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THE INSERTION OF REGULAR SETS IN POTENTIAL THEORY 

EVA CERMAKOVA, Praha 

(Received October 29, 1976) 

Introduction. In 1924, N. WIENER [8] proposed a new construction of the gener­
alized solution of the Dirichlet problem for the Laplace equation. His method 
essentially uses the following fact: Any couple (K, U) consisting of a compact set K 
and an open set U with K c U is admissible in the sense that there is a set V regular 
for the Dirichlet problem such that 

K <= Vc Vc U. 

It is known that each couple (K, U) is also admissible for a wide class of more general 
second order elliptic partial differential equations than the Laplace equation. In fact, 
this follows from a result of R.-M. HERV£ [4] (Proposition 7.1) established in the 
context of Brelot harmonic spaces. A related question in the same context is also 
investigated in [6]. On the other hand, a similar result is no longer valid e.g. for the 
heat equation as observed by H. BAUER in [1], p. 147. Consequently, the original 
Wiener's procedure is not directly applicable. (Note that the Wiener type solution has 
recently been investigated in [7] in the frame work of the axiomatic potential theory.) 

The aim of this paper is to study in terms of Bauer's axiomatics necessary and 
sufficient conditions guaranteeing that a couple (K, U) is admissible. To this end, 
a special hull r(K) of K is introduced in a suitable way so that the main result reads 
then as follows: The couple (K, U) is admissible, if and only if r(K) cz U. For the 
case of the heat equation, several characterizations of r(K) in terms of absorbent 
sets and balayage are given. 

1. Terminology and notation. In what follows, X will denote a strong harmonic 
space in the sense of H. Bauer's axiomatics. For all notions we refer to [ l ] . For any 
set M we shall denote by M*, int M and M its boundary, interior and closure, 
respectively. 

Let U be an open subset of X and K a compact subset of U. The couple (K, U) 
is called admissible if there exists a regular set W such that K c W c W cz U. For a 
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compact set K c X, we put 

r(K) = f){V; KczVczX; Vregular} . 

If there is no regular set Vsuch that K c V, put r(K) = X. 

2. Lemma. / / r(K) =t= X, then 

r(K) = n{F; K c Vc X; Vregular] ; 

in particular, r(K) is compact. 

Proof. According to Theorem 4.3.5 of [1] to each regular set JVsuch that K c W, 
there exists a regular set W0 such that K c W0 c W0 c W. 

3. Theorem. The following statements are equivalent: 

(i) a couple (K, U) is admissible; 
(ii) r(K) * K, r(K) c U. 

Proof. Implication (i) => (ii) is obvious. Assume (ii) and let W be a regular set 
such that K c W. We can limit ourselves to the case Wn (X \ U) 4= 0. Then Wr\ 
n(X\U) is compact and r(K) n (PVn (X\ U)) = 0, i.e. [PV n (X \ 17)] c 
c [X \ n{V; K c V, Vreg.}], thus 

Wn(X\U) c (J ( X \ F ) . 
Freg, 

We can therefore choose regular sets Vl9..., Vn such that 
n 

Wn(X\U) c[X\ nFJ . 
i-=i 

n 

By Corollary 4.2.7 of [l] , n Vt is a regular set. Obviously, 
i = l 

f - = l 

and thus applying Theorem 4.3.5 of [ l] we can find a regular set V0, 

K c V0 c F0 c: n V. . 
' i * i 

Put W0 = V0 n TV. Then K c TV0, TVo is (according to Corollary 4.2.7 of [1] again) 
regular. Moreover, W0 c U. 

4. Notation. For E cz X9 let A(E9X) be the smallest absorbent set in X con-
taining E. We shall write A(x9X) instead of A({x}9%). 
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5. Lemma. The components of an absorbent set are absorbent sets. 

Proof. For S connected, A(S, X) is always connected. (See Exercise 6.1.2 in [3].) 
Let B be a component of A. Then A(B, X) is a connected absorbent set containing B. 
Consequently, B -= A(B, X) and B is absorbent. 

In what follows, X will denote the harmonic space corresponding to the heat 
equation on a Euclidean space Rn+1 (n ^ 1) (see [l] , Standard-Beispiel 2, p. 20). 

6. Notation. Given a compact set K c X, the parabolic hullMKofKis the union 
of K and the set of all x e X \ K for which A(x, X\K)is relatively compact. Denote 
by; TK the union of K and the set of all x e X \ K for which there exists no absorbent 
set B in X such that 0 4= B c A(x, X\K). 

Further put LK = {xeX; R*(x) = 1}. 

7. Theorem. For a compact subset K c: X, 

r(K) = MK = TK = LK. 

Thus, together with Theorem 3 we obtained a characterization of admissible 
couples (K, U) in terms of the parabolic hull ofK. 

The proof of this theorem will be divided into the following steps. 

8. Proposition. Let Y be an open subset of X and A a closed set in Y. Then the 
following assertions are equivalent: 

(i) The set A is absorbent in the harmonic space Y. 
(ii) For each xe A there exists a neighborhood Ux and an absorbent set B in X 

such that Uxn A = Uxn B. 

Proof. Suppose (i). For xe in tA , choose a neighborhood Ux of x such that 
Ux c A, and put B = X. If x e Y is a boundary point of A, then we choose a > 0 
in such a way that the set 

Ux = {yeR»+1; £ ( y . - x()
2 - (a + xn+1 - yn+1)

2 < 0 ; 
i = - i 

xn+1 - a < yn+1 < xn+1 + a} 

is contained in Y. (Thd sets of this form will be called standard cones. Recall that each 
standard cone is a regular set — see [1], p. 21). For each yeUxn A(x, X), y 4= x, 
tliere is a; standard cotie S such that tte S tz S cUx, yeS*. Then j ;espt /& 
where j£ denotes the harmonic measure corresponding to x and the regular set S 
(see [1], p. 21). Obviously, spt /£ c A and hence 

UxnA(x9X)c:VxnA. *••''• • 
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Suppose now that there exists z e (Ux n A)\ A(x, X). The supports of harmonic 
measures & corresponding to regular sets V, V a Ux (consider e.g. standard cones) 
for which z e V, cover the set [A(z, X) n UJ \ {z}. Thus 

x e int [Ux n A(z, X)] c Ux n Al, 

which yields a contradiction with the assumption that x is a boundary point of A. 
So we obtain U^ n ^4(x, X) = Ux n A and we can put B = _A(x, X). 

Now suppose (ii). By [2] absorbent sets in X are exactly those which are closed 
and finely open. It follows that there is a fine neighborhood Vx of x, contained in B. 
Since Ux n Vx is a fine neighborhood of x contained in A, A is finely open, and 
(using [2] again) A is an absorbent set in Y. 

9. Corollary. Let Ybe an open subset ofX. For each component Q of the boundary 
of an absorbent set in Y there exists ce R such that Q cz {xeX; xn+1 = c}. 

10. Lemma. For a compact K c X, MK c r(K). 

Proof. Assume that K 4= 0 and choose x° eMK\K. The standard cones are 
regular, hence r(K) 4= X. Suppose that there is a regular neighborhood Vof K, such 
that x° i V. Putting 

L = {xeX; xt = x° for all 1 = i = n, x„+ 1 = x°+1} , 

there exists j e L such that 

y„+i =sup{jcB + 1 ; xeL\A(x°,X\K)} . 

According to Proposition 8, yn+1 < x°+ 1 . Denote 

L0 = {xeL ; x n + 1 > y n + 1 } . 

By Proposition 8, y$A(x°,X\K). Simultaneously y e A(x°,X\K) and hence 
yeK.lt follows L0 n V* =(= 0 and using the fact that L0 c A(x°, Z \ K ) , we have 

0 # L0 n V* c A(x°,Z\K) n V* . 

Let j ° e A(x°, X\K)be chosen such that 

y°n+1 =min{x J I + 1 ; x e i4(x°, X \ K) n V*} . 

First, consider the case when y° is a boundary point of A(x°, X\K) relatively to the 
set X\K. Using Proposition 8, there is a neighborhood U^o of y° such that 

Uy0n(K\V)cz{xeK; y°n+i g xn + 1} . 

It follows (cf. [1], Theorem 4.3.L and p. 108) that y0 is an irregular boundary 
point of V, which is a contradiction. Using a similar argument, >>0 cannot be in the 
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interior of A(x°,X\K). Thus, MK\K c. Vand since Vis an arbitrary regular set 
containing K, we have MK\K c r(K). Obviously, K c= r(K). 

The proof of the inclusion r(K) c MK will be more complicated. 

11. Lemma. For a compact set K in X, the set {xeX; £f(x) = 1} is bounded. 

Proof. Obviously it is sufficient to prove that {xeX; R*(x) = 1} is bounded for 

K = {xeX; \xt\ £ at, i = 1, ...yn + 1} (a( ^ 0 ) . 

(a) If y e X is such that yn+i < ~-an+1, then 

We can take the superharmonic function (see [l] , p. 34.) 

on A(y, X), 
on X\A(y,X). 

(b) If y eX is such that |yf| S <*i for i = 1,..., n, yn+l > an+1 consider the set 

D = {xeX\K; \xt\ < at + 1 for i = 1,..., n, \xn+i\ < \yn+1\ + 1}. 

Obviously, y e D. Choose zeD, z f = — a% — \. Using (a), -£f(z) = 0. Applying 
the maximum principle for the heat equation (e.g. Theorem 2.3 in [5] - note that R* 
is a harmonic function on D, Rf <J 1) we obtain Ri(y) < 1. 

(c) In the case that for y eX, yn+i 2> — an+l and there exists i (i = 1,..., n) 
such that \yt\ > at we can proceed analogously. 

12. Notation. For a compact set 0 4= K c X, we define a sequence {Kn}: 

Kn = {xeX; dist(x,K) S l/«} . 

13. Lemma. LK = MK. 

Proof. LetK + 0 and consider x ° e l \ M x . The set -4(x°, X\K) is unbounded, 
thus using the preceding lemma and Proposition 8, there is y e int A(x°, X \ K) 
such that Ri(y) < 1. The function 1 - JRf is harmonic o n I \ K By the Harnack 
inequality (see [l] , Theorem 1.4.4) applied to X \K and to the Dirac measure at x° 
there is a ^ 0 such that 

0 < 1 - Rf(y) = a(l - Kf(x0)). 

It follows that Rf(x°)< 1. 
Thus we proved that LK c MK. Let y° eMK\K, choose n0 such that y° $Kno. 

Let it ^ »0 be a natural number. According to Proposition 8 we obtain that the 
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"parabolic boundary" (see [5] Chap. 3) of int A(y°, X \K) in X is contained in K. 
Using the fact that £fn(y) = 1 for all y e K together with the minimum principle 
for superharmonic functions for the heat equation (see Theorem 2.1 in [5]), we have 

inf {A«"(y); y e int A(y°, X\K)} = 1. 

Since y° $Kn, k*n is continuous at y° (compare with Corollary 2.3.5 in [l]) and 
R%n(y°) = R*n(y°) = 1. Now, applying the assertion of Appendix 3.2.1 of [ l ] 
we have 

R% = infi?f", 
neN 

and hence R*(y°) = 1 (note that Kn ZD Kno for n < n0 and £fn
 = JRfn°). This means 

y° e LK. Obviously, K c LK. 

14. Remark. In the course of the preceding proof we used the equality 

R* = mfR%n. 
neN 

It is an easy consequence that 

{xeX; *f(x) = 1} = f) {x eX; R*n(x) = 1} . 
n = l 

Obviously, {xeX; £f(x) = 1} u K = {x eX; tff(x) = l}, so that 

0 {x eX; R«n(x) = 1} = f\ {x eX; R?n(x) = 1} . 
! » = 1 1 1 = 1 

15. Lemma. For a compact K c X, r(K) <z MK. 

Proof. Assume that K + 0. Consider x° £ MK. Using Lemma 13 and the preceding 
remark, there exists a natural number n such that ^fm(x°) < 1 for all m ^ n. 
Simultaneously, 

inf£?m(x) = l . 
XBMK 

The set MK is a closed subset of the compact set r(K). Hence, using Proposition 3.1.2 
of [3] there is a fundamental system of regular neighborhoods of MK not containing 
the point x°. Thus, x° $ r(K). 

16. Lemma. TK = MK. 

Proof. Suppose first that xeMK\TK. If B is an absorbent set in X such that 
B cz A(x, X\K), then B is a compact absorbent set and hence (see [ l] , p. 31) must 
be empty. It follows that MK cz TK. Suppose now that the set A(x, X\K) is un­
bounded. Let D 3 K be an (n -f l)-dimensional cube in X such that its faces are 
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parallel to the coordinate axes. Choose x° eA(x,X\K) n (X\ D). Applying 

Proposition 8, there is y° e A(x, X\K) such that 

y°+1 < minx n + 1 . 
xeD 

Again by Proposition 8, B = A(y°, X) c A(x, X\K). 

17. Proposition. Let E be a compact subset ofX. If E is convex (or more generally, 

if the set {x e E; xn + 1 = c} is convex for each c e R) then r(E) = r(E*) = E. 

Proof. Consider x°eX\E and let P be an arbitrary line which contains x°, 

P cz {xeX; xn+1 = x°+i}- Consider A(x°, X\E) and denote by Pt the half-line 

starting from x° for which P1 n E = 0. Then according to Proposition 8, P1 cz 

cz A(x°,X\E), i.e. A(x°, X\E) is unbounded. This means x°$r(E). Thus we 

have r(E) cz E. Obviously E c r(E). Analogously we can show that r(E*) cz E. 

Further, if x° e int E, then int E is closed and open — hence also finely open — in 

X \ E*. By [2] int E is an absorbent set in X \ E*. Hence A (x°, X\E*) cz int E, 

i.e. A(x°, X \ E*) is bounded and x° e r(E*). Simultaneously E* cz r(E*) and this 

completes the proof. 
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