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Casopis pro pé&stovani matematiky, ro&. 102 (1977), Praha

ON INVERSION OF LAPLACE TRANSFORM (I)
MIROSLAV SovA, Praha
(Received January 21, 1976)
The aim of this note is to show how a complex inversion theorem may be deduced

from the general Post-Widder inversion theorem.

1. We denote by R and C respectively the real and complex number fields and
by R* the set of all positive numbers. Further, if M,, M, are two arbitrary sets,
then M; — M, will denote the set of all mappings of the set M, into the set M,.

2. Lemma. For every o = 0 and r e {1, 2, } such that r > o, we have

r " (r/r—a)a ax_a2/(r—a)
e = e'e .
r—ao

Proof. Under our assumptions we have

log )=10g—1— = —rlog(l1—-= =rzlgk§
r—a 1-¢ r k=1 k\r
r
) k 2
érz<g)=rg 1 =q r = + x
k=1 \r ry_¢ r—o r—ao

and our result follows.

3. Lemma. For every ze C, (1 + z[q)? - e*(q » ).
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Proof. According to the binomial theorem, we can write

(1) (1+f)“=i(‘1)z—"=1+z+iq<q-1>---<q—k+1)a':=

q) «=o\k/q" K=2 k! q

x

q _ _ k
=1+zq’hzq(q 1)...£q k+1)z" _
k=2 q k!

q _ k
=1+z+) (1—1)(1—3)...(1—"——1)2—
k=2 q q q k!

for every ge{2,3,...}.
Let now z € C and ¢ > 0. Then there exists a k, € {2, 3,.. } such that

®) 5

€
k=ko+1 k! 3

It follows from (2) that
€))

Further by (1) and (2),
0 [ LB 00D (2

q _ k k
Y PR W SRS A 1 If"_l_é
k=ko+1 q q k!

€
Tk=ko+1 k! 3

for every q = ko + 1.
Finally it is easy to see that there exists a g, € {ko + 1, ko + 2, ...} such that

) é”:og_[l+z+:;°2<1_;11_)(1_2),__<1_k_q:l)£_!]

for every q = q,.
Now we have immediately from (3), (4) and (5)

q
e‘—(l—-£>
q

for every g = g, and this gives the assertion.
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4. Theorem (Post-Widder). Let fe R* — E and let M, be two nonnegative
constants. If
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() the function f is measurable over R¥,
(B) |f(t)| < Me** for almost all t e R*, then

-

(a) J‘ e~ PHVIDP £(7) dt exists for every te R and p + 1 > wt,
0
(b) _1_ p + 1 pt1 —(p+1)/t,tpf(,r) dr < Mewt w?t?2/(p+1—-owt)
p! t o

for everyte R* and p + 1 > wt,

(c) 1 (p b 1>p+1 j‘we“((”“)/"‘r’f(‘c) dt > f(t) (p—> o, p+1> 0t
0

p! t
for almost all te R™.

5. Lemma. Let « be a nonnegative constant and Je{z:Rez 2 a} - C. If

(o) J is continuous on {z : Re z = a},

(B) J is analytic on {z : Re z > a}, .

(1) JA) >0 (A= a 4> ),

(8) there exist a constant K and a number k€ {0, 1, ...} so that for every Re z =
= o, we have |J(z)| <K(1+ | |)"

(¢) Jw H(_a_+|_;/|3_[dﬁ < 0,

then for every A > o and pe {0, 1, }

® J(o + i
L 0y = (- 2 (Cha) T
dar i) oo —a— i)

Proof. Let us first fixa 4 > a.

Moreover, we choose fixed numbers K, k so that the assumption (3) holds.
By virtue of Cauchy’s integral theorem, we obtain from («), (B) that

2z

(1) =2 I0() = !
p!

N
f_N(a + if — AT

N

1

+ J(@ + 2N + if)dp —

j‘_N(a‘+2N+iB—l)"“( F)ap
2N 1

— i J(a +n+ iN)dg +
o(a+n+iN—/l)”“( ! )

J(x + ip)dp +

2N 1 ’
+ i J(e +n — iN)dn
L (oc+r1—iN—/1)”+1 ( 1 )

for every pe{0,1,...} and N > }1.
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Using (3), we obtain

&)

N
1 .
.( (a+2N+iﬂ_A)n+1J(“+2N+‘ﬁ)dﬁ <

) 4[- (A —a+ 2N§2 + )+ [T + ((« + 2N)* + p*)'2]*dp =

B ij(l - i 2N)PH! [1 + ((« + 2N)* + N?)1/2] =

2N
N (l —a + 2N)P+1 [1 + ((Ot + 2N)2 + N2)1/2]k’

2N
1
J(oe + n + iN)dn| £
J‘o (d+n+iN_l)P+1( n )'7_

2N 1
<
- J'o (A +n — a)? + N2)e+D2

[1+ (2% + N?)"2JFdn <

2N 1 5
= JA NP+l [1+ (& + N2 ]t < N? [1 + (& + N?)2]¥,
(1]

2N 1 5
J@ + 7 —iN)dp £ =1 + («® + N?)/2]*
.[0 (¢ + 7+ iN —2p*! ( 1 ) dn N"[ ( )]

for every pe{0,1,...} and N > }A.
Letting N — co, we see from (2) that

N
1
3 — J(e + 2N + if)df = §ou O,
() j-n(a+2N+iﬁ_,1)p+1( ﬁ)ﬁ N
2N 1
J& + 1 + iN)dn »y.0,
.[o ( + 1 + IN — A+t (@ +n + iN)dn -y
2N 1
J( 4+ 7 — iN)dy 5 yoe O
L (“+n—iN—1)v+1( n Ydn -y

forevery pe{k + 1,k +2,...}.
Now we conclude from (1) and (3) by means of (&) that

o~ PL[7 _ Je+if)
0 0w = -2 " et

forevery A >« and pe{k + 1,k +2,...}.

169



On the other hand, let us define, on the basis of ()

Jo(4) = — 517-[ wa% dp for every A> «a,
It is easy to verify that
(6) the function J,, is infinitely differentiable on («, o),
forevery A > a and pe{0,1,...},

(®) . Jo(A) >0 (A>a, - ).
By (4)-(7),
©) JET(2) =I5 D(2)

for every A > o. Consequently, by (9)
(10) J — J, is a polynomial .
Taking (v) and (8) into account, we see that
(11) JA) = Jo(A) >0 (A>a, A—> ).
Hence (10) and (11) imply J = J, and the conclusion of Lemma 5 follows im-
mediately from (7).

6. Theorem. Let fe R* —» C and o > 0. If

() the function f is measurable,

(B) there exist two nonnegative constants M, ® so that © < a and |f(f)] £ Me**
for almost all te R*,

) _[:

then

J e BT f(r) di{df < w0,

0

f(0) = :2}1_1‘[? e@tiby (jwe‘(“+i”)‘f(t) d‘t) dg.

0
for almost all te R*.

Proof. Let us first fix the constants M, w so that the assumption (B) holds.
Further let us define a function F € (w, ) — C by

) F(2) = 'f:e-h fW)de for A>w.
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By Theorem 4 we have
—1)r 1\7+! 1
o EXEEN TR ()0 o> w

for almost all te R*.
On the other hand, let J be the function defined by

3) JG) = j ¥ o5 ple) de

0
for every Rez = a.
It is easy to deduce from our assumptions that

(4) the function J has the properties 5 (o)—(e).

Hence by (4), we obtain from Lemma 5 that

o) sy = iy 2" O a

for every A > o and pe{0,1,...}.
Now it follows from (1), (3) and (5) that

(6) (p + 1)v+1
(=1 (1’ +,1>pHF(p><P + 1-) 1 Jw ! Ja + i -
t 21 ) _ o <p+1—oz—iﬁ)p+l (“+lﬂ)d,3_
t

1 (* 1 .
T o —w(l (et iﬂ)t)pﬂ J(o + if) dp

p+1

for every teR* and p + 1 > at.
By Lemma 2 we see that

! 1 { _ I

R (= (= R

i p+1
1 < pat at/(p+1—at)

|
— =< e
(1-— ot pti1
p+1

forevery te R* and p + 1 > at.

IIA
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By Lemma 3,

1 a+i
® g (ax + ip)t p+1__,e(+ﬁ)t (p—> o0, p+1>af.
1 =T’
( p+1)

Now we get from (6)—(8)

o CEE () L[ s gy

p! t t 27

(p—> o0, p+1>a)
for every te R*.

We see from (2) and (9) that the assertion of our theorem is fulfilled and this
completes the proof.

Note. In the continuation of this paper, we shall study different complex inversion formulas

for the Laplace transform as relatively simple consequences of Theorem 6 from a new unified
point of view.
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