous in t. If K < —J and if p(t) is periodic of period w then 
(9) has a w-periodic solution. 

Proof. If 0 < C < 1 0 < e < l/V|K |, and |/i| < (1 - fi(V|^|)) C/B, where 
B = Max \p(t)\, then by Corollary 1 (9) has a w-periodic solution. 

íє[0,w] 
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