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Časopis pro pěstování matematiky, roč. 102 (1977), Praha 

PERIODIC SOLUTIONS OF A WEAKLY NONLINEAR 
WAVE EQUATION 

MILAN STEDR*, Praha 
(Received July 14, 1975) 

INTRODUCTION 

In this paper the existence of a solution to the equations 

(0.1) utt(t,x)-uxx(t,x)=eFe(u)(t,x), teR+, xeR, 

(0.2) u(t, x) = u(t, x + 2n) = -u(t, - x ) , teR+, xeR, 

(0.3) u(t + 2n + eX, x) = u(t, x) , teR+ , xeR 

is investigated for every 8 6 [—e0, e 0 ] . The number e0 > 0 is supposed to be suf­
ficiently small and the number X > 0 is supposed to be fixed. The operator Fe has 
the form 
(0.4) Fe(u) (t, x) = fe(t, x, u(t, x), ut(t, x), ux(t, x)) . 

The function fe is assumed to satisfy the next two conditions: 

(0.5) ft(t, x, y0, yi9 y2) = /,(*, x + 2n, y0, yl9 y2) = 

«= "L{t, -x, -y09 -yl9 y2) = fe(t + 2n + eX, x, y0, yl9 y2) 

for every (t, x, y0, yu y2) eR+ x i ? 4 and e e [~e 0, e 0 ] . 
(0.6) If the derivative 

D = DlD^D^l 

Satisfies a + j80"+ Pi + j82 S 2> a ^ 1, then the function Dfe is continuous on 
R+ x _R4 for every fie[-80, e 0 ] , 

lim sup {|l>/,(ř, x, y0, ylf y2) - Df0(t, x, y0, yu y2)\; 
e->0 

t e [0, 2n + 1], x e R, \y0\, |y.|, \y2\ š ř } = 0 
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for every Q > 0 and 

lim sup {\DfE(t, x, y0, yx, y2) - Dfe(t, x, y0, yu y2)\ ; 

t e [0, 2n + 1], x e R, \y( - yt\ = r, i = 0, 1, 2, e e [ - e 0 , e0]} = 0 

for every (y0, yl9 y2)e R3. 

The first section of this paper contains two assertions on the existence of periodic 
solutions of the problem described (Theorems 1.1 and 1.2) which are deduced under 
some additional assumptions on Fe. This part is modelled by [ l ] . 

In the second section it is shown that a solution to (0.1)—(0.3) with Fe given by 

(0.7) FE(u) (t, x) = g(u, ut, ux) + hE(t, x) 

exists for every e with |e| sufficiently small provided 

(0.8) the second derivatives of g are continuous on R3, 

(0.9) g(y0, yl9 y2) = - g ( - y 0 , -yl9 y2) for (y0, yu y2) e R3 , 

(0.10) gyi(y0, yl9 y2) = yt, \gyo(y0, yi, y2)| = y0 , 

\gy2{yo, yi, yi)| -S li for (y0, yl9 y2) e R3 , 

(0.11) ' yx -y2-2y0 > 0 , 

(0.12) hE = hE(t, x) : R+ x R ~> R and (he)x are continuous for every e e [—e0, e0], 

hE(t, x) = hE(t, x + 2n) = -hE(t, - x ) = hE(t + 2n + eA, x) for (t,x)eR* x R 

and 

lim sup {\DX hE(t, x) - Dx h0(t, x)|; te [0, 2n + 1], x e R] = 0 . 
«->o 

These assumptions, from which (0.11) describes "some sort of monotonicity of Fe", 
are similar to those in [3] where 27r-periodic solutions were investigated. Eventually, 
Section 2 contains a brief discussion of the existence of a (2n + eA)-periodic solu­
tion to 

(0.13) utt - uxx = e(3u2ut + he(t, x)) 

for every e from a neighbourhood of 0 provided (0.12) is satisfied and 

r2n 
h0(9, x — 3) dS 4= 0 for some x e JR. 1 f o 

Section 3 contains some auxiliary assertions. 
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The problem analogous to (OA)—(0.3) was investigated by J. P. FINK and W. S. 
HALL in [1]. These authors developed a general theory for a system of first order 
equations and â  a by-product they obtained the existence of periodic solutions for 
one special type of the wave equation (cf. (0.13)). In their paper the difficulties con­
nected with the existence of periodic solutions whose periods depend on a parameter 
were also thoroughly discussed and therefore everybody who wants to be informed 
in detail is referred to [1]. 

The author is grateful to O. VEJVODA who attracted his attention to paper [1]. 

1. GENERAL THEOREMS 

Let Hk be the space of all real valued 27c-periodic functions s which have generalized 
derivatives up to order k and satisfy 

s(£)d{=0 and (s(k)(Z))2 d£ < + oo . 
Jo Jo 

The space Hk endowed with the inner product 

(r,S)*--f2V»({)S<«(«)d€ 

is a real Hilbert space. The norm in the space Hk will be denoted by | • \k. Putting 

3t?k = {se Hk; s(x) = - s ( - x ) for all xeR} 

and endowing Jf k with the norm | • \k, we set 

U^ = C2([0, oo); Jtr0) n C'([0, oo); JTj) n C°([0, oo); Jf2) 
and 

UT = C2([0, T]; 3fe0)„n CH[0, T]; Jf-.) n C°([0, T]; jf2) 

for 0 < T < oo. The space UT equipped with the norm 
2 

HM||UT = I ! IM|ca-'<[0,T];jri) 
i = 0 

is a Banach space. For the sake of simplicity we fix T = 2n + 1 and introduce an 
operator Z : H2 -* U^ by 

Z s(t, x) = s(t + x) - s(t - x), teR+ , x e R . 

The space of all linear continuous mappings from X into Ywill be denoted by [X,Y]. 
For A € [X, F] we put 

\\A\\iXJ1~sup{\\Ax\\Y;xeX9 ||x|| ^ 1} . 
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Using Lemmas 3.1 and 3.2, we verify that a function u e U^ satisfying (OA) —(0.3) 
for s + 0 exists if and only if there is a pair of functions (w, s)eUT x H2 such that 

(1.1) £GI(M, S) (t, x) = -u(r , x) + Z s(t, x) + 

+ 
2 

Г T ' F » ( 9 , £ ) d £ d 9 = 0 , íє[0,Г] , x є R , 
Jo J x-t + & 

(1.2) £G2(w, s) (x) = - (s'(x) - s'(x - eA)) + 
£ 

< /•2n+£A 

+ - Fe(u) (3, x - S) dS =- 0 , x e K . 
2 Jo 

Sufficient conditions under which a solution of (1.1) and (1.2) exists are described 
in the following two theorems. 

Theorem 1.1. Let X > 0 and let a function fE satisfy (0.5) and (0.6). Let the fol­
lowing assumptions be satisfied: 

(i) There exists s0 e H3 swch t/ia^ Ms0 = 0 where 

(1.3) Ms(x) = /ls"(x) + - F0(Zs) (9, x - 3) d.3 = 0 , x e JR . 
2 Jo 

(ii) There exists a constant m and a family of operators Y£e [H l 9 H2] such fhaf 

(1.4) V*r=IHi for e e [ - £ 0 , £ 0 ] , £ + 0 , 

(1.5) l|y*||[JEfi,Ha] = ™ ^ £ e [ - £ 0 , £ 0 ] , £ + 0 

where 

1 r2n 

(1.6) V£<r(x) = lei"1 (*'(*) - a\x - |e| A)) + - F0(Zs0) Z<J(9, x - 3) d9 , xsR. 
2Jo 

Then fhere exists EX e (0, £0] such that for every £, 0 < |fi| :_ &x there is u e U^ 
satisfying (0.1) —(0.3). Moreover, denoting this u by ws, we have 

l i m | | u £ - ZS0\\UT = 0 . 
£->0 

Theorem 1.2. Lei* the assumptions of Theorem 1.1 be satisfied. Let us suppose that 

YBV*=IH2 for £ 6 [ - £ 0 , £ 0 ] , £ + 0 . 

Then there exist two numbers r > 0 and e2 e (0, £0] such that for every e, 0 < 
< |fi| ^ £2 inhere is a unique u e U^ satisfying (0.1) —(0.3) and \\u — Zs0||i/T ^ r. 
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Moreover, denoting this u by ue
9 we have 

lim \\ue - ZS0\\UT = 0 . 
£- •0 

Proof of Theorem 1.1. Let us put X = UT x H2, Y = UT x Ht and eG(u9 s) = 
=- (eGx(u9 s), £G2(w, s)) where eGx and eG2 are given by (1.1) and (1.2) respectively. 
Assuming e € (0, e0] , we shall prove that the mapping eG satisfies the assumptions 
of Lemma 3.3. Routine but lengthy calculations show that the mapping eG : X -+ Y 
is continuous for every fixed e e (0, e0]. The derivative eG' of eG with respect to (u, s) 
is given by 

eG\u9 s) = (eG[(u9 s), eG'2(u9 s)) 

where 

(£G;(м, s) (v, a)) (ř, x) =- -v(t, x) + Z a(t, x) + 
•t rx+t-» 

2 

(eG'2(u, s) (v, <-)) (x) = E-Қa'(x) - a'(x - EX)) + 

+ -[ ľ FЏ)iЏЛ)åU^, tє[0,Г], x є Я , 
J 0 J x - í + S 

»2я + fiЯ 

+ ^ ' 
< /»2я + fiЯ 

E;(м) ÌЏ, x - ð) dð, xeR 
2jo 

for (v9 a) e K. These relations imply that eG'(u9 s) e [X, 7 ] for every (w, s) e X and 
s e (0, g0]. Denoting u0 = Zs09 we obtain 

lim sup {||£G'(u, s) - £G'(w0, s0)\\iXtY1; 8 6 (0, c0], ||(w, s) - (w0, s0)||jr = e} = 0 . 

The assumption (i) yields 
lim||8G(u0,s0)||y = 0 . 

6-+0 + 

We shall now define a pair of operators by 

(Ax(v9 a)) (t9 x) = - v(t9 x) + Z a(t9 x) , t e [0, T] , x e R , 

1 f2re 

(M2(t>, a)) (x) = 8_1((T'(X) - a'(x - eX)) + - F'0(u0) v(S9 x - ») d$ , xeR. 

2 Jo 
Putting eA = (At, M2), we easily verify 
(1.7) l im||£G'(u0 ,s0)-6A | | [ X ,y ] = 0 . 

£ - • 0 + 

We shall show that there exists a constant mt and a family of operators Be e [Y, X\, 
0 < s < e0 satisfying 

(1.8) eABe = IY , 

(1-9) Mirjn £ mi 
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for every s e (0, £0]- For the sake of simplicity we put 

P v(x) = - J F0'(M0) v(9, x - 9) d9 . 
2 Jo 

Then we set 

B2(w, rj) = Y\ri + Pw) , B\(w, rj) = -w + Z B2(w, fy) 

for (w, fy) e Y. The assumptions (1.4) and (1.5) show that the operator Be = (B\, B2) 
satisfies (1.8) and (1.9). In virtue of (1.7) we can apply Lemma 3.5 to the operator 
€G'(M0> S0). Hence there are m > 0, e e (0, e0] and a family of operators T\0 < e ^ e 
such that £G'(M0, s0) T

e = 7y and ||T8||[yfX] ^ m. Thus all the assumptions of Lemma 
3.3 are satisfied and therefore the theorem is proved for e positive. The case ee 
e [ — e0, 0) can be treated in the same way if Lemma 3.3 is applied to the pair of 
operators ( " ^ ( M , S), ~£G3(M, S)) where £G3(M, S) (X) = £G2(M, S) (X + eA). This com­
pletes the proof. 

Theorem 1.2 can be proved analogously to Theorem 1.1 if Lemma 3.4 is applied. 

2. APPLICATIONS 

We start by proving the following assertion: 

Theorem 2.1. Let two functions g and he satisfy (0.8)-(0.12). Then there exist 
€i e (0, 60], r > 0 and s0 e H3 with the following property: For every e, 0 < |e| :g et 

there is unique ueU^ satisfying \\u — ZSQI)^ ^ r and (0.1) — (0.3) with Ft given 
by (0.7). Moreover, denoting this u by M£, we have 

lim ||M8 - ZSQ\\UT - 0 . 
e->0 

Proof. The theorem will follow from Theorem 1.2 if we prove: 

(a) There is s0 e H3 which satisfies 

(2.1) s0(x) + (2A)"1 f nF0(Zs0) (9, x - 9) d9 = 0 , x <= R . 

(b) There is (V6)"1 e [Hx, H2] satisfying 

for every e e [-e0 ) e0], e # 0. 

133 



Here Ve is given by (1.6). Firstly, we shall show that (a) is valid. Let us denote by K 
the linear operator from [Hx, H2] given by 

Ks(x) = (2A)-1 I fs({) dc; + (27T)"1 f 2\ s(£) d{V x e K 

and by <P the continuous and bounded operator from Hx into itself given by 

^

2n 

F0(21ZKa)(9,x - 9) dS = 

= I g M <<£) d£, CT(X) - <j(-x + 29), <x(x) + a ( - x + 2S)) dd + 
Jo \ J - x + 2S / 

fi0(S, x - 9)d9, xeR. 

The operator K is a linear compact mapping from Hx into itself which satisfies 

(K5, s)x = (s, s')0 = 0 . 
Denoting 

9j(*> Z) =9yj(\ c{n) dif, <x(x) - o(f), CT(X) + <j({)) , j = 0, 1, 2 , 

fi0(S, x - S) dS 

we have 

go(*> f) *(*) + (gi(x, £) + g2(x, {)) CT'(X) di + fi(x) . 

Thus 
p27t /»2n 

+ ((**)', (x')o -» f * f V(*» | ) + g2(x, £)) (a'(x))2 + a0(*, «) <<x) *'(*) d£ dx 
Jo Jo 

+ £"*'(«) *'(«) ^ ^ 27r(7l - y2) jff'|2 - 2n y0\a\0 \a'\0 - |fi'|0 |cx'|0 . 

As jcrj0 S \a'\0, the preceding inequality yields 

(<f>cx, a)x > 0 

for all ere Hi, \a\x = it where R = 1 + (271(7! - y2 - yo))"1 |fi'|0- Hence there 
do not exist t e [0,1] and a e Hu \a\x = R such that 

o + tK$a = 0. 
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Really, if there were such t and a, then they should satisfy 

0 = (<J + tK&a, ^a)x = (a, 0a)t > 0. 

But this is a contradiction. Therefore the Leray-Schauder theorem implies that there 
is <J0 e Hu l^oli < R satisfying 

a0 + K<P<J0 = 0. 

Let us set s0 = 2 XKG0. Then s0 e H2 and s0 satisfies (2.1). In virtue of (0.8) and 
(0.12) we obtain s0e H3. Thus (a) is satisfied. 

Secondly, we shall show that (b) is satisfied. Putting 

§j(x> €) = 9yj(so(x) - s0(i)9 s0(x) - s0(£), s0(x) + s0(i)), 

j = 0, 1, 2 we can write 

Ve <J(X) = lei"1 (<J'(X) - o'(x - |e| X)) + 

+ \ f W > 0 M*) - *'(«)) + ^(x, «)(*'(*) + *'(«)) + 
2 Jo 

+ ^ { ) ( ^ ) - ^ ) ) d { . 

Let us denote by C?nthe space of infinitely differentiable 27i-periodic functions on R. 
Let rj e C2n n H0. Then 

r2it \ 

+ (v% -nm)o = H_1 (hlo - Í V(X>*•(* - H $dx) 

+ J f " f "(iff i(*. {) + 9i(x, «)) (if"(x))2 + t7o(*. Í) *'(*) >»'(*) d^ d * 
2 Jo Jo 

+^ r ((2'(§ux> o (».'(*) - *•(*))+M*.«) (fl'w+>.'(«))+ 
+ M * . i) OK*) + »K«)))d^) *"(*)d* • 

As |»j|o ž |»í'|o ^ Mo and 

f2V(xjf7"(x-|e|A)dxš)ií ' |S 

we have 

(2.20 ( ^ , - O o ^ <Vi - V2 - ?o) Mo - c.|tj'|0 |t?"|o ^ 

£ 2-1n(y1 - r2 - y0) |l"|o " c{(2n(yi - y2 - y0))_1 |ij'|o • 

135 



The constant cx does not depend on .7. Similarly, 

r2* r>ln 

'{V% t,% = U " f "y.(i,'(*) - *'(«)) *'(*) d* d£ + 
2Jo Jo 

+ i p f W * . « ) - v.) (*'(*) - *'(«)) *'(*)d* d£ + 

+ H * f W>«) (»»'(*)+'/to) v'wd* <*$+ 
2Jo Jo 

+ l~ f " f "t?o(x, £) OK*) " »#)) *'(*) d * ^ = II + h + I3 + I4 • 
2Jo Jo 

Interchanging the variables x and £ in I2 and using the relations gt(x, £) = <7i(<!;, x) 
and gt(x, £) = yt we can write 

2I2 = ; f * f W , i) ~ 7i) (•»'(*) - 1 W d* d£ = 0 . 

2 J o Jo 

Thus simple estimations of J3 and I4 yield 

(2.22) (V%ti')0^ny\ri'\l 
where y = y1 — y2 — 2y0. Let yl be an operator defined by 

Arj = -.7'" + C2IJ' , c2 = C2(2TI2 7(7! - y0 - Vi))"1 -

By (2.2) A satisfies 

(2.3) (V%Ari)0^y3\f1f0=y3\rj\2
2 

with y3 = 2"1 71(7! - Vi ~ 7o)- Let 

(VO* <K*) = H-1 (-i)^'W - *'(* + H *)) -

" 2 J 0
2 ^ l ( X ' €) (*W " ̂ )))jC ̂  " 2 C ( * a ( X ' ® (9W " ̂ )})* ̂  + 

ŕ*2л 

+ ^ ; f *0o(x,Č)(<K*)-<Kč))dŠ. 
2 Jo 

Then 

(2.4) ( ^ . ^ - ( ^ ( V ) * ^ 
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for every .»/, cp e C^ n H0. Using the negative norms (cf. [4], p. 165 — 167), we com­
plete the proof. The negative norm |*|_jfc, k positive integer is defined by 

H-k = sup {|(v, w)0| \w\^1; 0 * weHJ . 

The completion of H0 with respect to the norm |*|_k will be denoted by H_fc. Ap­
plying Fourier series, we easily show that for every cp e C2% n H0 there exists a unique 
r\ e C". n H0 such that /ty = 9 . By (2.3) and (2.4), 

M2 K^)* *|- 2 = (-7, (*")* v)o = ( ^ Ho = 73M2 • 
Hence 

(2.5) \(v°)*<p\-2^y3\n\2-

By definition, 

|^ | - ! = sup {\(q>, w)0| Iwli"1; 0 * w e H J = 

= sup {|(-if + c2rj\ w)0| \w\:x; 0 * w e H J = (1 + c2) |iy|2 . 

This inequality together with (2.5) yields 

(2.6) j(Ke)* ̂ 1-a £̂  73(1 + k l - i 

for every q>eC?Kn H0. Finally, let g e Hx. Let us put Q = (V6)* (C£. n H0). To 
every ij/ e QWQ assign the value* 

W = (<?> 0)0 

where i/̂  = (V£)* (p. This is possible because by (2.6) the function cp is uniquely 
determined for every \//. Using (2.6), we conclude 

IWI ^ M-i M* -- fc\l +c*) MO W-2 • 
Hence / is a linear functional on Q c: H_2. According to the Hahn-Banach theorem, 
there is a linear functional /' on H_2 such that /' is an extension of / and the norm of /' 
equals that of /. By Lax's theorem ([4], p. 167) there exists a unique ve H2 such that 

m = (*, «o„ 
and 

(2.7) \v\z^yl\l^ei)\g\l. 

Putting \j/ = (V£)* cp for cp e C^ n H0, we have 

m=(v, oh=w* ?> -)o=(9, vv)0, 
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i.e. (q>, g — Vev)0 = 0. As g, Vev e H0, the last equality yields Vev = g. This implies 
that (V)-1 e [Jf., H2] exists. By (2.7), 

Hence the condition (b) is satisfied. This completes the proof. 
In the second part of this section we show that for every e from a neighbourhood 

of 0 there is a solution ueU^ to the equation 

(2.8) utt(t, x) - uxx(t, x) = s(3u2ut + he(t, x)) , t e R+ , xeR 

satisfying the conditions (0.2) and (0.3). We shall suppose that the function he fulfils 
(0.12) and that the function 

/.(*) = f \0(9, S)d9 

does not vanish identically. The existence of solutions follows from Theorem 1.2 if 
the next two conditions are satisfied. 

(c) There is a function se H3, s 4= 0 such that 

(2.9) s"(x) + (2k)-1 [ n3(s(x) - s(£))2 (s'(x) - s'(€)) d£ + h(x) == 0 , x e R . 

(d) The operator VEe \H2, Hx~] given by 

V*a(x) = le^1 (a'(x) - a'(x - |e| X)) + 

+ 2 J o ^ 
+ 3 f \s(x) - s($)) (s'(x) - s'({)) (cr(x) - (7(0) d€ , x 6 .R 

has an inverse (V6)"1 e \HU if2] whose norm is bounded by a constant independent 
of e. 

The existence of solutions to (2.8), (0.2) and (0.3) was proved in [1] under the 
assumption that he is a function rc-antiperiodic in the variable x. The authors obtained 
this result as a by-product when investigating a system of two first order equations. 
The same theorems as in [1] have to be applied to complete the proofs of (c) and (d) 
which are indicated below. They can however be applied after simpler calculations 
and without the assumption of 7c-antiperiodicity of the function he. 

Firstly, we shall treat (c). Let Lp be the space* of all 27r-periodic real functions 5 
satisfying 

»2n f2n 

s(£) d£ = 0 and sp(x) dx < oo . 
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Let us denote by K the linear compact operator from L4/3 into L4 given by 

K s(x) = fs(c) dZ + (2U)-1 f \ s(Z) dS9 xeR. 
Jo Jo 

As 

fn \ f *(*(*) - <<-D)3 d 4 sW d* =27r f *A*)d x 

we can use the theorem which was applied in the corresponding step in [ l] . Thus 
there is s e L4 such that 

S + '" "' (2A)-1 x ( J "(-(.) - s({))3 dí) + K2/7 = 0 . 

Differentiating this equation, we can show that s e H3. Clearly s 4= 0 and (2.9) is 
satisfied. 

In the end we shall show how to treat (d). Let geHx. Let us denote WE = KV£. 
Then 

W* a(x) = jel"1 (a(x) - a(x - |e| X)) + 

and the equation WEa = Kg is equivalent to Vea = g. Let us put I = f Jo" s2(^) d£. 
Then we immediately verify 

(WEa, a)0 = j | * | * , 

((WEa)',a')0 ^ J l c r ' I S - M ^ a l o H o , 

((WEa)'',a'')0=l\a'f\l^M2\a'\0\a'f\0 

for every a e H2 with Mx and M2 independent of a and e. Using the Lax-Milgram 
theorem in the same way as in [1], we see that (d) is satisfied. 

3. AUXILIARY ASSERTIONS 

Lemma 3.1. Let e + 0 satisfy 0 < 2n + sX < T Let ueU^ and se H2 satisfy 

(3.1) u(t,x) =Zs(t,x) + - f f Fj[u)(9, Z)d£d9, teR+, xeR 
2 Jo J x-t+» 

and 

(3.2) u(t, x) = u(t + 2n + zk, x) , teR+, xeR. 
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Then the pair of functions consisting of the restriction of the function u to 
[0, T] x R and the function s satisfies (1.1) and (1.2). 

Proof. (3.1) implies that (1.1) holds. Thus only (1.2) has to be shown. Let us put 
co = 27i + eX. Inserting w from (3.1) into (3.2) and making use of the obvious 
relations 

cx-t-(o + » 

Fe(u)(»,i)d^=0, Í -x + t + (o-& 

we obtain 

/•f + co px + t + a>-& /»r px + t-& 

Ft(u) (9, {) d£ d£> = F,(«) (9, {) d£ d£> + 
J o Jjc-f-co + 3 J o j j c - f + d 

/•w / •x+f+<o-a 

+ re(u)(SU)d£d3, 
J o Jjc-f -co + S 

/•© /•.* + * 

s(f + x + co) - s(r + x) + - F£(w) (3, £ + co - 3) d£ d3 = 
2jo Jo 

= s(f - x + co) - s(t - x) + - j I F£(w) (3, £ + co - 3) df d3 
2jo Jo 

for every t e R+ and x e R. From here (1.2) follows immediately. 

Lemma 3.2. Let e 4= 0 satisfy 0 < 2n + eX < T Let ue UT and se H2 satisfy 
(1.1) and (1.2). Lef ws denote by u the function satisfying 

(3.3) u(t9 x) = u(t9 x) , * e [0, In + eX) , x e R 

and 

(3.4) w(r + 27i + aA, x) = u(t9 x) , fe_R+, xeR. 

Then ueU^ and 

(3.5) u(t9 x) = Z s(f, x) + | f f ' Fe(u) (3, £) d£ d3 
2 Jo Jjc-t+a 

for every t e R+ and xe R. 

Proof. From (1.1) it follows that 

ut(t9 x) == s'(t + x) - s'(t - x) + - J F£(w) (3, x + t - 3) d3 + 
2 J 0 

+ ̂ f ^ ) ( s > * - ' + )̂d3, 
^ Jo 

w f̂, x) = s'(t + x) + s'(t - x) + - J F£(w) (3, x + t - 3) d3 -
2 Jo 

- - f V e ( w ) ( 3 , x - f + 3)d3 
2 Jo 
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for t e [0, T) and x e R. Let co = In + eA. Using (1.2) we obtain 

ut(t + co, x) - u,(f, x) = - J {F£(u) (9 + c0, x + t - 3) - F£(u) (3, x + f - 9)} d9 
2 Jo 

+ - f {F£(u)(3 + o>, x - r + 3) - Fc(w)(3, x - t + 3)} d 3 , 
2 Jo 

n,(f + co, x) - ti,(f, x) = - I {FB(u)(9 + co, x + t - 3) - Fe(u)(9, x + t - 3)} d3 -
2jo 

- - f \FE(U) (9 + co, x - t + 3) - F£(w) (3, x - * + 3)} d3 
2 Jo 

for t e [0, T — co) and x e _R. In virtue of (0.2) we have 

\u(t,x)\^ f X\ux(t,Z)\d£. 

By Gronwall's lemma we deduce from the last three relations: 

u(t, x) = u(t + co, x) 

for t e [0, T — co) and x e R. This shows that there is a function ueU ^ satisfying 
(3.3) and (3.4). Induction will be used to prove (3.5). Let n ^ 1 be an integer such 
that (3.5) holds for t e [0, nco~\. Let T e (nco, (n + 1) co]. Then we have 

/•T-CO /-.JC + T - a > - # 

W(T, X) = W(T — co, x) = Z S(T — co, x) + - F£(u) (9, £) d£ d3 = 
2 J o J.x-T + w + 3 

Z S(T, x) + - f T * Fe(u) (9, ^ d£ d9 + S(T, X) 
2 Jo Jx-T+d 

where 
/ • « /»X + T - d 

S(T, X) = Z S(T - co, x) - Z 5(T, x) - - F£(u) (3, £) d£ d 3 . 
2 Jo Jx- t+s 

By (1.2), £(T, X) = 0. Thus (3.5) holds for t e [0, (n + 1) co]. This completes the 
proof. 

The next two lemmas are modifications of the implicit function theorem and are 
closely related to Theorems 2.3 and 2.4 in [1]. 

Lemma 3.3. Let X, Y be Banach spaces, m, e positive numbers and x0 eX. Let 
a family of mappings eG : X -» Y, e e (0, e] satisfy the following assumptions: 

(i) The mapping SG : X -> Y is continuous and its derivative *G' : X -> [X, 7 ] 
exists for every e e (0, e], 

(ii) lim sup {||cG'(x) - £G'(x0)||[X,y]; ee(0, e], ||x - x0 | |x < Q} < 1/ro. 
e-»o + 
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(iii) lim \\'G(x0)\\r = 0. 
£-*0 + 

(iv) For every* e e (0, e] there exists Te e [F, X] satisfying eG'(x0) TE = IY9 

\\T%Y,XI ^ m. 

Then there exists et e (0, e] such that for every e e (0, ex] there is xe G X satisfying 
eG(x£) = 0. Moreover, lim xe = x0. 

E~*0 

Proof. Let us choose a e (0, 1) and Q > 0 such that 

sup {||£G'(x) - eG'(x0)\\iXfY1; x e B(x0, o), e e (0, e]} < a/m . 

Let £j e (0, e] be such that e e (0, 6X] implies 

| | E G(x 0 ) | | y £( l -a )^ /m. 

Let us put x0 = x0 and xj;+1 = xe — T£eG(x;;) for ee(0, e t], n = 0, 1, ... . We 
easily obtain 

(3.6) | |4 + i - 4 | | A = m||£G(xy||y 

for k = 0, 1 , . . . . If for an integer n = 1 we have xe
k e B(x0, o), k = 1, 2,..., n, then 

by [2] (relation 8.6.2), 

(3.7) ||£G(xk
£)||y = ||£G(x£) - £G(x^0 - £G'(x0)(xjf - xJ-OIr = 

= \\xi - x^,||*sup{||eG'(x) - eG'(x0)\\iX,Y}; £e(0,eY], xeB(x0,O)} = 

£ a||*2 - x*_i|U/m. 

This estimate together with (3.6) implies 

(3.8) K + i - ' j c i i u ^ «!*; -* . ; - i iu 

for k = 1, 2, ,.., n. Using (3.6) for k = 0 and (3.8), we obtain 

(3-9) | x j + 1 - x0|U fk m|'G(*o)|r/(l - a) . 

Thus x£ e B(x0, Q) for all £ e (0, ex] and all positive integers n. By (3.8) we can put 
xe = lim x£. eG(xB) = 0 and lim xe = x0 are consequences of (3.7) and (3.9) respec-

n-*oo «->0 

tively. 

Lemma 3.4, Let all the assumptions of Lemma 3.3 be satisfied. Let 

TeeG'(x0)=Ix for ee (0 ,e ] . 
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Then there exist two numbers et e (0, e] and Q > 0 such that for every e e (0, gx] 
there is a unique x£ e B(x0, Q) satisfying eG(xB) = 0. Moreover, lim x8 = x0. 

E-+0 

Proof. Let el9 oc and Q be the numbers chosen in the proof of Lemma 3.3. Let 
xi, x2 € B(x09 Q)9 0 < e = ex satisfy 8G(xi) = 8G(x2) = 0. Then we can write 

*i - A = -TfG(x\) - £G(x2) -
 6G'(x0)(xi - x8

2)). 

Using [2] (relation 8.6.2), we obtain 

IK - Xi\\x ^ m\\x\ - xB2\\x. 

. sup {||8G'(x) - £G'(x0)||rx,r]; x e B(x0, <?), e e (0, e j} = ô x8, - x8
2||x . 

As a < 1, we have xi = x2. This completes the proof. 

Lemma 3.5. Let X and Ybe Banach spaces. Let A e [X, 7] and B e [Y9 X] satisfy 
AB =J y . Then for every A e [X9 Y], ||--l||rx,Y] £* (-^Itr,*])"1 there exists BAe 
e [Y9 X] such that 

(3.10) (A + A)BA=IY9 

(3-11) І ^ Ц t r д ^ 2||B| [Ï ,X] 

If in addition the operators A and B fulfil BA = IX9 then Bd satisfies (3.10), (3.11) 
and BA(A + A) = Ix. 

Proof is easy. 
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