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Časopis pro pěstování matematiky, roč. 102 (1977), Praha 

CATERPILLARS 

BOHDAN ZELINKA, Liberec 

(Received February 2, 1976) 

A caterpillar is a tree C with the property that after deleting all terminal edges 
and all terminal vertices of C a snake (a tree consisting of one simple path) or the 
null-graph (a graph without vertices and without edges) is obtained. This concept 
was introduced by F. HARARY and A. J. SCHWENK in [1]. 

Evidently caterpillars together with the one-vertex graph form a class of trees 
which is closed under taking subtrees and under connected homomorphisms. Every 
star and every snake is a caterpillar. 

If C is a caterpillar, then we denote by B(C) the graph obtained from C by deleting 
all terminal vertices and all terminal edges. If B(C) is the null-graph, then C is a tree 
with two vertices; this case is trivial. In the other cases B(C) is a snake; we shall call 
it the body of C. 

The vertices of B(C) will be denoted by v0, vl9 ..., vd9 where d is the length of B(C) 
and the vertices vi9 vi+1 for i = 0, 1, ..., d — 1 are adjacent. If tt is the number of 
terminal edges of C incident with vt for i = 0, 1, ..., d, then C is uniquely determined 
by the vector [t09 tl9..., td\ Note that t0 and td must be different from zero; other­
wise v0 or vd would be a terminal vertex of C and this would contradict the fact that v0 

and vd belong to B(C). Nevertheless, ti for 1 ^ i g d - 1 may be equal to zero. 
Evidently each (d + l)-dimensional vector whose co-ordinates are non-negative 
integers and the first and the last of them are different from zero determines uniquely 
a caterpillar in which tt have the described meaning. In general, two vectors may 
correspond to every caterpillar with at least three vertices; this depends on the choice 
of v0 (for v0 we choose one of the two terminal vertices of the body of C). The vector 
of a caterpillar does not depend on the choice of v09 if and only if there exists an 
automorphism of C whose restriction onto the body of C is not an identity mapping. 
If we want to assign a unique vector to every caterpillar, we may take that one which 
precedes the other in the lexicographical ordering of the set of all (d + l)-dimensional 
vectors. However, in the sequel, when we speak about the vector of a caterpillar, 
we mean anyone of the two vectors which are assigned to that caterpillar. A caterpillar 
with at least three vertices is a snake, if and only if its vector [f0, ti9..-, -J has the 
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property that t0 = td = 1, tt = 0 for i = 1,..., d — 1. A caterpillar is a star, if and 
only if its vector is one-dimensional. 

There exist various ways how to determine a tree. We shall mention some of them 
and show characterizations of caterpillars in terms of them. 

L. NEBESKY [3] has defined tree algebras. A tree algebra (M, P) is an algebra with 
an element set M and with a ternary operation P which satisfies the following axioms; 

I. P(u, u, v) = u; 
II. P(u, v, w) = P(v, u, w) = P(w, w, v); 

III. P(P(u, v, w), v, x) = P(w, v, P(w, v, x)); 
IV. P(u, v, x) 4= P(v, w, x) 4= P(w, w, x) => P(u, v, x) = P(u, w, x). 

Every* finite tree T determines uniquely a tree algebra (M, P), whose element set 
is the vertex set of T and in which P(u, v, w) is the common vertex of the path con­
necting u and v, the path connecting u and w and the the path connecting v and w 
in T. Conversely, every finite tree algebra determines uniquely a tree. Thus there is 
a one-to-one correspondence between finite trees and finite tree algebras. This was 
proved by L. Nebesky. 

Theorem 1. Let The a finite tree with at least three vertices, let (M, P) be the tree 
algebra corresponding to T The tree Tis a caterpillar, if and only if for any nine 
elements xl9 x2, x3, yx, y2, y3, zl9 z2, Z3, where xt 4= x2 4= x3 4= xl9 y1 4= y2 4= 
* y3 * yi, zi * z2 * ^3 * *i> 'fo vertex P(P(x!, x2, x3)9 P(yl9 y29 y3)9 P(zl9 z2> 

z3)) coincides with some of the vertices P(xl9 x2, x3), P(yl9 y2, y3), P(zl9 zl9 Z3). 

Proof. Let T be a caterpillar. As xY 4= x2 4= x3 4= xl9 P(xl9 x29 x3) cannot be 
a terminal vertex of T, because a terminal vertex of Tcan be contained only in such 
a path whose terminal vertex it is. Thus P(xl9 x2, x3) and analogously also P(yl9 y2> 
y3) and P(zx, z2, z3) belong to the body of T The body of Tis a snake, therefore for 
any three of its vertices there exists one of them which lies between the other two. This 
implies that at least one of the vertices P(xl9 x2, x3), P(yx, y2, y3), P(zl9 Z2, Z3) lies 
on the path connecting the other two and thus it is equal to P(P(xl9 x2, x3), P(yi, y2> 
y3), P(zl9 z2, z3)). If T is not a caterpillar, then it contains a subtree isomorphic 
to the tree in Fig. 1; this was mentioned in [1]. If xl9 x2, x3, yl9 y2, y3, zl9 Z2, Z3 are 
such as is denoted in Fig. 1, then P(xl9 x2, x3) = x2, P(yl9 y2, y3) = y2, P(zu z2> 
z3) = z2, but P(x2, y2, z2) = x3, which is different from x2, y2, z2. 

Another way of determining trees was described by E. A. SMOLENSKII [4]. If 
ul9..., un are terminal vertices of a tree Tand dtj is the distance between ut nad uf 

in T for 1 S i S n, 1 S j ^ n, then the matrix. ||dl7|| is called the distance matrix 
of T. The tree T is uniquely (up to an isomorphism) determined by its distance 
matrix. In the following theorem the letter u with subscripts has this meaning and 
the letter 1; with subscripts has the meaning as in the definition of the vector of 
a caterpillar. 

180 



Theorem 2. Let The a tree with n terminal vertices, let D = \\du\\ be its distance 
matrix. The tree T is a caterpillar, if and only if any three pairwise distinct 
numbers i,j, k from the numbers 1, ..., n satisfy 

(1) min (du + djk - dik, du + dik - djk, dik + djk - du) = 2 . 

Proof. Let Tbe a caterpillar with the vector [f0, tl9..., fd]. Let vJ(i), Vf(j), vj(k) be 
the vertices of the body of T which are adjacent to ut, uj9 uk respectively. Without 
loss of generality let l(i) = l(j) = l(k). Then 

du = 2 + l(j) - l(i), djk = 2 + l(k) - /(;) , difc = 2 + /(k) - /(/) 

and therefore 

«̂j + djk - dtk = 2 , 

<!;; + dik -dJk=2 + 2 l(j) - 2 l(i) = 2 , 

<!* + djk - dy =- 2 + 2 /(fe) - 2 /(;) = 2 . 

Thus the equality (1) holds. Now suppose that (1) holds and prove that Tis a cater­
pillar. Let again uh uj9 uk be three pairwise distinct terminal vertices of T. Let v = 
= P(uh Up uk); this symbol is taken from the tree algebra defined above. Evidently 

du = d(uh v) + d(up v) , djk = d(up v) + d(uk, v) , dik = d(uh v) + d(uk, v) , 

where d(x, y) denotes the distance of vertices x and y in T. Then 

dij + djk - dik = 2d(up v) , du + dik - djk = 2d(uh v), 

dik'+ ^k - du =2d(uk,v). 

Fig. 1. 
*г. 

If (1) is fulfilled, then at least one of the vertices uh Up uk has the distance 1 from 

v = P(u., W j , W/c). But this excludes the existence of a tree isomorphic to that in Fig. 1 

and Tmust be a caterpillar. 

Now we shall study some problems of embedding. 
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L. Nebesky has defined a completely separable tree as a tree which can be embedded 
into every block graph which has exactly two blocks and the same number of vertices 
as this tree. (A block graph is a graph, each of whose blocks is a clique. The problems 
of embedding trees into block graphs were studied in [5]. Here we shall define 
a stronger concept of a completely separable rooted tree. 

A rooted graph is a graph in which one vertex is chosen and called the root of this 
graph. If this graph is a tree, it is called a rooted tree. A rooted tree is called complete­
ly separable, if it can be embedded into every rooted block graph which has exactly 
two blocks and the same number of vertices as this tree and its root is not a cut-
vertex in it, in such a way the root of the tree and the root of the block graph 
coincide. 

Theorem 3. A rooted tree is completely separable, if and only if it is a caterpillar 
whose root is a terminal vertex adjacent to a terminal vertex of its body. 

Proof. Let C be a rooted caterpillar whose root is a terminal vertex adjacent to 
a terminal vertex of its body. Let the vector of C be [t0, tl9..., td~\, let the root of C 
be a vertex r adjacent to v0. Let the number of vertices of C be n; then d + 1 + 

d j 

+ X U = n- For; = 0, 1, ..., d let ns = j + 1 + £ U- Let G be a block graph having 
*=o »=o 

exactly two blocks, one with k vertices, the other with n — k +1 vertices, where k 
is a positive integer, 2 ^ k ^ n — 1. Let Bt be the block of G with k vertices and B2 

the block of G with n — k + 1 vertices. Let a be a cut-vertex of G. Let the root r0 

of G be in Bx. If k — 1 ^ n0, then we identify the vertex v0 of C with the vertex a 
of G, choose k — 1 vertices from the n0 vertices of C adjacent with v0, one of them 
being r, and identify them with the vertices of Bt so that r is identified with r0. 
The remaining vertices will be identified with vertices of B2. The embedding is com­
plete. If k — 1 > n0, then there exists j such that nj < k — 1 ^ nJ+l. Then we 
identify vj+1 with a. From the tj+1 terminal vertices adjacent to vj+1 we choose 
k — 1 — Hj ones. These vertices, the vertices v0,...9Vj and all terminal vertices 
adjacent to some of the vertices v0,..., Vj will be identified with the vertices of Bl9 

r being identified with r0, and the remaining vertices will be identified with the vertices 
of B2. 

Now we shall prove that no other rooted tree is completely separable. A root of 
a completely separable rooted tree must be its terminal vertex. If we have a block 
graph with n vertices and two blocks, one of which has only two vertices and the root 
of this block graph is the vertex of the two-vertex block whicri is not a cut-vertex, 
then this root has the degree one. If we embed a tree with n vertices into this block 
graph, only a terminal vertex of this tree can be identified with this root. Let us have 
a rooted tree T which is not a caterpillar and suppose that it is completely separable. 
Then T contains a vertex w such that there exist at least three branches Al9 Al9 A3 

outgoing from w, each of which contains at least three vertices including w. The 
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vertex w is not a root of T, because it is not terminal. Thus the root r of T belongs 
to a branch A0 outgoing from w. The branch A0 may coincide with some of the 
branches Al9 A29 A2; without loss of generality suppose A0 4= Al9 A0 + A2. Let A0 

have k vertices. Take a rooted block graph G with n vertices and two blocks, one of 
which has k + 1 vertices, contains the root r0 of G and is denoted by Bv No vertex 
of A0 can be identified with the cut-vertex a of G; otherwise some vertices of Bx 

would be identified with no vertex of T. Thus the whole A0 is embedded into B1 

and a must be identified with a vertex a0 of Tadjacent to w and not belonging to A0. 
Without loss of generality suppose that a0 does not belong to A2. Then A2 must be 
embedded into the same block of G as B0, but this is not possible, because this block 
has only k + 1 vertices and they are identified with the vertices of A0 and with the 
vertex a0. This is a contradiction with the assumption that Tis completely separable. 
Now let C be a caterpillar with n vertices with the vector [f0, tl9 ..., td] and let its 
root be a terminal vertex adjacent to some vj9 where j -# 0, j =# d. Suppose that C 
is completely separable. Take a rooted block graph G with n vertices and two blocks, 
one of which has three vertices and contains the root of G. Then either Vj-.l9 or vj + 1 

must be identified with the cut-vertex of G. Now by a similar argument as in the 
preceding case we obtain a contradiction. 

Now we shall consider embedding caterpillars into the graphs of n-dimensional 
cubes (or shortly n-cubes). A graph of the n-cube, where n is a positive integer, is the 
graph whose vertices are all n-dimensional vectors whose co-ordinates are zeros and 
ones and in which two vertices are joined by an edge if and only if they differ from 
each other in exactly one co-ordinate. Embedding trees into n-cubes was studied by 
I. HAVEL and P. LIEBL [2]. Every finite tree is embeddable into an n-cube for some n. 
If T is a finite tree, then the minimal n such that T is embeddable into the n-cube 
will be called the dimension of Tand denoted by dim T. 

Theorem 4. Let Tbe a tree with k ^ 2 vertices. Then 

]log2 k[ = dim T = k - 1 . 

These bounds cannot be improved. 

Remark. The symbol ]x[ denotes the least integer which is greater than or equal 
to x; some authors call it "the post-office function". 

Proof. If / is a positive integer and I < ]log2 k\_9 then / < log2 k. The number 
of vertices of the /-cube is 2l < k and thus a graph with k vertices cannot be embedded 
into it. Therefore ]log2 k[ ^ dim T. The upper bound will be proved by induction. 
If k = 2, then Tis isomorphic to the one-dimensional cube and dim T = 1; thus the 
assertion is true. Now let k > 2. Let u be a terminal vertex of T, let e be the edge 
incident with u9 let v be the other end vertex of e. By deleting u and e from T we 
obtain a tree V with k — 1 vertices. Let m = dim T'. According to the induction 
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assumption, m 51 fc — 2. Consider a graph Qk-X of the (fc — l)-dimensional cube. 
Its vertices are (fc — l)-dimensional vectors whose co-ordinates are zeros and ones. 
Let Qk-2 be the subgraph of Qk-X induced by the set of all vertices of Qk-1 whose 
last co-ordinate is 0; this graph Qk-2 is a graph of the (fc — 2)-dimensionaVcube. 
We embed T into Qk-2. Let [al9..., ak-2, 0] be the vertex of Qk-2 with which v 
is identified in this embedding (the co-ordinates al9...,ak-2 are zeros or ones). 
Then we identify u with [al9..., a*-2, 1] and Tis embedded into Qk-t. Therefore 
dim TS dim T" + 1 —: fc — 1. The bounds cannot be improved, because a snake 
with fc vertices can be embedded into the cube of the dimension ]log2 fc[ (as a part 
of its Hamiltonian path) and a star with fc vertices cannot be embedded into the cube 
of the dimension smaller than fc — 1 (in such a cube there exists no vertex of the 
degree at least fc — 1). 

Theorem 5. Let fc, m be positive integers such that fc ̂  2 and 

]log2 fc[ = m = fc - 1 . 

Then there exists a caterpillar C with k vertices such that dim C = m. 

Proof. For any positive integer h such that 2 _ h ^ fc — 2 let C(fc) be a cater­
pillar with the vector [t09 tl9..., f j , where d = fc - fc - 1, f0 = fc — 1, ^ = 1 
and ff = 0 for f = 1,..., d — 1. The caterpillar C(2) is a snake with fc vertices and 
dim C(2) = ]log2 fc[. The caterpillar C(fc — 2) can be emebedded into the (fc — 2)-
dimensional cube so that v0 is identified with [0,..., 0], vx with [1,0,..., 0], the 
terminal vertices adjacent to v0 are identified with [0, 1, 0,..., 0], [0, 0, 1, 0,..., 0 ] , . . . 
..., [0,..., 0, 1], the terminal vertex adjacent to v1 is identified with [1, 1, 0,..., 0]. 
But C(fc — 2) cannot be embedded into the (fc — 3)-dimensional cube, because it 
contains the vertex v0 of the degree fc — 2. Therefore dim C(fc — 2) = fc — 2. Now 
let us take the caterpillars C(fc) and C(fc -f 1) for some fc, 2 5̂  fc ̂  fc — 3. The 
caterpillar C(fc + 1) is obtained from C(fc) by deleting one terminal vertex and adding 
another. In the proof of Theorem 4 we have proved that by adding one terminal 
vertex the dimension of a tree increases at most by one; by deleting a vertex obviously 
it cannot increase. Thus dim C(fc + 1) =" 1 + dim C(fc). This implies that dim C(fc) 
for 2 S h ^ fc — 2 attains all integral values in the interval <]log2 k[, k — 2>. 
There exists a caterpillar C with fc vertices and dim C = fc — 1, namely a star. 
Thus the assertion is proved. 

In the end we propose two problems. 

Problem 1. A universal caterpillar for caterpillars with n vertices is a caterpillar 
into which each caterpillar with n vertices can .be embedded. Determine the least 
number of vertices of a universal caterpillar for caterpillars with n vertices. 

Problem 2. Characterize graphs whose spanning tree is a caterpillar. (This is a gener­
alization of graphs with Hamiltonian paths.) 
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