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Časopis pro pěstování matematiky, roč. 103 (1978), Praha 

ON KÓPCKE AND POMPEIU FUNCTIONS 

J. BLAŽEK, E. BORÁK, J. MALÝ, Praha 

(Received March 31, 1977) 

It is well known that any continuous function without derivative serves an example 
of nowhere monotone function. It seems that in the original Kopcke's papers, the 
construction of a nowhere monotone differentiable function appeared for the first 
time. Later, a sequence of articles followed containing a study of derivatives which 
change often the sign. We mention only the penetrating study of A. DENJOY 1915 
[1], the papers of Z. ZALCWASSER 1927 [13], D. POMPEIU 1906 [9], S. MARCUS 1963 
[7], KATZNELSON-STROMBERG 1974 [5]. Nevertheless, constructions of functions 
with desirable properties have been rather complicated. 

The purpose of this note is to give simple constructions of such functions. A func­
tion/ on an open interval J is of the Pompeiu type iff hasa bounded derivative and 
the sets on which f' is zero or does not vanish, respectively, are both dense in J. 
A Kopcke function is any function of the Pompeiu type such that the sets on which f' 
is positive or negative, respectively, are dense in J. 

In the first part of this paper we give an elementary construction of a Kopcke 
function. In the second part, we shall prove that the derivative of our function is 
even approximately continuous. Moreover, using our ideas, we shall prove a "Za-
horski type" theorem in its simple version, and using Tietze's type extension procedure 
we shall describe an elementary method of constructing a whole scale of Kopcke 
functions. We mention only that similar ideas can be found in investigations of 
PETRUSKA-LACKOVICH [8]. Also C. GORFMAN [3] used the complete regularity of 
density topology for construction of Kopcke functions. Finally, in the last part we 
shall propose a method of construction of Kopcke functions from functions of 
Pompeiu type. A completely different method using the Baire Category Theorem is 
due to C E.WEIL [11]. 

STUDENTS' RESEARCH ACTIVITY AT THE FACULTY OF MATHEMATICS AND 
PHYSICS, CHARLES UNIVERSITY. Awarded the 3 r d prize in the National Students' Research 
Work Competition, section Mathematical Analysis, in the year 1977. Scientific advisers: Professor 
J. LUKES' and Professor L. ZAJICEK. 
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ELEMENTARY CONSTRUCTION 

In this part we giv§ an elementary construction of a Kopcke function. We shall 
not use the notions of the Lebesgue measure and Lebesgue integral, we use the 
integral of a continuous function only. Note that Lemma 2 substitutes the assertion 
that every bounded approximately continuous function is a derivative (see Corollary 
of Lemma 3). 

We believe that our construction is simpler than the elementary construction of 
Katznelson and Stromberg [5]. 

Lemma 1. Let m be a positive integer, s and d real numbers, d > 0. Then the 
function p : p(x) = (|x — s\jd)1/m has the following properties: 

i) p is continuous. 
ii) p(x) ^ 0, and p(x) = 0 if and only if x = s. 
iii) Let 0 < e < y g p(x). Denote I = {teR: p(t) ^ y - e}. Let h > 0 and 

<x — ft, x + ft> n I 4= 0. Then I is a closed interval with a length less than 

2h(y-s)ml(ym-(y-e)m). 

Remark. The importance of the assertion (iii) consists in the convergence of the 
series 

£ (y - e)m 

m = i y m - (y - e)m # 

Proof. The properties (i) and (ii) are evident. For z —• 0, p(t) ^ z is equivalent 
to |* — s\ S dzm. Choose xt el n <x — ft, x 4- ft>. Since p(xt) S y — s and 
p(x) g: y we have 

\xx - s\ <J d(y - e)m, |x - s| ^ dym, |x - xt\ < ft . 

From the inequality 

\xt — x| ^ |x — s\ — |Xi — s| 

we obtain 
ft > d(ym - (y - e)m) 

and hence 
d(y - e)m £ h(y - B)mj(ym - (y - e)m). 

Since t e I if and only if \t — s\ £ d(j> — e)m, J has the required length. 

Lemma 2. Let fn be continuous real functions such that |/„(x)| ^ K for every 
neN and x e R. Let fn -* f. Assume that lim \%fn = $(x) exists for every x, and 

n-+oo 

*fta* the following condition holds for every x: 
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For any e > 0 there exists S > 0 and neN such that whenever 0 < h < 8 and 
m > n we can find a finite sequence of closed intervals It = <af-, /?f>, i = 1,..., k 
satisfying 

i(fi,-*t)<e.h 
1 = 1 

and 

{teR: \fjt)-f(x)\ _ e, \x - t\ < h) «= (J Ik. 
*=1 

Then <P' exists everywhere and _>' = f holds. 

Proof. Consider the expression 

j (Ф(x + h)- Ф(x)) = lim i Г + /. 
Һ n-+ooҺJx 

for a fixed x. Let S and n be found for a given s > 0, let m > n and 0 < |ft| < <5. 
Suppose h > 0, the case h < 0, the case h < 0 being similar. We find points x l 5 x2,... 
...,x 2 r + 1 such that 

x = x t __ x2 __ ... __ x 2 r + 1 = x + h 

and 
r fc 

U <x2j-u x2f>
 n (*> x + h) == U h n (x, x + h) . 

j=i i = i 

We have 
r r 

Z 1*2/ - *2J-l| < «* > S lX2/+l - *2/| -- * > 
/=1 /=1 

U <x2J, X2J+Í> n (x, x + h) c {ř e (x, x + h) : |/M(í) - f(x)| __ e} 

(•* + * r / ťx2J Cxij + i \ 

/» = _: /.+ /»)_«*_+ (»+/(*))*. 
J * 1=1 \ J * 2 . i - l Jx2j / 

ť+"fmž-ehK + (f(x)-s)h. 

f(x) - e(K + 1) < j lim T + /„ _ /(x) + e(K + 1). 
/l II-+00 J _ 

1=1 

Thus 

Similarly 

This proves that 

* f r ) - l t o * f r + * > - * ( X > - f l « ) . 
A-*0 ft 
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Theorem 1. Let {an}nSKl be a sequence of real numbers, let 0 4= Ft a F2 <^ ... 
be a sequence of closed subsets of R. Denote 

A = { a n : n e N } , F = \JFn. 
n-=l 

If A n F = 0, fften there exist functions f9 $ satisfying 

i) 0 ^ / £ 1; /(*) = 0 /or * e Al and f(t) >0forteF, 
ii) $' = / holds everywhere on R. 

Proof. Define dm = dist(am,Fm), p0(t) = 1 on R, pm(t) = (|f - am|/dm)1/m 

for m £ 1, /m(r) = min pjr). Put / = lim/m, <f>(x) = lim ft /m. 
Q^l^m m->oo m-*oo 

Since 
{t6R:/m(r) = 0} ={a1 , . . . ,am} 

and 
pM(0 = 1 = p0(t) 

for any f e Fm, (i) holds. 
We verify the assumptions of Lemma 2: We can put K = 1. For each x such that 

f(x) > 0 and for any e,/(x) > e > 0, we can find neN and 6 > 0 such that 

y 2(/(x) - ,)' 

and |/„(() - /(x)| < e for t e (x - 5, x + 5). Put 

It-{xeR:pfc)£f(x)-e}. 
Then 

(1) U h => {*e <x - h, x + h> : |/m(t) - /(x)| k e} 
i « » + l 

for any m > n and h, 0 < h < 5. By (l) and Lemma 1, the system of intervals 
{Ij : n < j ^ m, Jj n <x - fc, x + ft) 4- 0} has the required properties. Indeed, 
the sum of their lengths is less than 

l 2h(y-*y <2h i (y-*y -<e f t 
i*»+i yJ - (y - ey j*-n+i ^ - (y - ey 

where y denotes /(x). For each x such that /(x) = 0 and any e > 0 it is sufficient 
to find neN and S > 0 such that /n(t) < e for f e (x - 5, x + 8). 

Theorem 2. Given any fwo disjoint denumerable subsets A, B of R, fhere exisfs 
a function f with a bounded derivative g such that g > 0 on A> g < 0 on B. 

(If both A and B are dense, g is a Kopcke function.) 
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Proof. According to Theorem 1 we find functions Wt and V2 such that !PJ, V2 

exist everywhere and 

0 < ? ; g l on i , !P; = 0 on B; 

0 < ^ g l on B, W[ = 0 on A. 

Put JF = Wt - W2. 

TIETZE'S TYPE EXTENSION THEOREM 

In this section we shall use some theorems on approximately continuous functions 
and the elementary construction from the preceding section to obtain a variety of 
"wild" differentiable functions. The main idea using a "Tietze's type construction" 
is established in the paper of Petruska and Lackovich [8], where a more general 
theorem is proved. In our proof, in contradistinction to theirs, we shall not use a non-
elementary topological lemma of ZAHORSKI (see [12], Lemma 12). 

Definition. A real function / on R is said to be approximately continuous at 
xeR iff(t) -» f(x) as t tends to x on a measurable set E for which x is a point of 
density. 

Let s/ denote the system of all measurable sets with density one at each of 
its points. It is not so difficult to prove that a function/is approximately continuous 
on R iff for any ceR, the sets {t e R :f(t) < c}, {t e R :f(t) > c} belong to si. 

We shall use the following well known facts on approximately continuous functions: 

Theorem A. Any approximately continuous function on R is of the Baire class 1. 

Theorem B. / / / , g9 h are approximately continuous functions on R and h(x) 4= 0 
for any x e R, then the functions f. g, f 4- g9 f\h are approximately continuous 
functions. 

00 

Theorem C. If £ fn is a uniformly convergent series of approximately continuous 
1,581 «. 

00 

functions, then f = ]£/„ is approximately continuous. 
n-- l 

Theorem D. (Saks [10], p. 132.) Any bounded approximately continuous function 
is a derivative. 

Note. For a simple proof of Theorem A see the paper of J. LUKES and L. ZAJICEK 

[6]. Theorems B, C immediately follow from the fact that st is the system of open 
sets in a certain topology (the so called density topology, cf. [4]). 
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Lemma 3. Let fn \ / , let fn satisfy the assumptions of Lemma 2. Then f is ap­
proximately continuous. 

Proof. Let ce R. Obviously / i s upper semicoritinuous and thus {t e R :f(t) < c} 
belongs to si. Denote M = {te R :f(t) > c}, let x e M. Choose e, 0 < e < f(x) — c 
and find the corresponding 5 and n from Lemma 2. For m > n denote 

Pm~{teR:fm(t)^f(x)-s}, P = U Pm. 
m = n + l 

Choose h, 0 < h < 5. By the assumptions of Lemma 2 we have 

k 

MjPm n (x — h, x + h}) = £ Mi < e^ (^ *s * e Lebesgue measure) 
i=-l 

for any m > n, further Pn+1 c Pn+2 c ... and therefore 

i l ( P n ( x - / t , x + / i»<f i and — A«x - ft, x + h} \P) > 1 - e. 

Since <x — h, x 4- ft> \ P c M, x is a point of density for M. 

Corollary. The function f constructed in Theorem 1 is approximately continuous. 

Lemma 4. Let A be a denumerable subset of R. Let B0, Bt be two disjoint Gysets. 
Then there exists an approximately continuous function f such that 0 ^ / : g 1 
and f = 0 on B0 n A, f = 1 on Bx n A. 

Proof. A n B0 is denumerable, R\B0 is of type Fa. By Theorem 1 we can find 
an approximately continuous, nonnegative function f0 such that f0 > 0 on R \ B0, 
f0 = 0 on A n B0. Similarly we find an approximately continuous function ft such 
that ft > 0 on R \ Bt and ft = 0 on A n Bx. Using Theorem B we can put / = 
= /o / ( /o+/ i ) . 

Theorem 4. Let Abe a denumerable subset of R. Let g be a bounded function on A 
which is a restriction of a function f which is of the Baire class 1 on R. Then there 
exists on R a bounded approximately continuous extension g* of g. 

Proof. We can suppose th&t — 1 ^ g ^ 1. Put 

H* = {x :/(x) £ - i } , tf* = { x : / ( x ) 2 H } . 

Since / is the function of the Baire class 1, H*, H* are disjoint G -̂sets. By 
Lemma 4 we can find an approximately continuous function q>i such that q>\(x) = 
= - | ( x e H* n A), (pt(x) = i (x e H\ n .A) and ~ | g (^(x) g i otherwise. 
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Puttingfi = f — <Pi we have — J- ^fi(x) ^ f f o r x e i Suppose that approxi­
mately continuous functions <pl9 ...9<pn have already been defined such that 

(2) h(*)| ^ Kir"1 

for x e R and fe = 1,..., n; 

(3) -(i)»^/B(x)g(f)» 
n 

for x e A / „ denoting/ - £<?„. Put H. = (x;/„(x) g -*(!)"}> II2 = {* :/„(*) ^ 
fc=l 

= £(£)"}> 6( = A n H(. By Theorem A, <pk9 k = 1,..., n are functions of the Baire 
class 1 and therefore Hl9 H2 are disjoint G -̂sets. Thus, by Lemma 4 we can choose 
an approximately continuous function <pn+ r(x) such that 

<Pn+1(x) = -K i ) " (* e Ht), <pn+ t(x) = 1(f)" (x e B2) 
and 

|<pB+i(x)| = #$)" otherwise. 

By this construction we obviously have 

-(i)n+1^/„+iW^(i)"+1 

for x e A-wherefn+x = fn — (pn+x. Thus we obtain the sequence {<pjfc=-1 by induction 
and put 

00 

0*(x) = E <?*(*) • 
fc-=l 

By (2) the series is uniformly convergent and therefore by Theorem C g* is a bounded 
approximately continuous function. From (3) it follows that g(x) = g*(x) for xeA. 

Remark. Let {c . ,}^ , {dn}n=:1 be sequences of real numbers, cn 4= cm9 dn =# dm 

for n 4= m. Let C = {cn : n = 1, 2, . . .}, D = {dn : n = 1, 2,...} be disjoint dense 
subsets of R. If {zn} is a sequence of nonzero numbers tending to 0, the function g 
on C u D defined by g(cn) = 0, g(dn) = zn is the restriction of a function of the 
Baire class 1. By Theorem 4 there exists a bounded approximately continuous 
extension g* of g. By Theorem D, g* is the derivative of a Pompeiu function. We can 
choose dn and zn such that both the sets {dn : zn > 0}, {dn : zn < 0} are dense. Then g* 
will be the derivative of a Kopcke function. 

FROM POMPEIU FUNCTIONS TO KOPCKE FUNCTIONS 

In this section we demonstrate how we can construct Kopcke functions from 
Pompeiu functions using some essentially known simple facts concerning monotone 
differentiable transformations on R. 
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Let !P be a Pompeiu function. Then evidently one of the sets {x : Y'(x) > 0}, 
{x : !P'(x) < 0} is dense in an open interval. Therefore it is easy from an arbitrary 
Pompeiu function on Jt to construct a Pompeiu function co on R such that the set 
{x : ot)'(x) > 0} is dense in R. 

If / , g are two Pompeiu functions on JR such that the sets {x :f'(x) > 0}, 
{x : g'(x) > 0} are dense in R, the function h(x) = f(x) - g(x) need not be 
a Kdpcke function. But if we change g by a suitable differentiate transformation <p 
to 0*(x) = g(<p(x))9 the function k(x) = f(x) — g*(x) will be a Kdpcke function 
on (0,1). We shall use the following elementary lemma based on the main idea 
of Franklin [2]. 

Lemma 5. Let A a (0,1), B c (0,1) be two disjoint denumerable sets, let C, D 
be two disjoint sets dense in R. Then there exists a real function q> on (0,1) such 
that 0 < q>'(x) < + oo for x e (0,1) and q>(A) c D, q>(B) c C. 

Proof. Let A = {aj j i i , B = {bi}^L1. We may suppose that a( =j= as and b( -f= bj 
00 

for i 4=;. Let en > 0, £ en < 1. Put *ri(x) = x, W2(x) = x - at and 
»= i 

y . u + i - I K * - - . ) ( * - * . ) . 
1=1 

k 

^2fc + 2 = (* - «ik+l) E[ (X - fll) (* ~ &<) f 0 r fe = ! • 
i = l 

We shall define a sequence {<*),} £Li for which 

(4) \coi\sxxp(\Wi(x)\+\ri(x)\)<ei for i = l ,2 , . . . 
*«(o.i) 

and 

(5) 92 l l . t(an) e D , ^ ( b , ) e C for n = 1, 2 , . . . , 

where 
» 

(6) <p0(x) = * and <pn(x) - -x + ^co, ^(x) for n = 1, 2 , . . . . 
*-=i 

We proceed as follows: 

Let n J> 1 and let all coj for I ^j < n be defined. 
We put 

9n(<0) = (Pn-l(am) + <0Yn(<lm) -f W = 2m - 1 

and 

0»H = <?>»- i(bm) + ^ ^»(bm) if n = 2m. 

Since gn is a linear non-constant function and C, D are dense in R, we can find <*)„ 
such that gn((on) e D if n is even and gn(con) e C if n is odd and (4) holds for i =- n* 
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Having defined the sequence {(on}%Ll9 we put 

<K*) = * + ! > . ^.M • 
ř = l 

By (4), (p'(x) = 1 + £ «>. y|(*) > 0 for x e (0,1). Since <Pn(aM) = 0 for n > 2m - 1 
І = l 

and ¥„(&,„) = 0 for n > 2m, (5) implies that cp(A) c D and cp(B) a C. The lemma 
is proved. 

Now let f, g be as above two Pompeiu functions on R such that the sets 6 = 
= {xe R :f'(x) > 0}, D = {xe R: g'(x) > 0} are dense in R. Denote A = 
= {xe R :f'(x) = 0}, C = {x e R, g'(x) = 0}. Let A and £ be denumerable subsets 
of A and 8, respectively, which are dense in (0,1). 

Define a function k(x) = f(x) — g((p(x)) on (0,1), where cp is the function from 
Lemma 5. Then k'(x) = f'(x) - g'OK*)) <P'(X) < ° f o r x G ^ a n c l ^'(x) > ° ^or 

x e B . Thus k is a Kopcke function. 

References 

[I] A. Denjoy: Sur leѕ fonсtionѕ deriveeѕ ѕommableѕ, Bull. Sсс. Math. Fгanсe, 43 (1915), 
161-248. 

[2] P. Franklin: Аnalytiс tranѕformationѕ of everywhere denѕе point ѕеtѕ, Tгanѕ. Аmer. Math. 
Soс. (1925)27, 91-100. 

[З] C. Goffman: Everywhere differentiable funсtionѕ and the denѕity topology, Proс. Аmeг. 
Math. Soс. 5I (1975), 250. 

[4] C. Goffman, C. Neugebauer, T. Nishiura: Dзnѕity topology and approximate сontinuity, 
Duke Math. J. 28 (1961), 497- 505. 

[5] Y. Katznelson, K. Stromberg: Everywheгe differentiable, nowhere monotone funсtionѕ, 
Аmer. Math. Mсnthly 8I (1974), З49-З54. 

[6] J. Lukeš, L. Zajiček: The inѕertiсn сf Gô ѕetѕ and fine topсlogieѕ, Сomment. Math. Univ. 
Сarсlinae I8, 1 (1977), 101-104. 

[7] S. Marcus: Ѕur leѕ dériveeѕ dсnt leѕ zeroѕ forment un enѕemble frontière paгtout denѕe, 
Rend. Сirс. Mat. Palermo 2/12 (196З), 1 —36. 

[8] G. Petruska, M. Lackovich: Baire 1 funсtionѕ, appгoximately сontinuouѕ funсtionѕ and derí-
vativeѕ, Асta Math. Асad. Ѕсi. Hungaríсae, 25/1 — 2 (1974), 189—212. 

[9] D. Pompeiu: Ѕur leѕ fonсtionѕ derivéeѕ, Math. Аnn. 63 (1906), З26—ЗЗ2. 
[10] S. Saks: Theсry of the Integrаl, New Yorк 1937. 
[II] C. E. Weil: On nowhere monotone funсtionѕ, Pгoс. Аmer. Mаth. Ѕoс. 56 (1976), 388—389. 
[12] Z. Zahorski: Ѕur lа première déгivee, Tгаnѕ. Аmeг. Mаth. Ѕсс. 69 (1950), 1 — 54. 
[13] Z. Zalcwasser: Ѕur leѕ fonсtionѕ de Köpске, Prасе Mаt. Fiz. 35 (1927—28), 57—99. 

Authors' address: 186 00 Pгаhа 8 - Kаrlín, Ѕoкolovѕкá 83 (Mаtеmаtiскo-fyziкální fакultа UK). 

61 


		webmaster@dml.cz
	2012-05-12T09:00:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




