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časopis pro pěstování matematiky, roČ. 103 (1978), Prah* 

CUTS IN SIMPLE CONNECTED REGIONS AND THE CYCLIC 
ORDERING OF THE SYSTEM OF ALL BOUNDARY ELEMENTS 

ILJA CERNY, Praha 

(Received September 16, 1976) 

1. In the present paper we shall work in the extended complex plane S; the open 
complex plane will be denoted by £. By a neighbourhood of a point Z e £ we mean 
any circle U(Z, e) = {£ e £; |C — Z| < e} (where e e (0, oo)); neighbourhoods of the 
point oo will be the sets U(co, e) = {£ e S; |(| > l/e} (where s e (0, oo) again). Neigh­
bourhoods of points Z e S will be denoted briefly by U(z) also. N will always denote 
the set of all natural numbers, U = 1/(0, 1) will be the unit circle, C = dU the 
unit circumference. By Q* we denote the metric in S obtained by transferring the 
cartesian metric of the threedimensional euclidean space by means of the stereo-
graphical projection of the unit sphere onto S (see [4], p. 24). 

We shall use the common definition of the topological limes superior of a sequence 
of points zn e S or non-empty sets Mn c S : Is zn denotes the set of all accumulation 
points of {Zn}, Is Mn = (J Is zn where the summation extends over all sequences of 
points zn e Mn (cf. [l]). Note that Is zn and Is Mn are non-empty compact sets (as S 
is compact). Besides, in what follows, we shall use the following two simple assertions: 

' я > (1) 0 4= Mnc Nn for all n => Is Mn c Is Nn 

(2) if {Mn} is a nonincreasing sequence of (non-empty) sets MM, then 

lsMM = r . M B . 
Iir-l 

The following implication concerns one of the basic properties of any conformal 
mapping F of Q onto G (where Q9 G are open subsets of S): 

(3) z„efi, Is zn c BQ => Is F(zn) c dG . 

It immediately implies that 

(4) 0 * Mn c Q , Is Mn c dQ => Is F(Mn) c dG . 

(See [4], pp. 488-489.) 

259 



By a curve in M we understand any continuous mapping q> : <a, f}> -> M (where 
- oo < a < /? < + oo); a curue will be a curve in S. If <p : <a, P> ~> S is a curve, 
we denote 

(5) i.p. <p = <p(a), e.p. <p = cp(p) , 

(6) <</>> = <7>«a, /?», (9> = <K(a> P», <<P) = <K<«> P)) (<P) = <K(«> « ) • 

We say that the curve cp : <a, /?> -> S is simple, iff the mapping 9 is one-one. By 
a closed curve we understand as usual a curve cp with /.P. <p = e.p. cp. A Jordan 
curve will be any closed curve cp : <a, /?> '-> S such that both restrictions cp | <a, /?), 
cp J (a, f}> are one-one. If cp is a Jordan curve in £, we denote by Int cp (Ext cp) the 
bounded (unbounded) component of S — <cp>. A Jordan region will be any region 
(connected open set) Q the boundary dQ of which has the form <<p> where cp is 
a Jordan curve (in S). 

We introduce the index of a point zeS — <<p> with respect to a closed curve cp 
as usual (see e.g. [4], p. 214); notation: ind<, z. We say that a Jordan curve cp in £ is 
positively (negatively) oriented, iffind^, = 1 (ind^ = - 1 ) on Int cp. 

If cp : <a, ft> -* S is a curve, we define the curve — cp by 

(7) (^cp)(t) = cp(-t), f e < - £ - a > . 

If ^ : <y, c5> -» S is another curve and if <p(j?) = ^(y), we define the oriented sum 
cp + \\t of the curves <p, ^ by setting 

/cp(t) for te<*,P>, 
(8) (<p + i/O (0 = ; 

We write <p — ^ for cp + (~^A) and speak of the oriented difference of cp, \j/. Sure it 
is clear what we mean by <Pi + ... + <pn (where n ;> 2). 

We say ffc<? curves cp : <a, /?> -> S, i/f : <y, <5> -> S d//fer 0w/y unsubstantially, 
iff there is a continuous increasing mapping co of <y, <5> onto <a, /?> with 1̂  = 
= Cp oCO. 

It is clear that < — <?> = <<p>, that <<p> = <^>, if the curves cp, if/ differ only un­
substantially, and that <<p ± i//> = <<p> u <i/r>, if the oriented sum (difference) 
exists. 

In what follows we shall use the following "9-curve theorem'9: 

Theorem 1,1. Suppose cp = cpt + cp2 is a positively oriented Jordan curve, 
X a simple curve such that i.p. X = i.p. cpt, e.p. X = e.p. cpl9 (X) <=. Int cp. Then 
<°i = <Pi ~ h9 co2 -= <p2 + X are positively oriented Jordan curves and 

(9) Int cp - (A) = Int <ox u Int co2 

where the sets on the right are disjoint. 
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(This theorem is *an immediate consequence of the well known "topological 
0-curve theorem" — see e.g. [1] — and of the basic properties of the index of a point 
with respect to a curve.) 

If Q is a region and q> a curve such that i.p. <p e dQ, (<p> c f l w e speak of a curve q> 
from the boundary dQ of the region Q into Q (or: from i.p. q> into Q). The following 
theorem is well known in the theory of conformal mappings (see [4], p. 531). 

Theorem 1,2. Suppose that F is a conformal mapping ofQ onto U and <p : <a, /?> -» 
-> S is a curve from dQ into Q. Then the limit (F ° <l>)(a + ) exists. Besides, if 
<p* : <a*, P*} -» S is another curve from dQ into Q, we have 

(Fo<p)(a + ) = (Fo<p*)(a* + ) , 

iff the following condition is satisfied: 

(10) (p(oc) = (p*(cc*), and for each neighbourhood U(<p(a)) there is a curve X in 
U((p((x)) n Q with i.p. X e <<p>, e.p. X e <<p*>. 

Remark 1. An assertion analogous to the first part of Theorem 1,2 holds, of 
course, for any curve q> : <a, /?> -» S with <p(P) e dQ, <<p) cr Q. Instead of (F o (p) (a+) 
we investigate, naturally, the limit (F o <p) (/?—). 

This implies immediately that for any curve q> : <a, /?> -> S with (q>) <=z Q and for 
any conformal mapping F of Q onto U it is consistent to define a curve \j/ : <a, P) -+ S 
by 

(Fo<p)(a+), if f = a, 

(11) iA(0 = — ( ^ 0 ^ ( 0 , if te(d,P), . 

V « f ) H . if r = )?. 
(If, e.g., <p(a) e Q, we have (F o (p) (a+) = F((p(<x)), of course.) We shall say that 
(under above conditions) the curve (11) is the F-image of (p. 

Let Q be a fixed region. Let us write, for a moment, <p ~ ^, iff <p : <a, j?>• -+ S, 
9* : <a*, )5*> -> S are curves from dQ into Q satisfiing (10). It is obvious that the 
binary relation ~ is reflexive, symmetric, and transitive, hence an equivalence. It 
partitions the set of all curves from dQ into Q into equivalence classes, which we call 
bundles of curves (from dQ into Q). (Cf. [4], p. 527.) By <&(Q) we denote the set of 
all bundles of curves from dQ into Q. If Sf e <3(fi), <peSf, <p* e Sf, then i.p. <p = 
= i.p. (p*. Thus, it is consistent to define o(Sf) = i.p. (p, where (pet?. The point 
o(Sf) will be called fAe origin of Sf+ 

In what follows we shall use that 

(12) in any bundle Sf e @(0) there are simple curves. 

(Proof. Let <p e Sf, q> : <a, 0> -• S. Then 9(a) * <?(/?) and, by a well known 
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theorem — see, e.g., [1] — there is a simple curve ^ : <«, />> -• <<p> such that 
\/f(a) = </>(<K), \l/(p) = ?($• Obviously, + e Sf>) 

By Theorefh 1,2, we have: If F is a conformal mapping of Q onto U, &> e S(.Q), 
^ e ^ a curve defined in <a, /?>, then the number (F o <p) (a+) is independent of the 
choise of the curve <p eSf. We denote it by W^). (CI with [4], p. 537.) 

Thus, for any region Q conformally equivalent to U and for any conformal 
mapping F of Q onto U, we have defined the function WF : ®(.G) -* C. By Theorem 
1A 

(13) WF is one-one (on S(O).) . 

In what follows it will be important that 

(14) HK«(Q))»C. 

(The proof of this assertion see, e.g., in [3], p. 402; of course, a little different termi­
nology is used there.) 

On the unit circumference C we define a cyclic ordering of triples of distinct 
points: We write wt <w2 < w3, iff there is a positively oriented Jordan curve 
co : <a, jS> -* S with <co> = C, and a triple of points tj e <«,/?) (I = 1, 2, 3) such 
that tx < t2 < t3 and Wj = (*)(*,) for j = 1,2, 3. Further, we write wt <>w2^ w3, 
iff either wt <w2 < w3, or wt = w2, or w2 = w3. Symbols like wt^w2 < w3, 
Wj -< w2 ̂  w3 have an analogous meaning. The symbol 

w\ <w2< ... < w'n < ... <w0<...<w"n<...<wl< w\ 

will also appear; it will mean that there is a positively oriented Jordan curve o : 
• <«» P} -+ S with <G>> = C, and points t'n, tn, t0 e <<x, P) such that wn = a^) , 
wj = a f̂j) for each neN9w0 = a>(*o)> and 

*i < *'2 < ... < tn < ... < *0 < ••• < £ < ••• < '2 < ' i . 

If w4 # w2, the set C ^ f w e C j w ^ w ^ w2} is an arc of the circumference C 
joining wt with w2; {weC; wt -< w < w2} is the corresponding open arc, C2 =-
» {w 6 C; w2 ̂  w ̂  w j the complementary arc. 

Any mapping 

yaz -f 6 

(15) Д«) - ^ 

for z є E , 
cz + d 

a\c for z = oo 

where a, b, c, d e E are numbers with ad — fee 4= 0 will be called a linear fractional 
function1). 

%) We define A/0 « oo for A e S, A # 0. 
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Besides very familiar properties of linear fractional functions (see [4]) we need, 
in what follows, the following two ones: 

(16) If F is a conformal mapping of U onto itself, then there is a linear fractional 
function / such that / = F on U) 

(17) I f / i s a linear fractional function satisfiing/(U) = U, then the relation wt < 
<w2<w3 implies the relation f(wt) -< f(w2) -< j(w3). 

(For proofs of (16) and (17) see, e.g., [4], p. 470 and 543 resp.) 

2. Suppose that Q is a region and let q> = <pi — q>2 be a simple or Jordan curve 
such that the curves <pi9 <p2 belong to distinct bundles from &(Q). (The last condition 
is, obviously, independent of the decomposition of <p into the oriented difference of 
two curves.) Then the curve q> will be called a cut in Q. 

Theorem 2,1. If cp is a cut in a region Q conformally equivalent to U, we have 

(18) Q - (cp) = Qt u Q2 

where Qi9 Q2 are disjoint regions conformally equivalent to U and 

(19) <<p> c: dQx n dQ2 , dQx u dQ2 = dQ u (<p) . 

Proof. By assumption, there is a conformal mapping F of Q onto U. Let \j/ be the 
F-image of (p. By the definition of a cut and by the second part of Theorem 2,1, 
^ is a simple cut in U 2). By the "topological" "0-curve theorem", this implies that 

(20) U - ty) = Ut u l/2 

where CT̂ , l/2
 a r e disjoint Jordan regions. Besides, there exist two distinct points 

wl9w2eC such that the arcs 

(21) Ct = {w e C; wt ^ w ̂  w2} , C2 = {weC; w 2 ^ w ^ wt} 

have the following property: 

(22) dUj = Cj u ty) for I = 1, 2 .3) 

This implies that 

(23) <^> = dUx n 8U2 , 51I! u 8U2 = C u (^) . 

2) i.e. a simple curve which is a cut in U. 
3) Of course, we have {wi9 w2} -= {/./>. ,̂ .̂p. ^}. 
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Put 

(24) Qj = F„t(Vj) for j = 1,2. 

Then Qj are disjoint regions conformally equivalent to U (since the Jordan regions Uj 
are conformally equivalent to U). The equality (18) follows immediately from (20). 
The rest of the assertion of theorem 2,1 is an easy consequence of (3) and of the 
definition of the boundary. 

Remark l . I t i s easy to see that in the assertion of Theorem 2,1 it is not possible 
to replace the inclusion <<p> c 3Qt n 3Q2 by equality. More detailed informations 
about boundaries of the regions Qj are contained in Theorem 6,2 which follows. 

Suppose that all assumptions of Theorem 2,1 are fulfilled and let <p* be another 
cut in Q. As it is easy to see, Qx is a component of both Q — (q>) and Q — (<p*)9 

iff either the curves q>9 <p*9 or the curves q>9 ~cp* differ only unsubstantially (as only 
then <<?>> = <<?*». 

Lemma 1. Let Q be a region conformally equivalent to U, let q> be a cut in Q. 
For each conformal mapping F of Q onto U denote by \f/F the F-image of <p\ further, 
put 

(25) C; = {w e C; i.p. \//F ^ w ^ e.p. i//F} , 

CF = {w e C; e.p. f F ^ w ^ i.p. ^F} 

and suppose that UF resp. UF is the component of U — (\j/F) satisfiing 

(26) dU} = c ; u (pF) resp. dUF == CF u (xl/F) . 

Then9for any two conformal mappings F9G of Q onto U we have 

(27) f - i ( t / ; ) = G - K ) , F_1(Uf) = G_1(Uc). 

Proof. Let <a, /?> be the domain of the cut <p. If F9 G are conformal mappings 
of Q onto U, then F o G„t is a conformal mapping of the circle U onto itself. By (16), 
there is a linear fractional function/such that / = F ° G ^ on U. This implies that 

I.p. ^ - = ( F o <p) (a+) = ((/o G) o <?>) (a+) = f((G 0 ?) («+)) = /(i.p. *G) . 

Similarly, e.p. \j/F = /(e.p. ^G). By (17), this implies that 

(28) c ; = / ( c + ) , c ; = / ( Q ) . 

Further, it follows that 

u}-f(vi), vF^f(v;) 
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so that 
F.^Vt) = G_.(/_.(/(_£))) = G_.(l/_) . 

This is the first equality in (27); the proof of the second one is analogous. 

Remark 2. If all assumptions of Lemma 1 are satisfied and if we use the same 
notation, then the regions F^t(U}), F.t(Up) are independent of the choise of the 
conformal mapping F (of Q onto U). They depend only of the region Q and the cut cp. 
Therefore, it is consistent to define 

a; - - M i t f ) , Q; =P-1(i/;) 

(where F is any conformal mapping of Q onto U and where U}, Up are as in Lemma 
1). We say then that the component Q* resp. Q~ of Q — (cp) lies on the right side 
resp. left side of the cut <p. 

Example 1. Suppose all assumptions of Theorem 1,1 are satisfied and use the 
same notation. Then the region Int coi (Int w2) lies on the right (left) side of the cut k 
(in the Jordan region Int q>). 

Remark 3. Let cp, cp* be cuts in a region Q (conformally equivalent to U). Then 
Q+ = Q*. (and, as a consequence, Q~ = Q**), iff the curves q>, cp* differ only un­
substantially. The equality Q* = _!"• (and, as a consequence, also the equality 
*-> = ^C*) holds, iff the curves cp, —cp* differ only unsubstantially. 

3. Definition. Let Q be a region conformally equivalent to U. For each ne N 
let cpn = (p„ti — <p„f2 be a cut in Q and let Qn be a component of Q — (<pn). Suppose 
that the following four conditions hold: 

I. The sequence {Qn} is nonincreasing. 
II. For each pair of natural numbers m 4= n we have (cpm) n (<pn) = 0 and the 

curves <pWfl, (pmt2, <Pn,u (pn,2 belong to four distinct bundles from @(Q). 
00 

in. nS-ceQ. 
n = l 

IV. If <p e Sf, cp* e 9>*, where ST, &>* e <S(0), and if <<p> n Qn * 0 * <<p*> n On 

for all n € N, then ^ = y*. 

Then we shall say that {Qn} is a normal sequence in Q. 

Remark 1. If Qn are as in the above definition, then the following condition 
(stronger than I) holds: 

I*. For each n e N w e have A,+i n f i c f i . , 
Condition I implies, namely, that Dn+1 a Hn. As, by theorem 2.1, 

eQn <=• eQ u (<pn), eQn+l c eQu (cpn+i), 
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the inclusion fin+i c fin implies that 

X + i u (<pn+1) = Hn+l n Q c Dn n Q = £„ u ((?„) . 

By condition II, however, (<pn+1) n (cpn) = 0, so that (<p,,+i) <= O,,. This and the 
inclusion Q„+1 c Qn imply that S„+l n (7 c fiB, 

Theorem 3,L Let F be a conformal mapping of Q onto U. For each neN let 
q>n = (pnl --- (pn2 be a cut in Q and \//n the F-image of cpn. Then the following 3 
assertions hold: 

1. If condition I holds, then the condition U is equivalent to the following one: 
For each neN, we have F(Qn+l) n U c F(Qn), and the arc F(Qn+1) nC is a subset 
of the open arc F(Qn) nC - {i.p. \J/n, e.p. \j/n}. 

2. If conditions I—HI hold, then the condition IV is equivalent to the statement 

that the set f\ F(Qn) contains only one point. 
n=-l 

3. Suppose that the sequence- {Qn} is normal in Q (so that conditions I —IV hold) 

and denote by w the only point of the set f) F(Qn). Then the sequence {F(Qn)} is 

normal in U, for each neN the arc F(Qn+1) n C is contained in the open arc 
F(Qn) n C — {i.p. \\tn, e.p. \j/n}, the point w lies, for each neN, on the open arc 
F(Qn) n C — {i.p. \\fn, e.p. \//n}, and the distance ofw and the component ofU — (^n) 
distinct from F(Qn) is positive. Finally, 

GO 

(29) 0 A, = {z e dQ; there are zneQ with zn -• z, F(zn) -» w} . 
n = l 

Proof. As we can take — cpn instead of q>n, we may, without loss of generality, 
suppose that each region Qn lies on the right side of the cut cpn. Then 

F(Qn) n C == {w e C; i.p. ^n^w^ e.p. ^ } 

for each neN. 

1. If I is satisfied, we have F(-2„+i) n C c F(Qn) n C for each neN. By Theorem 
1,2, condition II is equivalent to the statement that, for any two distinct natural 
numbers m, n, the sets (^m), (\j/n) are disjoint and i.p. \j/m, e.p. \j/m, i.p. \\fn, e.p. \\fn are 
four distinct points. Hence, the arc F(Qn+i) n C is a subset of the open arc F(Qn) n 
n C - {Lp.~il/n, e.p. fa}. 

The proof of the reverse assertion is similar. 

2. Now suppose conditions I-III hold. Condition III may be, by (2), written 
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equivalently in the form Is Qn c dQ and it implies, by (4) (where G = U must be 
set), that 

П r ( ß в ) = lsҒ(Йп) 
n = l 

By a well known theorem, f] F(Qn) is a continuum. Obviously, it is both non-empty 
n = l 

and not equal to C. Hence, it is an arc of the circumference C or a one-point set. 
Suppose it is an arc. By (14), there exist two distinct points w\ wn of this arc, not 

equal to the end points of the arc, and belonging to the set Wj-(®(.G)). Hence, there 
exist two distinct bundles 9", Sf" e ©(D) with w' == Wj{Sf')9 wn = W^Sfn\ Choose 
curves <p' e S?\ q>" e 9*; without loss of generality we may suppose their domain 
is <0,1>. Let \j/'9 ij/" be the F-image of <p\ q>n

9 respectively. As w' = >'(0), wn = ̂ "(0) 

are interior points of the arc C\ F(Qn)
 4), they are interior points of each arc F(Qn) n 

n = l 

n C. Hence, <^'> n F(Qn) 4= 0 4= <^"> n F(Qn) for each n, and, consequently, 
<<p'> n Qn 4= 0 4= <<p"> n On for each n. Since the curves q>'9 <pn belong to two 
distinct bundles from ®(-2), the condition IV does not hold. 

Reversely, suppose the condition IV does not hold. Then there are curves <p'9 q>* 
belonging to two distinct bundles &"9Sfn e<S(Q) such that <<p'> n Qn 4- 0 4= 
4= (cp"y n Qn for each n. This implies, as it is easy to see, the points W^Sf')9 W^Sf") 

belong to the continuum f) F(Qn). By (13), these points are distinct (so that the con-
n = l 

tinuum f] F(Qn) contains more than one point). 
n = l 

3. Suppose the sequence {Qn} is normal in Q. According to what we have proved 

already, the continuum f) F(Qn) contains one and only one point; denote it by w. 
n = l 

As we easily see, it remains to prove the equality (29); all remaining assertions are 
either proved already, or they are obvious consequences of what has been said above. 

00 

Let z e fl Qn- Then there is a sequence of points zn e Qn with zn -> z. This implies 
n = l 

Is F(zn) c Is F(Qn) = 0 F(Qn) = {w} so that F(zn) -> w. This proves that the left 
n = l 

side of (29) is a subset of the right one. Suppose, reversely, that zedQ and that 
there are points znsQ with zn -+ z, F(zn) -• w. Since, for each meN9 the distance 
of the point w and the component of U — (\J/m) distinct from F(Qm) is positive, there 
is, for each m e N, an index nm such that F(zn) e F(Qm) for each n > nm. This implies 

00 

zn 6 Qm for all n > nm and z = lim zn e Um for all meN9 hence z e f) fim. This 
completes the proof of the equality (29). m3Bl 

4) i.e. points of this arc distinct from both end points of it. 
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4. We shall say two sequences {Q„}9 {flm} (for the time being, of arbitrary non­
empty sets) are mutually inscribed, iff the following conditions hold: 

•» 

(30) A V A \Pl = o,1, A V A [o. e o g . 
II m-i W > W n m H«n W»-*Hm 

This represents a binary relation between some pairs of sequences of non-empty 
sets. As it is easy to see, the relation is reflexive, symmetric, and transitive. If Q is 
a fixed region conformally equivalent to U, the above relation partitions the set of all 
normal sequences in Q into equivalence classes; these classes will be called boundary 
elements of the region Q. 

Thus, a boundary element of Q is any non-empty system Jf of normal sequences 
in O satisfiing the following two conditions: 

A. If {On} e -?f and if normal sequences {Q„}9 {fl*,} are mutually inscribed, then 
{-C}ejr. 

B. If {fln}, {fl*} e tf, then the sequences {Q„}9 {0%} are mutually inscribed. 

By §(fl) we denote the system of all boundary elements of the region Q. 

The geometric image of a boundary element #? e §(Q) will be the set 

00 

(31) <jf> = fl A, where {Qn} e JT . 

oo oo 

(Obviously, 0 0„ = f) &Z for any two mutually inscribed normal sequences {Q„}9 
n-=l m-- l 

{fl*} so that the definition is consistent.) 

If any conformal mapping F of Q onto U is given, we define the following map­
ping yF of the system §(fl) into C: For each Jf e $(&), yF(&) is the only point 

of the set f) F(0„) where {Qn} e ̂ . (The set ft F(Qn) contains, by theorem 3,1, one 
Л - - 1 

and only one point, which is, obviously, independent of the choise of {Qn} e Jf.) 

Theorem 4,1. If F is a conformal mapping of Q onto U, then yF is a one-one 
mapping of §(fl) onto C. 

Proof. First we prove the mapping yF is one-one: Let y^Jf) = yF(Jf*) = w 

for a pair of elements JP, JC* e $(Q). Let {Qn} e tf, {fl*} e JtT*. Then f| F(0„) = 
« = - i 

« {w}, and, by theorem 3,1, dist (w, U - F(Qn)) > 0 5) for each neN. Hence, 

for each neN there is a neighbourhood l/„(w) such that Un(w) n C7 c F(fl„). 

5) U — ! f ^ ) is the component of U — {yn) distinct from FCfl.,). 
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Since {w} = f) F(Q*) so that, obviously, diam F(Q*) -• 0, there is an mn such that 
m-=l 

F(Ql) c Un(w) for all m > mn. This proves that 

AV A [F(Qt)^F(Qn)]. 
n n%n tn »-* "in 

Since the interior of the closure of any Jordan region is equal to this region (see [4], 
p. 556), it follows that 

AV A [F(Qt) <= F(Qn)] . 
n Mn wi«-*iiin 

This implies the first condition of (30); the second one holds similarly. This proves 
the sequences {Qn}, {Q*} are mutually inscribed so that Jf = Jtf*. This completes 
the proof the mapping yF is one-one. 

For the proof of the implication 

(32) weC=> there is an Jf e $(Q) with yF(tf) = w 

we need the following auxiliary assertion: 

(33) For each weC and each U(w) there is a cut <p in Q with F(Q*) c U(w) such 
that the point w is an interior point of the arc F(Q*) n C. 

First, let us prove the implication (32) by means of (33). The assertion (33) easily 
implies the existence of cuts q>n in Q such that: 

a) H°t*i) c F(Qtn) n U("> l/») f o r each neN, 
b) denoting by ij/n the F-image of (pn we have <^rt+i> n <^n> = 0 for each n and 

i.p. il/l< ... < i.p. \l/n< ... <w < ... < e.p. \l/n< ... < e.p. ̂  • 

By Theorem 3,1, we easily prove the sequence {Q^n} is normal in Q. Denoting by Jf 
the boundary element of the region Q containing the sequence {£-,£,} we obviously 
have y^tf) = {w}. 

It remains to prove (33). Suppose the point w0e C and its neighbourhood U(w0) 
are given. By (14), there are points wl9 w2 e U(w0) n W^^Q)) with wt < w0 < 
< w2. Let Sfj e <&(Q) (j = 1, 2) be bundles such that W^Pj) = Wj. By (12), each 
bundle Sfj contains a simple curve <Pj\ we may suppose the domains of both curves <ps 

are equal to a certain interval <a, /?>. If ij/j denotes the F-image of <py, then \j/j is 
a simple curve from the point ws into U. 

As we easily see, there is a simple curve ^ : <a, y> -> U(w0) such that: 

a) 0 ) e= U, 

b) ^ = o)t + co2 — G>3 where cot — ^i\ <a, <5>, coz = \j/2 J <a, <5> for an ap­
propriately chosen <5 s(a, J5>. 
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Then the function <p defined on <a, y> by 

<p(a)^o(S^1), <K0 = ^- iW0) ^ te(a,y)9 q>(y) = o(<?2) 

is, obviously, a cut in Q. Since the boundary of the Jordan region F(Q*), equal to 
(\//) u {weC;wl^w ^ w2}9 is a subset of U(w0), the same holds for the set F(Q*). 
Besides, we have w0e{weC; wt < w < w2} and F(Q*) n C = {w e C; wt ^ 
^ w ^ w2}. 

This completes the proof of (33). 

Theorem 4,2. Lef Q be a region conformally equivalent to U. Then for each 
bundle Sf e @(Q) there is one and only one boundary element #? e %(Q) such 
that for each <peSf and each sequence {Qn} e 3tf we have <<p> n Qn =t= 0for all n. 
This element #? has, further, the following two properties: 

1. for each conformal mapping F of Q onto U we have W^Sf) = yF(jff); 

2. if 3tif* 4- 2ff is another boundary element of the region Q, then for each 
curve tpeSf and each sequence {Q*} e 2tf* there is an m0 such that <<p> n Q* = 0 
for all m > m0. 

Proof. Suppose the conformal mapping F of Q onto U is fixed. By Theorem 4,1, 
for each bundle Sf e <&(Q) there is one and only one boundary element tf e $(£i) 
such that WF(Sf) = y^jf). 

Let S?e<5(Q) and let tf = (yF)-i (WF(Sf)) be the corresponding boundary 
element. If <p e Sf is a curve defined on <a, /?> and {Qn} e tf an arbitrary sequence, 

00 

we have W^Sf) = (Fo<p)(a+) and, also, {W^S?)} = fl F(Qn). The point W^Sf) 
n = l 

is an interior point of any arc F(Qn) n C. If \j/ denotes the F-image of <p, then i.p. \j/ = 
= \l/(a) = WpXsf). Hence, for each n, <^> n F(Qn) 4= 0 (since by Theorem 3,1, 
dist (^(a), U - F(Qn)) > 0). It follows immediately that <<p> n Qn 4= 0 for each n. 

If Jf* e §(Q), X* * *9'<psSr9 {«*} € -Jf *, then y^*) * y^Jf) and 
dist (yj^*), <^» > 0 (where ^ is the F-image of q>). Since diam F(Q*) -• 0 for 
m -̂  co, we have F(Q„\) n <i/f> = 0, hence :Q* n <<p> = 0, for all m sufficiently 
large. 

It remains to prove that for each conformal mapping G of Q onto U the following 
implication holds: 

If Sf e ®(C), tf e S(fi), W^Sf) = y^X)9 then fV0(^) = yG(c?f ). 
Then, however, G o f . . is a conformal mapping of U onto itself, and there is 

a linear fractional function/ such that/ = G o F-x on U. This implies that for each 
curve (p : <<x, /?> -• S, <p e ^ we have 

(34) H ^ ) = (G o «p) («+) = ((/ oF)o<p) («+) = / ( ( f o <p) («+)) = / ( B ^ ) ) . 
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If {Q„} e .Jf, then, further, 

<35) {ycor)} = n o(Qn).- n/(n°.)) - / (n *W) = t /M*)} • 

Hence, the equality WjJ?) = r^-^) implies the equality WG(SP) = yG(j^)9 which 
completes the proof of Theorem 4,2. 

Definition. Suppose Q is a region conformally equivalent to U and -^ e ®(Q). 
Tfte boundary element (of the region ;Q) determined by the bundle Sf will be the 
boundary element J? e §(Q) with the property that the condition <<p> nfi„ + () 
for each n holds for a certain (hence, for each) curve cpeS? and for a certain (hence, 
for each) sequence {Qn} e Jtf. 

Remark 1. As we easily see, for the boundary element Jf?e%(Q) determined 
by the bundle S? e <5(Q) the following condition holds: If <p : <a, ]8> -• S, <p e ^ , 
{C,,} e ^ , then for each ne N there is a Sn > 0 such that (p((<x, a + <?„)) c Qn-

5. It is convenient to introduce a cyc/ic ordering into the system §(fi) (where Q 
is a region conformally equivalent to U) as follows: We write J^t < Jf2 < JP3

 6), 
iff for any conformal mapping F of Q onto U the relation 

(36) y^x) < yF(3f2) < yF(3tr2) 

holds. 

Let us note that the validity of (36) for one conformal mapping F of Q onto U 
implies the validity of a similar relation for any such mapping. Suppose, namely, 
G is another conformal mapping of Q onto Ut Denoting by / the linear fractional 
function satisfiing / = G <> F_j on U we have the equality yG(jf) = f(yr(jf)) for 
each boundary element Jf e %(Q) (cf. (35)). By (17), the relation yG(j^x) < 
< yG^z) < 70(^3) 1s a consequence of the relation (36). 

Theorem 5,1. For each boundary element J^0 of the region Q and for each open 
set M containing <«̂ o> there are elements Jfu JV2 e %(Q) with Jtf'1< Jf0< Jf2 

such that 

(37) JPi<tf'<jr2=> iJf) c M . 

Proof. Suppose the assertion does not hold. Then there is an element 3tf0 e %(Q) 
and an open set M containing <-#o> such that for each two elements Jfu 2tf2 e 
€ $(Q) satifiing Xx < J/f 0 < #2 there is an element Jf e §(Q) such that jrt < 
<*e<*e2and<^r> - M #= 0. 

6) The confusion of the sign -< for cyclic ordering in C with the sign now introduced will sure 
not take place. 
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Fix a conformal mapping F of Q onto U and let w0 = T F ^ O ) . Choose points 
wH,wneC such that 

•# 
(38) wj -• w 0 , w2 -• w 0 , 

(39) wj •< wj -< ... < w j •< ... < w0 -< ... <wt< ... -< w2
2< w\ 

and denote 

(40) *i - (rF)-i K ) for j = 1, 2 and n e N , 

Then ^f * •< -2f 0 -< «2f« for each n and, by assumption, there are elements 3tf n e 
e &(Q) with Jf * -< ^f„ •< #1 and <«?f„> ~ M # 0. Denote wn = yF (jfn) and 
choose points zn e < f̂„> - M. By (29), for each neN there is a point zn eQ such 
that 

(41) c*(zT- zn) < i , e*(F(zn*), * . ) < - . . 

The relation jf.J -< f̂n •< Ml implies that w* •< wn < wn. Thus, by (38), we have 
w„ -+ w0; (41) implies that F(z*) -> w0 also. There is a convergent subsequence 
{z„J of {zn}; denoting z0 = lim z„k we have 

which implies z0 e <^f 0>. This is a contradiction to the fact none of the points znfc 

lies in the open set M containing <Jf 0>. 
This contradiction completes the proof of Theorem 5,1. 

6. It is quite easy to prove the following theorem (the proof of which we do not 
present, since we need it only for making clear the significance of the assertion which 
then follows): 

Theorem 6,1. Suppose Q, Q* are two regions conformally equivalent to U. Let 
Jfj e §(£2), M?* e $(-3*) be two arbitrary triples of boundary elements such that 

(42) 3K i < 3K2 < 3f?3 , X j < 3%2 < 3^2 . 

Then there exists one and only one conformal mapping F of Q onto Q* such that 
for each j ,== 1, 2, 3 the following implication holds: 

(43) zneQ, hzttc:(jrJ}=>hF(zn)c: <#>*>. 

Theorem 6fl shows the cyclic ordering of the system of all boundary elements 
plays an important role ift certain fundamental questions of the theory of conformal 
mappings. Theorem 6,2 contains several criteria for the relation Jf x < 3f2 "< ̂ 3 . 
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Note that the verifiing of this relation immediately by the definition is, excluding the 
most trivial cases, practically impossible, since further properties of conformal map* 
pings F of Q onto U are unknown. The assertions presented in what follows make it 
possible to decide (also in many concrete situations) which component of Q — (cp) 
lies on the right (left) side of the cut cp in Q. Further informations, very useful in 
many aplications, about boundaries of the components of Q — (cp) are presented 
also. Besides, these assertions contain several fundamental informations connected 
with the possibility of a continuous extension of a conformal mapping to a certain 
part of the boundary of its definition domain. 

Theorem 6,2. 1. Suppose cp is a cut in a region Q conformally equivalent to U; 
let <a, j8> be its definition domain. Denote by SfQ resp. Sfx the bundle from <5(Q) 
containing the curve cp | <a, |(a -f- /?)> resp. — cp | <f(a -f- ft), /?>, and let JfQ 

resp. Jfx be the boundary element of the region Q determined by the bundle S?Q 

resp. Sfx. 

Then 

(44') U <^> u (cp) c dtl} a U <^> u (cp), 
jfo<jf<jfi jfo^je^jfi 

(44") U < * > ^ (<p) = SQ~ <= u <-*> u (<p). 

further, if both sets <.̂ o>> <^i> contain only one point, the following equalities 
hold: 

(45) dQ; = U <*> u (cp), 3Q; = U <*> u (<P) • 
x0<jf<Xi jr1^jf<jr0 

2. Let all assumptions of the first part of the theorem hold. Let cpx be a simple 
curve satisfiing i.p. cpx = cp(tx), e.p. cpx = cp(t2), where a < tx < t2 < /?, and 
(cpx) c Q — (cp). Put cp2 = cp | <*!, t2}, cp* = cpx -*- cp2. Suppose the Jordan curve cp* 
is positively oriented and Int cp* cz Q. 

Then Int cp* v(cpx) a Q+. 

3. Let all assumptions of the first part of the theorem hold. If cp is a negatively 
oriented Jordan curve, then Q* = Q n Int cp, and the following two implications 
hold: 

(46) <*yc:-Jntq>*>je0<jr<jel9 <JT> e Ext cp*> Jfx<Jf<^0. 

4. Let all assumptions of the first part of the theorem hold. Let cp be a simple 
curve, A a simple curve in dQ such that a) i.p. A = i.p. cp, e.p. A = e.p. cp9 b) the 
Jordan curve A ~ cp is positively oriented, and c) Int (A -*• cp) c Q. 

Then Q+ = Int (A - cp). 
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Further, suppose the definition domain of the curve X is <0,1>. For each t e (0,1) 
let Sft 6 S>(!2) be the bundle containing a curve from X(t) into Int (X — <p). Denote 
by Jft (where t e (0,1)) the boundary element of the region Q determined by the 
bundle Sft. Then the following four assertions hold: 

(47) tf0 < 3tft < ^% for each t e (0,1) . 

(48) / / tl912 e (0,1) , then Jf0 < Jftl < Jft2 <^1, iff t1<t2. 

(49) The function yF(^t) *s <* one-one and continuous mapping of the interval 
<0,1> onto the arc {w e C; yj?(*^o) 1̂  w ^ M ^ i ) } °f the circumference C. 

(50) <^ff> = {X(t)} for each t e (0,1) . 

5. Let all assumptions of the first part of the theorem hold. Suppose <p is a Jordan 
curve in E and X : <0,1> -• dQ n E is a Jordan curve with i.p. X = i.p. <p. 

If (q>) c Int X (resp. (cp) cz Ext X), denote G = Int X n Ext cp (resp. G = Ext X n 
n Int <p) and suppose the curves q>, X are positively (resp. negatively) oriented. 
Suppose, further, G cz Q, and for each t e (0, 1) let Sft e <S(Q) be the bundle 
containing a curve from X(t) into G, 34fte$(Q) the boundary element determined 
by the bundle Sft. 

Then Q+ = G, and assertions (47)-(50) hold. 

Proof. Since (p will be a fixed cut in the region Q, we shall write Q+ resp. Q~ 
instead of Q+ resp. Q~. Let us fix a conformal mapping F of Q onto U and denote 
by ^ the F-image of (p. Then 

(51) U - (ij/) = U+ u U~ 

where U+,U" are components of U — (\//), hence disjoint Jordan regions. Choose 
notation so that 

(52) dU+ = ty) u C+ , dU- = (\l/) u C 

where 

(53) C+ ~{weC; ^(a) ^ w ̂  ^(j8)} , C"" = { w e C ; ^ ) ^ w ^ ^(a)} . 

Then, by definition, 

(54) Q+ = F ^ l / * ) . £T = F^t(U~) . 

Since Jf 0 resp. Jt1 is the boundary element determined by the bundle Sf0 resp. S?l9 

we have, by definition of these bundles, 

(55) 7 ^ o ) ~ ^ o ) « # * ) > ?.K^i) - ^K^i) = W ) • 

1. We first prove (by assumptions of the first part of the theorem) the inclusions 
(44'). The condition Jf0 < J? < Jft means, by definition and by (55), that ^(a) -< 
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< y^3fe) < \l/(ft), i.e. y^) e C+. (If Lis an arc with end points a, b we denote, 
in what follows, by L the corresponding open arc L - {a, b}.) This implies 

dist (y^e), V") > 0. If {Qn} e #, then {y^e)} = 0 F(Qn) and diam F(Qn) -+ 0. 
n - l 

This implies F(Q„) c U+ for all sufficiently large n, so that, for such n, we have 
00 

Qn c (2+, hence Sn c D+. Thus, <̂ T> = f| ^n c S + n dQ, and, by Theorem 2,1, 
11=1 

fi+ ndQ cz dQ+. This proves that U <̂ T> c 5iQ+; by Theorem 2,1, this 
implies *i<*<*z 

(56) U <^T> u (q>) c 3(2+ . 
jr1<jr<*,2 

Now suppose that z e dQ+ — (9); then, by Theorem 2,1, we have z e dQ. Since 
zedQ+, there are points zneQ+ with zn -> z. Since there is a convergent sub­
sequence, we may suppose that lim F(zn) = w exists. Since F(z„)el/+, we have 
w e dU+; since z e dft, we have weC. This yields w e dU+ nC = C+. 

Let ^ e S(D) be the element with y^st) = w. Then tfQ-<> Jf •£&! and 
z e <-?T>. This proves the inclusion 

(57) dQ~ -(q>)<~ U <&> • 
*o^x<jri 

(56) and (57) implie (44'). The proof of (44") is analogous. 
Now suppose the set <^T0) contains only one point z0. Since î (a) e SU+, there 

are points wn e U+ with wn -* ^(a). By (29) and by definition of < r̂0>» we have 
lsF.-.^,,) c <^T0> (={z0}), so that limF-^w,,) = z0. Since F-i(w.l)eiQ

+, we 
have, by (3), z0 e d-2+. Hence, the inclusion <«?T0> c dQ+ holds. We prove similarly 
that <-?Ti> c d;G+, if <«?Ti> contains one point only. By Theorem 2,1, we have 
(<p) c dQ+. 

Thus, by (56), if both <«?T0>
 and <•#*!> contain one point only, we have 

(58) U <^T> u (<p) cdQ+ . 
*o<jr<jr% 

This, together with (57), yields the first equality in (45); the proof of the other one 
is similar. 

2. Let all assumptions of the second part of the theorem be fulfilled. By them, 
we have Int cp* c Q. Since the curve cp* is positively oriented and since the mapping F 
is holomorphic on Q, by a well known theorem (see [4], p. 572), the curve ^* = 
= F © cp* also is positively oriented. 

Choose simple curves co+, co~ such that <a>+> = C+, <<a~> =- C~ and that 
co = co+ + co~ is a positively oriented Jordan curve. Then, by Theorem 1,1, the 
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curves ca+ -*- ̂ , m + \// also are positively oriented, and Int (co+ — \j/) = U+, 
Int(co" 4-^) = CT. 

The inclusion (i/^) c t/~ for the curve ^ = Fo<pt would, by Theorem 1,1, 
implie the curve -\j/* = F0 <p2 — il/x == ^ | <f1, f2> - i/̂  is positively oriented, 
which is a contradiction. Therefore, (\j/x) c t/+ so that (^J c 0 + . 

As <<jP2> = <l>(Oi» *2>) 1s a subset of the boundary of the region Int q>*, we have 

(59) <p«tx, t2})n Int <p* = <!). 

From the inclusion Int cp* c Q it follows that 50 c S - Q c Ext <p*. Since the 
sets <p(<a, tx)), <p((t2, /?>) are connected and disjoint with <<?*> = 3(Ext <p*), and 
since the sets <p(<a, tx)) n 50, <p((f2, jS>) n 50 (containing <p(a), <p(/?), respectively) 
are non-empty, we have 

(60) <p«a, h)) u <p((f2, /J» c Ext <p* . 

(59) and (60) implie <<p> n Int (p* = 0. Thus, the connected set Int cp* c Q is 
a subset of one of the components Q*,Q~ of the set O — (cp), whereas Int cp* is 
disjoint with the other one. Since (cpx) c Q+ n Int <p*, we have Int cp* u (<Pj) c Q+, 
which completes the proof of the second part of the theorem. 

3. Let all assumptions of the third part of the theorem be fulfilled. It is not too 
difficult to prove the sets 

(61) Q n Int cp , Q n Ext (p 

are components of the set Q - (q>). (The proof will be left to the reader.) In order 
to prove 0 + = Q n Int cp it is sufficient, by the 2. part of the present theorem, to 
find a curve <px with properties mentioned there and such that (<px) cz Q n Int cp. 

We prove easily that 

(62) <5(0 n Int cp) = (dQ n Int <p) u <<p> 

and that the set (<?>) is open in d(Q n Int cp). By a well known theorem (see e.g. [4], 
p. 527), the set of all points z e (q>) accessible from Q n Int (p (i.e. all points z e (cp) 
such that there is a simple curve from z into Q n Int (p) is dense in (cp). From this it 
follows easily there are numbers tx,t2e (a, 0), tx < t29 and a simple curve <px such 
that 

(63) Lp. <px •*. ^(fj), e.p. <px = <p(*2), ((px) czQnlnty. 

Put <p2 «- <p | <*i, f2>. Since the curve <p, by assumptions, is negatively oriented, the 
curve <p* ** Vi— <p2 is, by Theorem 1,1, oriented positively. 

By the same theorem, Int <p* c Int <p. Obviously, q>(a) e Ext <p*. Since <<p*> c O, 
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we have <<?>*> n (S — Q) = 0, so that the connected set S — Q 7) is disjoint either 
with Int cp*, or with Ext (p*. Since the set (S — Q) n Ext <p* contains cp(a), we have 
(S - Q) n Int 9* = 0 so that Int 9* cz Q. 

Thus, we have Int q>* a Q n Int <p. This proves, by the 2. part of the theorem, that 
Q nlntcp = £ + . 

It remains to prove the implications (46). Let Jf e $(0), <-?f > cz Int cp, {Qn} e Jf. 
ao 

As <^f > = f) Ai> 1t follows from the inclusion <^f > cz Int (p that Dn cz Int <p for 

all n sufficiently large. For such n we have, further, F(Qn) cz F(Q n Int q>) =-
= F(G+) = U+ so that the arc ¥(Q„) n C i s a subset of C+. By Theorem 3,1, this 
implies yp(2f) is a point of the open arc C+ , i.e. î (a) -< yF(^) < iA(/>), which means 
that Jf 0 < #e < #ex. 

This completes the proof of the first implication (46); the proof of the second one 
is analogous. 

4. Now let all assumptions of the fourth part of the theorem hold. Since the region 
G = Int (X — xp), by these assumptions, is contained in Q and since it is disjoint 
with <<p>, it is contained in a certain component Q* of the set Q — (cp). Provided 
that G 4- Q*, the region Q* would intersect both G and S — G9 hence dG also. This, 
however, is a contradistion, as 

Q* ndG = Q* n «A> u <<p» cz (Q - (cp)) n (8Q u (cp)) = 0 . 

Hence G = Q*, which means G is a component of the set Q — (q>). 
Let us prove that G = 0 + . The conformal mapping F | G (of the Jordan region G 

onto one component of the set U — (\j/), hence onto a Jordan region) may be, by 
a well known theorem (see [4], p. 538), extended to a homeomorphic mapping F* 
of G onto F(G). According to another well known theorem (see [4], p. 541) the 
curve F* o (A ~ cp) = F* o X ~ \j/ has the same orientation as the curve X — cp, 
hence the positive one. The curve F* o X is simple, and <F* o X) is equal either to C+ 

or to C". Provided that <F* o X) = C~, the curve F* o X — \j/ would, obviously, 
be negatively oriented. Hence <F* o A> = C+, which implies F(G) = 17+ and 
G = Int (X — <p) = Q+, as we had to prove. 

Let us note that in consequence of what has been said above also the following 
assertion holds: 

(64) The mapping F* o X admits of an extension to a positively oriented Jordan 
curve x s u ch that i.p. x = **-P- (F* o X) = i^(a), <#> = C. 

Now let us suppose the curve X is defined on the interval <0,1>. £ft, 3^t (where 
16<0,1>) let be defined as in assumptions. Let * e(0,1) and suppose (iteSft is 
2L curve from A(f) = o(£ft) into G = Int (X ~ <p) defined on <0,1>. Then 

7) The region Q is conformally equivalent to U, hence its complement is connected. 
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yA*t) - W^t) - (F • fit) (0 + ) - F*(^(0)) = F*(X(t)) ; 

besides, obviously, 

lA*o) = *(«) - -^WO)), y^JTO - *QJ) = F*(A(1)). 

From this it follows that 

(65) yp?t) = F*(X(t)) for each fe<0,1> . 

Since F* o A is one-one and continuous on <0,1> and <F* © A> = C+, (49) holds. 
By (64), (47) and (48) also hold. 
Thus, it remains to prove (50). If te (0,1) and z e <Jf r>, there are points z„ e O 

such that zn -* z, ^z . ) -• y^-T,) = F*(A(t)) (cf. (29)). Since F*(X(t)) e C+ , we have 
F(zn) € U+ for all « sufficiently large. Since the mapping (F*)_ t is continuous on U+> 
the relation F(z„) -> F*(A(t)) implies z„ -> A(f). Hence z = A(f). Thus, X(t) is the only 
point of the set <-^f>. 

5. Let all assumptions of the fifth part of the theorem hold. Suppose first (cp) c 
c Int A. Let 

(66) G = Int A n Ext cp c O 

and suppose the curves <p, A are positively oriented. As <A> c 5,0, we have either 
Q c Int A or Q c Ext A. Hence, the inclusion (<p) a Q n Int A implies .0 c. Int A. 
As we easily see, the set G is a component of the set Int A — (cp). As G c fl, the 
inclusion G c Int A implies G is a component of the set Q — (cp) also. The other 
component of the set Q — ((p) equals to Q n Int (p. Besides, obviously, 

(67) BG = <A> u <<p> 8) . 

By the theorem on accessibility of points of the boundary of any Jordan region 
from this region (see [4], p. 196), it immediately follows there is a simple curve A* 
and numbers t* e (0,1), T* e (a, p) such that 

(68) Lp. X* =-= X(t*) , e.p. X* =-= <p(T*) , (A*) c G . 

Take 

(69) Aia-=A|<0,r*>, A2 = A|<**,1>, ^ == cp ( <<x, T*> , <p2 = <p | <T*, /?> . 

Then the Jordan curves 

(70) vx = At + X* ~ (p%, v2 = A2 - <p2 - X* 

8) This is an analogy of the topological 0-curve theorem (see [1]). Instead of a topological 
circumference <a set homeomorphic to C) and an arc the end points of which are the only points 
common with the circumference, here we have two topological circumferences with one and only 
one point common. 
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are, by Theorem 1,1, positively oriented. Besides, it is obvious that 

(71) indVl + indV2 = indA — ind^ 

on S - «A> u <p> u <A*». 
If z e Int Vj for j = lorj = 2, then (71) implies that indA z — ind^ z = indVl z + 

4- indV2 z = indVy z = 1. From this it follows that indA z = 1, ind^ z = 0, which 
means that z e Int A n Ext (p = G. This proves the inclusion 

(72) Int vt u Int v2 c G . 

Thus, any curve going from the point A(f), where 0 < t < t* resp. t* < / < 1, into 
Int Vj resp. Int v2 goes into G also. 

Taking into account that A* e Sft*, cpx e Sf0, — <?2 G ^ i w e see that, by the 4. part 
of the theorem (aplied to the curves vx = Ax — (cpt — A*), v2 = A2 — (A* 4- <p2))> 
we have 

(73) #'0<tft< Jft* for t e (0, f*) , J>Tt. < tf < tfx for t e (f*, 1) . 

From this (47) and (48) follow easily. 
By the 4. part of the present theorem, the function yF(^t) where t e <0, f*> resp. 

t e <f*, 1>, is one-one and continuous, and 

(74') {?*(•*%); f G <0, **>} = { W G C ; ? f ( ^ 0 ) ^ u> =£ ?,(*%.)} 

resp. 

(74#) W < ) ; * e <**, 1» = {weC; yF(tft.) ^ w ^ y^jrj} . 

This proves (49). It is obvious also that F(G) = U+, which implies G = Q+. 
The assertion (50) will be proved similarly as in the proof of the fourth part of the 

theorem. 
This completes the proof of the 5. part of the theorem in case that (<p) c Int A. 

If (<p) c: Ext A (and if corresponding assumptions of the 5. part hold), we proof 
analogously the components of the set £ — (q>) are the sets G = Ext A n Int <p, 
Q n Ext q>; (67) also holds. 

Defining the curves vl9 v2 by (70) we prove once more they are positively oriented. 
The rest of the proof also is similar as in case (<p) c Int A. 

This completes the proof of Theorem 6,2. 

Remark 1. Theorem 6,2 yields some informations of the relations between <^f0> 
resp. <^!> and 8Q*9 dQ~. In the general case, however, not much can be said. Of 
course, it is e.g. o(Sf0) e <Jf0> n dQ* n dQ~ and <Jf 0> c dQ+ u dQ~. In what 
follows we show by examples that the relations between <-^0> (and, similarly, 
<^!>) and dQ+, dQ~ may be rather complicated. 
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Example 1. The inclusion <*?f0> c dQ* n dQ~, as we know, holds if <-#?
0> 

contains one point only. However, it also may hold in case <Jf 0> is a proper con­
tinuum. If e.g.* 

(76) Q = {z e E; 0 < Re z < 2, l/m zl < 1} - f<0, 1> u U - ; 1 + - ) 9) 
\ n=2 n n ) 

and 

(77) <p(f) = 1 + (1 + 0 ' for *6<0,1>, 

then 

<^0> = <o, i> c 30; n a r 2 - . 
Exa.mple 2. If 

(78) fl -= {z e E; 0 < Re z < 2, 0 < /m z < 1} - (J - ; 1 + -

n = 2 n n 

and if cp is as in (77), we have o(£f0) = 1, <*#7
0> = <0, 1>, and 

<^0> c 3(2;, <jf0> n ao; = (o(^0)}. 
Example 3. In examples 1 and 2 both sets <-#7

0> n dQ*, <.#7
0> n dQ~ were 

connected. In the general case, nothing like this holds. Take, namely, 

(79) Q = {z e E; 0 < Re z < 2, |/m z| < 1} -

- f <0, l ) u l j - ; 1 + - u {z e E; -J £ Re z = -f, ~ J ^ /m z ^ 0} ) , 
\ »-=2 n n / 

and let q> be as in (77). Then <JT0> = <0,1> and 

<^ 0 > cdQ-, <^ 0 > n ^ ; = <0, *> u <|, 1> . 

It is easy to see an analogous example may be given with <^ 0 > n dQ* equal e.g. 
to the Cantor discontinuum. 

Example 4. Examples 1 — 3 may sugest the set <-^0> always is a subset either 
of BQ£ or of dQ~. In general, however, nothing like this hold. Take, namely, 

(80) J = {z e E; |Re z| < 4, 0 < Im z < 8} ; 

for each n e N let 

(81 ') A„ = ð ü | 0 ; 6i u 2i - 2; 2/,' - ) n {z; Re z g 0, 0 g Im z й 6 } , 

9) If a, A 6 E, a * A, then a; t> denotes the set {z;z= a+ t(b — a), t e <0,1>}. 
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(81") Bn = дuf0; 6/ u 4i; 4ř + 2, ì J n {z; Re z = 0, 0 g ìm z ś 6} . 

Put 

(82) í. = ; - ( U ( Л u Қ ) u O ; 6f u 2i - 2; 2z U 4Í; 4Í + 2) 
л = l 

and 

(83) <p(í) = 6i + 2it, řє<0, 1>. 

Then < ^ 0 > = 0, 6/ u 2i - 2; 2i u 4*; 4i + 2, < ^ 0 > n 3.01 = 0; 6i u 

u 2i - 2; 2i, <Jf0> П дQţ = Ò; 6i u 4ř; 4Í + 2. 
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