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1. INTRODUCTION

1.1. This paper deals with the solvability of the equation
(1.1) Lu = Su,

where L, S are operators acting from a Hilbert space H into H, Lis a linear non-
invertible selfadjoint and Fredholm operator, S is nonlinear completely continuous.

1.2. Denote by Ker [L] and Im [L] the null-space and the range of the operator L,
respectively. Let P : H — Ker [L] be the orthogonal projection from H onto Ker [L]

Put
Pu=u—Pu, ueH.

The solvability of the equation (1.1) is usually established by solving the so-called
bifurcation system

(1.2) PS(w+v)=0, v=KPSWw+v),

where w e Ker [L], ve Im [L] and K : Im [L] — H is the right inverse of the opera-
tor L. The Schauder fixed point theorem was originally used to obtain the solvability
of (1.2) in the case of boundary value problems for second order partial differential
equations by E. M. LANDESMAN and A. C. LAZER [14]. The abstract setting of this
method is given in [6], [7], [10], [16], ..., where also the applications to existence
theorems for various boundary value problems are given.

1.3. In the papers of J. MAWHIN (for the references see [11]) the coincidence
degree theory is established which is useful for proving the existence results for equa-
tions of the type (1.1). Let us remark that the topological approach to the solvability
of (1.1) also in the special cases of differential equations has been used during the last
seven years in many papers — the long list may be found e.g. in [4], [11].
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1.4. The type of results obtained by the above method may best be illustrated by
the following example:

Let n be a positive integer. We consider the existence of a solution of nonlinear
two-point boundary value problem

(13) —w(x) — 2 u(x) + g(u(x) = £(), xe(0,7)
u(0) = u(n) =0,

where g(&) is a bounded continuous real valued function defined on the real line R*

with a finite limit

g(c0) = lim g(¢) .
-

Suppose that there exists &, € R! such that

9(8) = —a(=9) .
for [¢| 2 &. Let fe Ly(0, m).
Then the boundary value problem (1.3) has at least one weak solutionu € w330, n)
provided

(14)

1.5. In order that the set of functions f € L;(0, ) satisfying the condition (1.4) be
nonempty, we must suppose g(c0) > 0. In the case g(c) = 0 the procedure from
Section 1.2 does not work. The solvability of boundary value problems for ordinary
and partial differential equations with such a type of nonlinearities are solved in

(2], [3) [5) [9], [12], [13].
1.6. A new idea how to establish the solvability of boundary value problems for
second order partial differential equations (whose abstract formulations correspond

to (1.1)) is included in the paper [1], where the following elementary critical pomt
principle is proved. :

< 2 g().

J'f (x) sin nx dx
0

1.7. Notation. Let (x, y, z) be a point in R" x R™ x RY = R*+m*4 and let
F . Rn+m+q - Rl

be assumed to be of class C!. Denote by <, ) and | I the inner product and the norm
in R*, respectively, where k may equal n, m,q or n + m + q. We set

OF _ (9F’ oF

ox  \ox, ox,)
9F _ (aF 9£>
ay \oyi oy’

oF _ (0F OF
6z \ozx oz,
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so that, identifying the gradient VF at a point (X, y, Z) with a point in R**™*? we
may write

- - = oF ,_ _ \OoF,_ _ _\ OF,_ _ _
VF(%,5,2)=(— (%52, — (%52, — (% 7 2)).
0x dy 0z

1.8. Elementary Critical Point Principle. Let n > 0, m = 0 and q = 0. Suppose
that there exist numbers ¢, > 0, ro > 0 such that:

OF '
(1.5 <—— (x, », 2), y> >0
dy
for |,V| = Co, |x| < roand |z| Sc¢ifm>0;
e <6—F (x, v, 2), z> <0
‘ 0z

for |x|
(1.7 F(x,y,z) £ F(0, y*, 0)

Tos I}’I =< co and Iz[ =coif g > 0;

IA

for IZ! é Co» Iyl é Co, IY*I §. co and IXI = "o-

Then there exists (Xo, Yo, Zo) With

(1°8) lxo| Sros |)’o| =6, Izol S ¢
and
(1.9) VF(xo, Yo Zo) =0.

1.9. In this paper we shall apply Elementary Critical Point Principle to the problem
of solvability of (1.1). The abstract result obtained (see Section 2) extends not only
the result of S. AHMAD - A. C. LAZER - J. L. PAUL (see [ 1]) but many various existence
theorems for the weak solvability of boundary value problems for differential
equations (see Sections 4 and 5). Let us note that the stated results applied to (1.3)
give the existence of a solution also if g(o0) = 0 (see Section 4), also in the case of
sublinear nonlinearity, i.e. if

(1.10) lim 26)
. §—o0 é

is non-zero and finite for certain 6 € (0, 1) (see Section 5), and also in the case of
nonlinearity which has a linear growth, i.e. if (1.10) is finite (and sufficiently small)
with § = 1. '
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2. ABSTRACT THEOREM

2.1. The operator L. Let H be a real separable Hilbert space with the inner product
(u, v)y and with the norm

Juf = <u w3y,

Suppose that B: H — H is linear completely continuous selfadjoint operator and
denote by o = o(B) the set of all eigenvalues of the operator B. Let A be a sequence
of all eigenvalues of B considered together with their multiplicities and let e, € H,
|ez]] = 1, be the eigenvector corresponding to A€ 4, i.e.

Ae; = Be,, leA.
Let 0 ¢ 6. Choose A, € o fixed and denote
(2.1) u =4, —infao,
(2.2) d = distance of 1, to o — {4} .
Let W be a null-space of the operator
(2.3) L:uw>Agu — Bu, ueH
(i.e. W= Ker[L]).

2.2. The operator S. Let S : H — H be a strongly continuous operator (i.e. it maps
weakly convergent sequences in H onto strongly convergent sequences in H) and
suppose that there exist « = 0, B = 0, § € [0, 1] such that

(249 [Sul| < a + Blu||®, ueH.
Suppose that

(25) .6=0 ifandonlyif B=0,
(2.6) B<id if 6d=1.

Moreover, let the operator S be potential with a potential & : H —» R, i.e. the
functional & possesses the Fréchet derivative &'u on the whole space H and

SF(u + h) - &(u) — {Su, h)y

Fu=Su, ueH: lim =0.
Isl~0 - ]
Define
(27 % :1r —inf P(w).
weW
lwlf=r

The main result is the following theorem.
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2.3. Theorem. Let the above assumptions be fulfilled. Then the equation

(2.8) : . Lu = Su
is solvable in H provided
. w(r
(29) 6) = lim mf(&T(-l-i)?—a)z > o(9).
where
“ ;fd it 5=0,
(2~10) . Q(‘S)'—‘ v “;;;d if 0<dé<1,

(48 +5) @2+ 2@ -2 it 5=,

2.4. Proof of Theorem 2.3. Denote
A ={hed; A> 2}, A.={led; h<ly)

and let Z and ¥V be the closures of linear hulls of all eigenvectors e;, A € A for which
Ae A” and A€ A., respectively. Then

H=WoVaeZ
(the direct sum). We define a functional

d:WxVxZ->R!

by .

(2.11) ®:(w,v,2) > Lo, )y + KLz, z)g — P(W + v + 2).

Obviously -

(2.12) Lv,vdg 2 d|o|?, veV,

(2.13) (Lz,z)g S —d|z||*, zeZ.

Put

(2.14) A(8) = min {ﬂ 12 —ar — ﬁr“"}.
1€[0,) 2

Let ¢ = ¢(r) > 0 be the (unique) solution of the algebraic equation

(2.15) dc — (a + Br’) — 2B = 0.

If § = B =0 then '

(2.16) o(r) =oad™t.
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Let 6 €(0, 1]. Obviously

(2.17) or) 2 (@ + pr¥)a
and thus
(2.18) lim o(r) =

The implicit function theorem implies that there exists the derivative ¢’(r) and

(2.19) c(r)(d — 2B5 P~ 1(r)) — por*~* = 0.
Thus
. c(r) 1
2.20 lim = w(d),
( ) r—o ﬂér" 1 r-'r?o d Zﬂc"'l(r) ( )
where
(2.21) o) = {4 if 5¢(0,1)
d-2p)7" if 6=1,
and, the I'Hospital rule implies
(2.22) fim <) ) = w(5).
r-o O +

The above results give

(2.23) W(o) > 0(8) = u ?() + 2w(8) if 6€(0,1)
and
(2.24) v0) > é + dpd™? + 3 = A(O) + 3pd™? + z

According to the assumptions (2.9), (2.10) there exists r, > 0 such that
x(r A(S c(r cHo(r
(o)“>_ (),,2+%u (0)“+2 Aro) 45 ((;)2’
(a + Bry) (« + Br3) (a + Brg) a + Brd (x + Brd)

i.e. if ¢(ro) = ¢, then

(2.25) #(ro) > —A(6) + 3ucy + 2co(a + Bry) + 4Pc*?.

Denote by @3, 5, and @} the partial Fréchet derivatives of & with respect to the
first, second and third variable, respectively.

Now the following inequalities hold:
If
(2.26) Wl sro. ol =con [z = co
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then
(2.27) ‘ (D5(w,v,2),0Dg 2 0

since '
<¢’2(W, v, Z), v)H = <Lv’ v)H - <S(W + v+ Z), v)H g
2 dlo]* = afo]| = Blw|® o] - Blo]*** - Bl=[° 2] 2

2 co{deo — (« + Bry) — 23} = 0.

If
(2:28) Wl =re, [o] Scos |2 =co
then
. (2.29) (D3(w,v,2),z)y S0
since
<¢S(W9 v, 2)9 z>H = <LZ, z)H - <S(W +0v+ Z)a z)H é
< —d|z|?* + afz| + B[w|® 2] + Blz["** =
S co{—dco + (x + Bre) + 283} = 0.
If
(2:30) Wl =ro, fo Scos [o*] Scos [z S co
then
(2.31) o(w, v, z) < (0, v*, 0)
since '

®(w, v, z) < 3ulfv)* — dz|* + {S(w + v + 2)), v + 2Dy — F(W) £
tuo]? - dlz® + o] + «|z] + Blw]* [o] + Bw]® 2] +
+ Blof*** + Blel’ 2] + Bllz|* o] + Blz]*** — #(w) =
< duck + 2co(x + Brd) + 4Bci*® — x(ro) < A(S) <
< ddfo*|?* — afo*] — Bllo*|" = KLo*, v*>y — (S(90*), %) =
= §(Lv*, v*)y — F(v*) = (0, v*,0).

Let {V,}w-, and {Z,} <. be sequences of finite-dimensional subspaces of Vand Z,
respectively, such that

(2.32) VieV,c...CVp S Vpyy € ey

1C 8
3

]
3

(2.33) Z,cZyc...cZyCZpyy ...,

’nC 8
aN
[
N
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Now we shall apply Elementary Critical Point Principle (see Section 1.8) to the
function & restricted to W x V,, x Z,. The assumptions of Section 1.8 are satisfied
in virtue of the relations (2.26)—(2.31).

Thus there exists (Wy, Ups Zw) € W X ¥, X Z,, =« W x V x Z such that
(2.34). [wal 705 Jonl < cos lzal < <o
and
(P (Ws Vs Zm), W =0, weW;
Dy (Wps Ums Zm)s 0D =0, v €V,;
Py (Wms Ums Zm)s 20 =0, z €Z,,

ie.

(2.35) (SWp + Uy + 2), Wop =0, weW;

(2.36) Lty 0O — {SWpy + Uy + 2,), D =0, v €V, ;
(2.37) (LZpy 2y — {S(Wp + Uy + 2,), 2> = 0,2 € Z,,.

Choose subsequences {Wy,,}, {Um,}» {Zm,} With the following properties (— and — de-
note the strong and weak convergences, respectively):

ij—’WO, Umj‘avo, V4 == Zy
(this follows from (2.34)),
Bv,, = Bvy, Lv,,— Lvy, S(Wm, + Un, + zm,) = S(wo + vo + 20)
(this follows from the continuity properties of B and S). Then the point
uo=W0+Uo+Zo€H

satisfies the equation (2.8) as follows immediately by passing to the limit in (2.35)—
(2.37) and using (2.32), (2.33).

3. NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

3.1. Sobolev spaces. Let 2 be a bounded domain in RN (N 2 1) with a lipschitzian
boundary 0Q if N > 1. Let us write, as usual, j = (j,, ..., jy), Where j; are nonnegative
integers, i = 1, ..., N, and

alil
oxj' ... oxiy
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. :
with |j| = Y j.. We define the Sobolev space W**(2) (for k 2 0, integer) of all
i=1

functions u for which D’u € L,(Q) when |j| £ k, normed by

ez = ( 2, [ 127wt 05) ™

(D’u means the derivative in the sense of distributions).
The space W*%(Q) is a separable Hilbert space with the inner product

Uy Ve = Y. -[ D u(x) D’ v(x) dx .
lilsk J o

Furthermore, denoting the set of all infinitely differentiable functions on Q with
compact supports in Q by 2(2), we define W§?(Q) as the closure of 2(Q)in W**(Q).
Let ¥V be a closed subspace of W*%(2) such that

(3.1) : W (Q) = Ve wh(Q).
3.2, Linear differential operator. Let

(32) a(x)eL(Q), ay=a; (|i|.[i] k).

Suppose that there exists ¢ > 0 such that

(3.3) Y ay(x)& =z Z &

li|=1i]=k li|=k

forall ¢, e R (|i] = k) and almost all x € 2. Let

(4 Aie L (89Q), Ay=A; (il <k).

Put ’

(3.5) L(v,u)= Y f a;/(x) D' v(x) D/ u(x) dx + ‘ Z J. A;; D'v Dlu .
liL.1i15k J o lilLlil<k Jaq

(In the surface integral the derivatives D'v, D’u are considered in the sense of traces.
Since we suppose that Q is a domain with a lipschitzian boundary 62 and, moreover,
D'v, D'ue W(Q) for |i, |j| < k, the traces are well-defined — see e.g. [15, p. 15].)
The form Z(v, u) is symmetrxc, bounded and bilinear on W*%(Q) x W**(Q).
Define a mapping
L: V-V

by -
(3.6) {Lu, vdgr.2 = L(v, u)

foreach u,ve V.
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Introduce a new inner product on V by

Gyody = F La,.,(x) D' ofx) Diu(x) dx + J‘nu(x) ofx) d

li=1il=k
for u,ve V. The norm

July = G ud¥?, wev

i

is equivalent with Hu[lwk,z on the space V. Define the operator B: V= Vby =
Lu =u— Bu, ueV.

The mapping B is selfadjoint and completely continuous by virtue of the complete
continuity of the imbedding from W*?%(Q) into W*~*-3(Q) (see e.g. [15, Chapter 2]).

3.3. Nonlinear operator. It will be very convenient to denote by V,_;u the gener-
alized gradient of the function u, i.e. the vector containing all derivative D’u for
I jl < k — 1 (which, are lexicographically ordered). Let g be the number of all multi-
indices of dimension N whose léngth is less or equal to k — 1.

Let b(x; ¢) be defined for almost all x € 2 and all ¢ € R?. Suppose that the functions
b(x; ¢) and '

bi(x; &) = 2 (x8) for i k-1
%, B
satisfy the Carathéodory condition on Q x R? (i.e. ‘they are méasurabie on Q for

fixed ¢ € R? and continuous in ¢ for fixed almost all x € ). Suppose that there exist
YieLy(Q), y,eLy(R), ¢, 20,c, 20and 6€[0,1], o

(3.7) c; =0 ifandonlyif 6=0.

such that

(3.8) lb(x; )] S ¥ulx) + e 3 &P,
lilsk-1

(3.9) b O S ¥alx) + ez T [

for almost all x € Q and all £ € R Let

(3.10) Qe W"'Z(Q)
and define a functional
S :VoR!
by
(3.11) : &L :u HJ. b(x; Vi yu(x) + Viyp(x))dx, ueV. :
0 ‘ AT
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Then the functional & possesses the Fréchet derivative &'u = Su for arbitrary
u e V, where S : V — Vis given by

(3.12) <Su, vy = Y J- bi(x; Vi-1u(x) + Vio10(x)) D' v(x)dx, u,veV.
1nsk-1) g

It easily follows from the complete continuity of the imbedding from W**(Q) into
W*~1.2(Q) that the operator S : ¥ — Vs strongly continuous.
Let ¢; > 0 be such a constant that

(3.13) Y [Dlu]e, < esluly, uev.
LED

Then (according to the assumption (3.9)) the operator S : ¥V — V satisfies the growth
condition
ISuly < o+ Blul} . uev,

where

(3.14) @ = c3| V2| L, + c2cs(meas Q)“"”/zmszk_l]|Df<p|[‘£2 ,

(3.15) g = co(meas Q)12 1*3, if €0, 1)
€23 if 5=1.

3.4. Remark. Using the imbedding theoréms the condition upon Y, may be
generalized, e.g. ¥, € L,(Q) if N = 1, etc.

3.5. Boundary value problem. As usual, we define that u € Vis a weak solution
of the general boundary value problem with respect to the space ¥ (see (3.1)) and the
boundary condition ¢ € W*?(Q) of the nonlinear partial differential equation

(16 ¥ (~D)"Day() D) = T (=1 Dlby(x; Ve_1w)
111,171 sk NVEC

if u satisfies the operator equation
(3.17) Lu = Su,
where Land S are defined by (3.5), (3.6) and (3.12), respectively.

4. BOUNDARY VALUE \PROBLEMS WITH BOUNDED NONLINEARITIES
Let the notation introduced in Section 3 be observed. We shall suppose
(4.1) Ker [L] = W+ {0}.
From Sections 2 and 3 we obtain immediately:
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4.1. Theorem. Suppose (3.1)—(3.4), (3.7)—(3.9) with 6 = 0 and ¢, = 0, (3.10),
(4.1). Let

(4.2) - lim inf Jl b(x; 7 Vi—yw(x) + Vi_y(x)) dx = o0 .
e g Jo

Then the equation (3.17) has at least one solution u € V.
4.2. Remarks. (i) Instead of (4.2) it suffices to suppose

(4.3) liminf inf | b(x;r Ve w(x) + V,—19(x)) dx > o? 0(0)
r=+o weKer[L] o
llwllv=1

(see (2.7), (2.9), (2.10), (3.11)).
(ii) Theorem 4.1 extends the result from [1] mainly by considering

a) the higher order elliptic equations;
b) the general boundary value problems;
c) no continuity of the functions b j(x; ¢) in the variable x € Q.

(iii) In the following results we give algebraic conditions upon the functions
b;(x; &) for the assumption (4.2) to be satisfied.

4.3. Assumptions. Let M be a nonempty subset of multiindices of dimension N
the length of which is less or equal to k — 1. Denote

& = {E}iew> GieRY, |&y] = (%&?)"2, Vi = { D't} jers -

Let g be an even continuously differentiable function in the variables &;, ie M,
9(0) = 0. Suppose that the derivatives '

0 .
9(x) = 5—5—(@), jeM
J

are bounded. Let

(4.9 feLy(Q),

(4.5) J.n f(x)w(x)dx =0, weKer[L],
(46) : ' p e C-1(Q) n WY(Q),
4.7) Ker [L] = C*"}(Q).

Put

(4.8) b(x; &) = 9(ém) — f(x) &

(where 0 is the multiindex with zero length) for almost all x € Q and every & € Re,
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4.4. Theorem. Suppose (3.1)—(3.4), (4.1), (4.4)—(4.7) and

(4.9 liminft inf Y & gtéy) =7>0.

- T Em]=1 jeM

Then (4.2) is satisfied with b(x; &) given by (4.8) and thus the equation (3.17)
is solvable in V.

Proof. Obviously

(4.10) 9(lu) = J - ll ( é“) de.

T JeM |€MI

Let ¢ > 0 and choose a > 0 such that

g (éﬂ—)z —&>0
Jg\:l |5M| léul =roE

for each &, + 0, 7 = a. Put '
0 if |£Ml§a9

wa(éM) =
1og|§'1 if |éy|>a.
a
Then
9(u) Z —na + (v — &) wi(ln) s
where

Z ¢; gj(TfM) 2 -1

jeM
for t€[0,a], |tM| = 1.

Suppose that (4.2) does not hold. Then there exist sequences r, € R!, r, — o,
w, € Ker [L], |wa|]y = 1 such that
sup'[ b(x; 7 Vi—1wa(xX) + Vi_10(x))dx =K < o0,
» Ja
i.e.
(4.11) supj 9(rs Vawn(x) + Vno(x)) dx = K
n 2

We can suppose that w, — w in ¥ since Ker [L] is a finite dimensional space and

w, = w in C*7!({) according to the assumption (4.7). Choose v > 0 and let ny e N
“be such that

sup |Vawa(x) — Vaw(x)] < v
xe2

for n = ny. Denote

Q(w) = {x € Q; |Vaw(x)| 2 20} .



Then

K> f 9(ru Vagwa(x) + Vyo(x)) dx 2

> —nameas Q + (y — e)f 0 (s Vagwy(x) + Vyo(x))dx =
2

v

—nameas 2 + (y — ¢) 07 Vagwa(x) + Vyeo(x)) dx 2
22v(w)

—nameas Q + (y — &) logﬁ'—‘i—;———"—@i’g:—1 dx =
220(w) a

v

—na meas Q + (y — &) meas Q,,(w) log fﬁ__"(ph
a

if n is sufficiently large so that

> a + ”(P"Ck-l )
v

g

Putting n —» o in

K = —nameas Q + (y — &) meas 2,,(w) log "> — [t
a
we obtain contradiction proving the theorem.

4.5. Theorem. Suppose (3.1)—(3.4), (4.1), (4.4), (4.8). Let ¢ = 0. Let R(&))
be a lower semicontinuous function in the variables &, such that

(4.12) liminf ) &; g;(t&y) = R(¢y)

T~ jeM

uniformly on bounded sets of &y = {&;}jem-
Then (3.17) is solvable in V provided

(4.13) .LR(VMw(x)) dx > Lf (x) w(x) dx

for each we Ker [L], w + 0.

Proof. The function R is bounded on bounded sets. For p 2 0 and &y = {&;} ;0
it is

R(Pfu) =D R(fu)-
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With respect to (4.13) we have

it { f R(Tun() i - Lf(x) w(x) dx} —y>0.
lIwllvy=1

Let ¢ > 0 and choose a.> 0 such that

¢ ( éM)> (éM)
—L g (1=—]|2R|(—]—
erMIéMl T\ e x|

for each &y #+ 0, T 2 a. From (4.10) we have

™

‘ g(&m) 2 —ma+ R(fM) - 8|€M| — an, + ag
for arbitrary &,,, where
Z & gj(TfM) 2 — My
JjeM

R(fu) =m
for €0, a], ]éMI =1.
Then

Lb(x; F Vyw(x)) dx = Lg(r Vaw(x)) dx — r f 1 w(e)dx 2

= —nameas Q + rf
Q

R(Vyw(x)) dx — er J. |Vaw(x)| dx — an, meas Q +
a

+ £a meas @ — rLf(x) w(x)dx = rly — ¢ I QIVMW(")I dx) —

— an, meas Q + ea meas Q.

From the previous calculation the validity of the condition (4.2) follows provided
¢ > 0 is sufficiently small.

4.6. Remarks. (i) The condition (4.4) upon “the right hand side” may be generalized
in the sense of Remark 3.4 (e.g. it is possible to assume f e L,(Q) if N = 1).

(ii) The assumption (4.7) is the regularity assumption on the solutions of the
equation '
Lu=0

the validity of which is proved (under some conditions on the coefficients a;;, A4;;)
e.g. in [15].
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(iif) Theorem 4.4 extends the results from the papers [3], [9], [12] mainly in the
following directions:

a) instead of f e L,(R) we consider f e L,(2);
b) the nonlinearity contains higher order derivatives.

(iv) Theorem 4.5 extends the result from [10] and the other papers: we consider
the nonlinearity in the equation (3.16) with (4.8) which depends on many variables.

5. BOUNDARY VALUE PROBLEMS WITH SUBLINEAR NONLINEARITIES

Analogously as in the proof of Theorem 4.5 we can prove (on the basis of Theorem
2.3) the following result.

5.1. Theorem. Suppose (3.1)—(3.4), (3.10), (4.1) and (4.4). Let g be an even
continuously differentiable function in the variables &, ie M, g(0) = 0. Suppose
that the derivatives

0
gj(fm) = a—g‘(fM)s jeM

satisfy the growth condition

(5'1) ]gj(fu)l Sc+ Csl&M]'s »

where ¢, 2 0, ¢cs > 0 and 6 (0, 1). Let

(5.2) lim inf—1—6 inf Y & gi(téy)=7>0.

t~o T |m|=1jeM

Then the equation (3.17) (with b(x; &) given by (4.8)) is solvable in V.

5.2. Remark. The above theorem extends the result [10, Theorem 3.1] mainly in
the following directions:

a) no monotonocity assumptions upon the functions g; are made;

b) the nonlinearities g; depend on many derivatives D’u, j € M.

5.3. In the same way it is possible to consider the boundary value problems whose
nonlinearities have a linear growth. If the assumptions of Theorem 5.1 hold with
6 =1 and if cjcs < 4d (for c; see (3.15), for d see (2.2) where 4, = 1 and B'is
defined in Section 3.2) then it is possible to generalize the result from [6] as is men-
tioned in Remark 5.2.

93



Noteadded in August 1977. Theorem 2.3 is proved under the assumption (2.5)
in A. C. Lazer: Some resonance problems for elliptic boundary value problems.
Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional
Analysis (editors: L. Cesari, R. Kannan, J. D. Schuur), M. Dekker Inc., New York
and Basel, 1976, pp. 269 —289. An analogous result is proved by using the minimax
procedure in P. H. Rabinowitz: Some minimax theorems and applications to non-
linear partial differential equations (to appear); for the variational proof of Theorem
2.3 see also S. Fudlk: Nonlinear equations with linear part at resonance-Variational
approach (to appear).
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