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Časopis pro pěstování matematiky, roč. 103 (1978), Praha 

GRADUAL PARTITION OF A GRAPH INTO COMPLETE GRAPHS 

JOSEF VOLDRICH, Praha 

(Received March 31, 1977) 

INTRODUCTION 

In this paper we investigate properties of the amalgamation operation of graphs. 
Obviously every graph can be obtained by a gradual amalgamation of certain 

family of complete graphs. We are interested in the properties of this procedure. 
For every graph G we define the depth of G as a measure of amalgamation ineffi­
ciency of G. We prove that there are graphs of arbitrarily large depth and that for 
every n there exists a uniquely determined graph Gn with depth n and with a 
minimal number of vertices. We prove also that the depth of a planar graph is <4 
which is best possible. 

The paper has 2 parts: 
In § 1 we introduce the notion of a gradual partition of a graph into complete 

graphs and state basic properties of this notion. 
In § 2 we introduce and investigate the depth of a graph. 
The results of this paper extend the results which were obtained at the Seminar 

of Applied Combinatorics at Charles University, Prague by the authors of [0]. 

1. GRADUAL PARTITIONS OF GRAPHS 

1.1. In this paper we consider finite undirected graphs without loops and multiple 

edges. Explicitly, a graph G is a pair (V, E) where Vis a finite set and E £ j J = 

== {e £ V; \e\ = 2}. We shall use also the notation G = (V(G), £(G)). 

Graph IvJ J J is called the complete graph on the set Vand is denoted by Kv. 

STUDENTS' RESEARCH ACTIVITY AT THE FACULTY OF MATHEMATICS AND 
PHYSICS, CHARLES UNIVERSITY. This paper was a part of a collective work awarded the 
2nd prize in the Faculty Students* Research Work Competition, section Algebra and Topology, 
in the year 1976. Scientific adviser: Professor J. NESETIRIL. 
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Put K„ = K[M], where [1, n] = {1, 2 , . . . , n}. The graph K0 = K0 = (0, 0) will be 
denoted sometimes shortly by 0; this graph is called the void graph. 

1.2. Definition. Let G, G' be graphs. A mapping / : V(G) -*• V(G) is called an 
embeding of G into G' if 

1) / is a 1-1 mapping 

2) {/(x),f(y)} e £ ( C ) o {x, y} e £(G). 

1.3. Definition. Graph G is a subgraph of G' if V(G) e V(G') and the inclusion is 
an embeding. This fact is denoted by G g G'. Explicitly: G = (V, E) is a subgraph 

of G' = (V', £') if V s V' and £ ' n Л ì = £. 

If G g G' and G 4= G' then we write G < G'. 
Obviously a subgraph G = (V, F) of G' = (V', £') is determined by the set of its 

vertices. In this case we also say that G is induced by G' on the set V. We use the 
notation G'\v = G. 

We shall find it convenient to use the following definitions: 

1.4. Definition. Graph G is the union of Gt and G2 if Gf g G, i = 1, 2, and 
V(G) = V(Gi) u V(G2). In this case we write G = Gt v G2. 

Definition. Graph G is the intersection of graphs Gt and G2 if G g G», i -= 1, 2, 
and V(G) = V(Gt) n V(G2). The intersection is denoted by G = Gt A G2. 

Definition. Let Gt < G. We say that (V', £') is the difference of graphs G and Gt 

if F ' = V(G) \ V(G!) and (V', £') < G. This fact is denoted by G - G±. 

1.5. Definition. Let G = (V, F) be a graph, veVa, fixed vertex. Denote by Gv the 
subgraph of G induced by the set Vv = {t/; {t;, t/} e E}. Denote byG* the subgraph 
of G induced on the set Vv u {v}. 

1.6. Definition. Let G, G' be graphs. Define the graph G + G' as follows: 

V(G + G') = V(G) u V(G'), 
E(G + G') = K(G) u E(G') u {{i?, »'}; t; e V(G), »' e V(G% 

Graph G + G' is called the direct sum of graphs G and G'. 

1.7. The following is the principal operation considered in this paper: 

Definition. Let G, Gl9 G2, G12 be graphs. We say that the graph G is partitioned 
in graphs Gt and G2 with respect to the graph G if 

1) Gt = G, G2 = G, 
2) G = Gi v G2, 
3) G12 = Gt A G2. 



In this case we write G = (Gif G12, G2). We write also G = (Gi9 G12, G2) if there 
exist isomorphisms G ^ G', Gt en G[9 Gi2 a. G'12, G2 :* G2 such that G' = 
=* (Gi»Gi2»G2). * 

If G = (Gi, G12, G2) then the triple (Gu G12, G2) is called a partition of G. 
If G = (Gj, G12, G2) and G £ G1$ G 4. G2, then (Gl9 G12, G2) is called a proper 

partition of G. 

1.8. Remarks. 1) Obviously there is not an edge {vi9 v2} e E(G) for v± e V(Gi) \ 
/V(Gi2)9v2eV(G2)\V(Gi2). 

2) If G is a disconnected graph then G = (Gi9 0, G2) for convenient GUG2. 
The graph (Gi9 0, G2) is always disconnected. 
3) The operation (.,.,.) is the inverse operation to the amalgamation operation: 

if G = (Gl9 G12, G2) then G is an amalgam of Gt and G2 with respect to G12, see [3]. 

4) If G is a complete graph, then there is no proper partition of G (see the above 
remark 1). On the other hand if G fails to be a complete graph, then there exists 
v e V(G) such that G = (G*, Gv, G\nG)\{v)). It suffices to take any vertex v for which 
(r.K(G)\{|.} 4= Gv (which is equivalent to the fact that there exist vf e V(G), v 4= vf

9 

{v,vf}$E(G)). 

1.9. Remark 1.8.4 shows that every graph G may be gradually partitioned into 
a family of complete graphs. This gradual partition into complete graphs is intro­
duced in the following two definitions: 

1.10. Definition. A branching partition tree Tis a quadruple (V, R, R', v) with the 
following properties: 

1) (V, R u Rf) is a branching from v, 
2) (V, R) is a dyadic tree, 
3) every vertex which fails to be a terminal vertex is incident with exactly one edge 

ofR'. 

1.11. Definition. Let G be a graph. A gradual partition of G into complete graphs 
with respect to a branching partition tree T = (V, R, Rf, v) is a mapping 0t: V -+ Gra 
with the following properties: 

1) M(v) = G. 
2) If (w, wt) € R, (w, w2) 6 R, (w, wi2) € Rf then M(w) = (^(wt), M(wi2), 0t(w2)). 
3) If w is a terminal vertex of Tthen M(w) is complete graph. 

If ti9..., tH are all terminal vertices of Tthen we say that G is generated by the set 
{^(h)> •••>^(*n)}- The s e t °f a-- graphs generated by a set of complete graphs 
{KH(i); iel} will be denoted by [Kn{i); 1 € / ] . 
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T=(V,R,R') 

1.12. Remark. Denote by Gra the class of all finite graphs. Then 
00 , 

Gra = U [*,; i = 0,..., n] = [Kt; ieJV] (see Remark 1.8.4). 
1 1 = 1 

It is easy to see that [K0, Ku ..., X„] = Gra (n) where Gra (n) is the class of all 
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finite graphs which do not contain a complete subgraph with n +1 vertices. These clas­
ses were studied in [3]. These applications of amalgamation operation provided a 
motivation of this, research. 

1.13. Example. Fig. 1 illustrates a possible gradual partition of graph G with 
respect to the tree T = (V, R, R'). The arrows of R are depicted by straight lines, the 
arrows of R' by dotted lines. 

1.14. Remark. Let K1, ..., Kn, L1,..., Lm be complete graphs. It is easy to see that 

(i) [K1,...,Kn]u[L1,...,Lm]^[K1,...,Kn, L\...,Lm], 
(ii) [K1, ...,Kn] n [L1,..., Lm] 2 [{K1, ...,Kn} n {L1,..., Lm}]. 

However,' if [K1, ..., KM] * [L1, ..., Lm] then [K1, ..., Kn] u [L1, ..., Lm] | 
.p[.K1,...,K", #,. . . ,£"]. 

L. KUCERA and J. NE§ET&IL asked when the equality in (ii) is valid. The equality 
in (ii) holds in most "simple cases". The smallest graph for which the equality in 
(ii) does not hold is in Fig. 2: 

Fig. 2. 

[4] contains a more detailed discussion of the equality in (ii). 

2. DEPTH OF A GRAPH 

In this part we introduce the notion of the depth of a gradual partition of a graph. 
This number characterizes the "inner" complexity of a graph. 

2.1. Definition. Let 0t be a gradual partition of the graph G with respect to the tree 
T = (V, R, R'9 v). Denote by (v, x) = {(v, xt),..., (xn, x)} the path from v to x, x e V. 
We say that the vertex x belongs to the k-th level of 0$ if \(v, x) n R'\ = k. 

We say that the graph0t(x) belongs to the fc-th level of 0t if \(v, x) n R'\ = k. 
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Depth of a tree T = (V, R9 R'9 v) is the maximal level of a vertex of T Depth of 
a gradual partition M of a graph G with respect to T is the depth of the tree T and it 
will be denoted by dp (R). 

2.2. Definition. Depth of a graph G is the minimal depth of a gradual partition 0t 
of a graph G (with respect to a branching tree F). 

Depth of the graph G will be denoted by dp(G). 

2.3. Remarks. 1) The gradual partition of the graph G in Fig. 1 has depth 2. 

2) Obviously dp(G) <; max(dp(Gx), dp(G12) + 1, dp(G2)) for every partition 
G = (Gt9 G12, G2). Moreover, for every graph G, dp(G) > 0 there exists a partition 
G = (G1? G12, G2) such that dp(G) = max ( d p ^ ) , dp(G12) + 1, dp(G2)). 

2.4. Proposition. 1) dp(G) = 0 iff G is a complete graph. 
2) dp(G) — 1 iff G does not contain a subgraph which is isomorphic to a cycle 

of length > 3 . 

Proof. 1) is obvious. 
2) If G contains a cycle C of length > 3 as a subgraph, then dp(G) j> dp(C) = 2. 
Now let G be a graph which does not contain a cycle of length > 3 as a subgraph 

(graphs with this property are called triangulated graphs). We prove by induction 
on |G| that dp(G) ^ 1. It is well known that every minimal articulation set A of 
a triangulated graph is a complete graph. Hence there exists a partition G = 
= (Gl5 G12, G2), where G12 is a complete graph and consequently dp(G) = 
= max (dp(Gi), 1, dp(G2)) and we may use the induction hypothesis. 

In the sequel we establish the basic properties of the depth of graphs. We prove the 
existence of graphs with an arbitrarily large depth. 

2.5. Theorem. Let G ^ H. Then dp(G) ^ dp(H). 

Proof. If G = H then dp(G) = dp(H). It suffices to prove the statement of Theo­
rem for G = H - K{a} for every a e V(H). 

Let 0t be a gradual partition of H (into complete graphs) with respect to T = 
= (V, R9 R'9 v). Define the mapping^' : V-> Gra by 

M'(w) = 0t(w) - K{a} if a is a vertex of 0l(w) , 

0t'(w) = 0t(w) otherwise . 

Obviously 0t' is a gradual partition of G = H — K{a} into complete graphs with 
respect to the same tree T = (V, R9 R'9 v). This proves dp(G) <̂  dp(H). 

To establish the depth of a direct sum of graphs we shall need the following 

2.6. Lemma. Let H, G be non-void graphs. Let H + G = (Fi9Fl2, F2). Then one 
of the following possibilities must occur (up to a permutation of symbols): 
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1) Ft = Gt + H, F12 = G 1 2 + Я, F2 = G2 + Я and G = ( G ь G1 2, G2), 

2) Ft = G + Я ь F12 = G + Я 1 2 , F2 = G + Я 2 and Я = ( Я ь Я 1 2 , Я2). 

Proof. Let G + Я = (Fl5 F12, F2) be a fixed partition. As G + Я * (Я, F, G) 
for any graph F there are vertices a, b such that either a,bє V(H) or a, b є V(G) 
and a є V(Ft - F12), b є V(F2 - F12). 

Assume without loss of generality that a,bє V(H). Ғurthermore, assume G = F12. 
Then there exists a vertex c є V(G) such that either c є V(Ft — F12) or c є 
є V(F2 - F12). We get a contradiction as {a, c} є E(G + H), {b, c} є E(G + H) 
and Ft v F2 ф G + Я. Thus G = F12. Put Ht = F^ - G, Я 2 = F2 - G, Я 1 2 = 
= F12 - G. It is easy to check that G + H = (G + HUG + Я 1 2 , G + Я 2) and 

я = (я 1 } я 1 2 , я2). 

2.7. Theorem. Leř G, Я be non-void graphs. Then dp(G + Я) = dp(G) + dp(Я). 

Proof. Obviously dp(G) = dp(G + Я), dp(Я) = dp(G + Я). 

Ғirst, if G and Я are complete graphs then Theorem is true. 

Secondly, let Я be a complete graph and Øt a gradual partition of G with respect 
to a tree T = (V, E, E'). Define Øt' as follows: ^'(w) = Øt(w) + Я. Obviously Øľ(w) 
is a complete graph ifF Øt(w) is a complete graph and consequently Øt' is a gradual 
partition of G + Я into complete graphs with respect to T. Hence åў(Øt) = dp(^') 
and, according to Lemma 2.6, dp(G + Я) = dp(G) if Я is a complete graph. Finally, 
let G, Я be a non-complete graphs. In this case we prove by induction on | V(G + H)\ 
that dp(G + Я) = dp(G) + dp(Я). The small values of |V(G + H)\ are obvious. 

Let |V(G + H)\ = n + 1 and let the statement of Theorem be valid for all graphs 
with = n vertices. Let G + Я = (Gt + H,G12 + H,G2 + H) where G = (GUGІ2, 
G2). According to Lemma 2.6 and Remark 2.3 we may assume that 

dp(G + Я) = max (dp(Gx + Я) , dp(G12 + Я) + 1, dp(G2 + Я)) . 

By the induction hypothesis it follows: dp(G + Я) = max(dp(Gi) + dp(Я) 
dp(G12) + dp(Я) + 1, dp(G2) + dp(Я)) = dp(Я) + max^dpíGO, dp(G12) + 1, 
dp(G2)) = dp(G) + dp(Я). 

Consequently, it suffices to construct a gradual partition ØtoîG + H into complete 
graphs such that dp(^) = dp(G) + dp(Я). Let ătx and Øt2, respectively, be gradual 
partitions of G and Я into complete graphs with respect to branching partition trees 
Tt and T2 such that dp(ią) = dp(G), dp(^ 2) = dp(Я). Let Tt = (Vř, Ei9 E^v1), 
i = 1, 2. Put Қ » {v\,..., vl, vţ+i,..., v\} where {v\,..., v\} is the set of all end-
vertices of the tree Tt. Define the branching tree Г = Tt o T2 = (V, E, E'\ v) by 
V = Vt u (V2 x [1, k])j~ where ^ is the equivalence generated by the set of pairs 
{(i;J,(t?2, i)); i = 1,..., fc}. Let [x] denote the equivalence class of ^ containing the 
vertex x. 
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E ={{[*]> M ) ; {x,y}eE1}u 

u {{[(*> 01> l(y>J)]}> i = j> {*> y}e ^ 2 } > 

E, = {{[xl[y]};{x,y}eE'1}v 

»-»{{[(*> 0]> [(yJ)]}; i = !> {*> ^} e E2} , 

Define the mapping ^ by 

*(H) = mi(x) + H f o r * G Fi > 

(x, i)]) = M^v}) + 0t2{x) for x e V2 

(observe that this definition is consistent: if [x] = [(y, i)] then x is an endvertex of G 
and hence 0t^(x) + H = 0tt(v}) + @2(y)\ 

If is clear that 0t is a gradual partition of G + H into complete graphs and hence 
dp(G + H) = dp(^) = dp(G) + dp(H). 

This proves Theorem. 

2.8. Theorem. Let dp(G) = n > 0. Then there exists a subgraph H ^ G swch fhaf 

1) dp(H) = ii, 
2) dp(Ha) = n — 1 for every vertex a of H. 

Proof. Let H be a subgraph of G such that dp(G) = dp(if) and dp(H') < dp(G) 
for every proper subgraph H' of H. Then obviously dp(Hfl) ^ n — 1 for every 
a e V(H) (otherwise H would not be minimal). 

Let dp(Hfl) = n - 2 for a vertex a e V(H). As H = (H*, Hfl, if - {a}) and 
dp(H*) = dp(Hfl) _ n — 2 we have dp(H) = dp(H — {a}) which is a contradiction 
with the minimality of H. 

2.9. Theorem. Let dp(G) = n. Then 

1) |V(G)| = 2n, 
2) K„ _ G. 

Proof. We prove both statements by induction on n (the case n = 0 is obvious). 
Let G be a graph, dp(G) = n > 0. We may assume that dp(G') < n for every 

G' £ G. 
Let G = (Gu G12, G2) be a proper partition such that dp(G) = max(dp(G1), 

dp(G12) + 1, dp(G2)). 
By the minimality of G, it is dp(G) = dp(G12) + 1, using the induction hypothesis 

and the fact that (Gu G12, G2) is a proper partition we have 

|V (G) |^ |V (G 1 2 ) |+2 = 2 . ( n ~ l ) + l . 
This proves 1. 
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In order to prove 2) choose a e V(G) such that dp(Ga) = n — 1 (Theorem 2.8). 
Then Kn-X <> Ga implies Kn ^ G. 

2.10. Theorem. For every natural number n there exists a unique graph Gn with 
the following properties: 

1) Gn has 2n vertices, 
2) dp(Gn) = n. 

The graphs Gn are given as follows: G0 = K0, Gx =- ({l, 2},0), Gn = Gn-l + Gt 

for all n = 2. 

Proof. dp(GM) = n by Theorem 2.7. Proof of the uniqueness of graphs Gn follows 
easily from the proof of Theorem 2.9. 

2.11. Theorem. dp(G) ^ 3 for every planar graph G. 

Proof. Let dp(G) = 4. By Theorem 2.8 there exists a vertex a e V(G) such that 
dp(Ga) = 3 and by the same argument there exists a vertex b e V(Ga) such that 
dp((Ga)b) = 2. But this means that (Ga)b contains a cycle C of length > 3 as its sub­
graph. But C + K2 fails to be a planar graph. 

2.12. Remark. There are examples of planar graphs depth 3. These are e.g. Ck + G2 

for any k > 3/Q is the cycle of length k and G2 is that from Theorem 2.10). 
Let us conclude the paper with a problem: 

2.13. Neighborhood problem. Let G be a graph such that dp(Ga) = n — 1 for every 
vertex a e V(G). Does it follow dp(G) = n + 1? 
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