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časopis pro pěstování matematiky, roč. 102 (1977), Praha 

ON A CLASS OF ARITHMETICAL SETS 

H. G. MEIJER, Delft and TIBOR SALAT, Bratislava 

(Received August 8, 1975) 

Infinite subsets of the set N of all natural numbers will be called arithmetical sets. 
In the paper [1] P. Erdos studied the arithmetical sets A = {at < a2 < ...} with 
the property (P): If ix < i2 < ... < is is an arbitrary finite sequence of indices, then 
ah -f- ai2 H- ... -F ais does not belong to the set A. Denote by T* the system of all 
arithmetical sets having the property (P). 

Let k be a natural number, k^.2. Denote by Tk the system of all arithmetical 
sets A = {ax < a2 < ...} with the following property (Pfc): If it < i2 < ... < ik 

is an arbitrary sequence of indices with k terms, then the number ati + ai2 + ... 
k co 

... + aik does not belong to the set A. Put T* = f) Tj (for k ̂  2) and T = (J Tj. 
3=2 7 = 2 

We have obviously 

T* = 0 T* = n Tk and T* => T* 3 ... => T* => Tfc*+1 -D ... . 
ft=2 Jfe=2 

It is clear that if AsThor AeTk and £ is an arithmetical set, B c A, then B eTh 

and £ e T*, respectively. Further, it is easy to check that 

fl1«{l,3,...,2fc- 1 , . . . } G T 2 - T3 

and 
B2 = {1, 2, 3,10,102,..., 10V..} e T3 - T2 . 

Hence none of the inclusions T2 c T3, T3 c= T2 is valid. 

If 
A c J V « { l , 2 , . . . } , 

then we put 

# 0 = I 1. dx(A)~\imM^l, ^ ) = l i m s u p ^ 

and <5(>4) = lim (A(n)jn) (if the limit of the right-hand side exists). It is proved in [1] 
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that the asymptotic density S(A) of each arithmetical set A having the property (P) 
is zero. 

00 

With each set A c N we can associate a real number Q(A) = £e /2~ J , where 
1=1 

Sj = 1 if j e A and Sj = 0 otherwise (see [2], p. 17). The number Q(A) will be called 
the dyadic value of the set A. If S is a system of sets A c N, then Q(S) denotes the 
set of all numbers Q(A\ AGS. Obviously we have Q(S) a <0, 1> and Q(S) provides 
a tool for measuring the size of the system S. 

The purpose of this paper is to illustrate from both the metric and the topological 
point of view the structure of the systems T, T*, Tk, Tk in terms of the just defined 
dyadic values of sets 4 c J V . 

1. METRIC PROPERTIES OF SETS Q(T), o(T*), o(Tfc), o(T*) 

In the following, we denote by \M\ and |M|* the Lebesgue measure and the outer 
Lebesgue measure of the set M, respectively, and by dim M the Hausdorff dimension 
of the set M c (— oo, + oo). 

We mention the following simple fact which is well-known in the theory of dyadic 
expansions of real numbers: If m is any natural number then the interval (0, 1> is 
a union of pairwise disjoint intervals of the form 

I = (±, £ ± ! \ (0^s = 2m- 1). 
\2m • 2m / 

Each interval I is associated with a sequence s°x, s°2y ..., 8° of numbers 0 and 1 in such 
00 

a way that for the dyadic expansion x = ]T sk(x) 2~k (sk(x) = 0 or 1 and for an infi-
k=l 

nite number of fc's we have sh(x) = 1)) of any number x belonging to I the equalities 
tk(x) = sk (k = 1, 2, ..., m) hold. 

In the following, the interval (0, 1> is regarded as a metric space with the Euclidean 
metric. 

The proof of the main part of the following theorem is based on this lemma. 

Lemma 1,1. Let a be a fixed natural number. Put 

H(a) = {x e (0, 1> ; V e/x) eJ+a(x) = 0} . 
j>a 

Then \H(a)\ = 0. 

Proof. Let t ^ 1 be an arbitrary natural number. The set H(a) is contained in 
the union of all such intervals 

(—— , ---±-L\ (0 < s < 2(2'+1)fl - 1) 
V2(2'+1) 2(2,+1)B/ — ~ 
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which are associated with the sequences 

(1) * 6l> e2> •••• e(2f+l)a 

of O's and l's having the following properties: each of the numbers eu e2, ...,ea is 0 
or 1, and 

(2) 0 = ea+1 . e2a+1 = ea+2 . e2a+2 = ... = e2a. e3a = 

" e 3 « + l • e 4 a + l = • •• = e4a • e5a = . . . = £(2f~l)a+l • £2fa+l = • •-

. . . = ^ 2 ^ • e(2f+l)« • 

It is easy to check that the number of sequences (1) satisfying (2) is 2a. 3at. Therefore 

I V ./I — 2(2t + l)a \AaJ 

Hence we conclude \H(d)\ = 0 since t is arbitrarily large. 

Theorem 1,1. Each of the sets Q(Tk)(k = 2, 3,...) is a Grset (in (0,1>) and \o(Tk)\ = 
= 0(fc = 2,3,...). 

Corollary. \Q(T)\ = \Q(T*)\ = 0, \Q(T*)\ = 0 (fc = 2, 3,...). , 

Proof. Let fc = 2. Denote by Jm the union of all intervals 

( - , — ) (0 = 5 = 2™- 1), 
V2m 2m / V 

which are associated with such sequences el9 e2,..., em that if 1 = e£l = eh = ... 
••• = £*> h < *2 < ••• < ik> h + h + ••• + ** = m> t h e n efi + i2+...+ik = 0- W e 
shall prove that 

(3) c(rk)»n/». 
m = l 

oo 

If x 6 {2(7fc)> then x = #(̂ 4), .4 e Tk, x = X ej(x) 2~J (the dyadic expansion of x). 
j = i 

It follows from the definition of the system Tk that eh + h+_+ik(x) = 0, it < i2 < ... 
... < ih if £f.(x) = 1 (/ = 1, 2,.. . , fc). Therefore x e JOT for each m = 1, 2,... . 

oo 

Let x e (0,1>, x = £ £,.(x) 2"~J', x £ Q(TH). Denote U the system of all arithmetical 
j - = i 

sets. Then Q(U) = (0,1> and Q : U -* (0,1> is a one-to-one mapping (cf. [2], p. 18). 
Hence (0,1> = Q(Tk) u g(C/ - Tk), the sets on the right-hand side being disjoint. 
Hence x eQ(U — Tk), x = Q(A), AeU - T*. Since .A £ T*, there exists such a se­
quence ix < i2 < ... < ik of natural numbers that eh(x) = 1 (J = 1, 2,..., fc) and 

00 

a*--M2+...+**(*) = 1. Hence x £ JF, where p = it + i2 + ••• + **> therefore x $ f\ Jm. 
m = l 

The equality (3) is proved. 
From (3) it follows immediately that Q(TU) is a Grset in (0,1>. 
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Let k ^ 2, let 

(4) a°<a°2<...<aU 

be a sequence of natural numbers. Denote by Tk(au ..., a^-f) the system of all sets 
A G Tk of the form 

.4 = {a? < a^ < ... < a£_ t < a* < ak+1 < ...} . 

Then 
Q(Tk) = ()Q(Tk(a

0,...,a0-.t)), 

the union on the right-hand side being taken over all finite sequences of the form (4). 
Hence it suffices to prove that 

(5) |e(r»(fl?,...,at
o-1))|-'0 

for each sequence (4). 
In the notation used in Lemma 1,1 we have obviously 

e(T f c(fl?,.. . ,fl?-1))c:H( f l), 

where a = a? + ... + a£_x. Hence (5) follows from Lemma 1,1. The proof of 
Theorem 1,1 is complete. 

The proof of the following lemma is based on an idea from [1]. The lemma will 
be useful in the proof of Theorem 1,2. 

Lemma 1,2. If AeT*(m = 2), then S2(A) ^ l/m. Moreover, there is an AeT* 
such that d(A) = l/m. 

Proof. Let A = {at < a2 < .«.} e T*. Since A e T* (m = 2), the elements of the 
sets Pl9 P2,..., Pm do not belong to the set A, where 

Pi = {a1 + a2, a1 + a3, ..., ax + ap ...} , 

Pi = {(«i + 02) + <*3> («i + ^2) + a4, ..., (ax + a2) + ap ...} , 

Pm = {(fll + ••• + O + 0m+l> («1 + ••• + am) + «m + 2» .-• 

..., (at + . . . + am) + am+p ...} . 

The sets P1?P2,..., Pm are pairwise disjoint. Indeed, if Pir\Pl =1= 0 for i #= /, 
i, / = m, then there exist such numbers s, d, s ^ i + 1, d = I + 1 that 

(ax + ... + af) + as = (a± + . . . + at) + ad . 

Let i < I. Then 

(6) as = a l + 1 + ... + at + ad 

and the number of summands on the right-hand side of (6) is equal to / — i + 1 ^ m. 
Hence (6) contradicts the assumption A e T*. 

Let n > a1 + ... + am + m. The number of elements of the set Px lying in the 
interval <1, n) is obviously equal to A(n — ax) — 1, similarly the number of elements 
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of the set fi lying in that interval is equal to A(n — (ax + a2)) — 2, etc. Since the 
sets Pj (j *? 1,2,..., m) are pairwise disjoint, we obtain 

(7) (A(n - a,) - 1) + (A(n - (a, + a2)) - 2) + ... 

+ (A(n -(a, + ... + 0 ) - m ) ^ n . 

A simple estimation yields 

(8) A(n - a,) = A(n) - ai, 

_4(n - (at + c2)) = ,4(w) - (ax + a2) , 

. A(n - (a, + ... + am)) = A(n) - (ax + ... + am) . 

From (7), (8) we get 
A(n) ^K + Cm + i 

n ~~ nm m 

where 
m(m + 1) , x / , , \ 

bm = - L - ^, cm = ax + (a, + a2) + ... + (a! + ... + am). 

The inequality S2(A) = l/m follows now immediately. 
Further, the set A = {1, m + 1, 2m + 1,..., jm + 1,...} belongs to the system T* 

and 3(A) = l/m. The proof is complete. 
Since \Q(T*)\ = 0, |.0(-T*)| = 0 (fc = 2, 3,...) the question of the Hausdorff 

dimension of the sets Q(T*)9 Q(T*) (fc = 2) arises. In what follows we give upper and 
lower estimates for dim Q(T*) and the precise value of dim Q(T*). 

Denote by d the function defined on the interval <0, 1> in the following way: 
d(0) = d(l) = 0 and 

d{c) = ClogC + ( l - C ) l o g ( l - C ) 
logi 

for Ce (0,1). 
It is easy to see that 

(9) lim d(C) = 0 . 
; -o + 

Theorem 1,2. (i) For each fc = 2, the inequality dim Q(T*) = l/fc holds, 
(ii) For each fc = 2, the inequality dim Q(T*) g d(l/fc) holds, 
(iii) dim Q(T*) = 0. 

Remark. The estimate for fc = 2 in (ii) is trivial since d(i) = 1. 

Proof, (i) Put (for fc§ 2) 

Q = {1, fc + 1, 2.fc + 1, ..., Zfc + 1, . . . } . 
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Evidently CkeT*. Denote by Sk the system of all arithmetical sets which are subsets 
of the set Ck. Then Sk c T* and so 

(10) Q(Sk) c Q(T*) . 

Denote by 2Ck the system of all subsets of the set Ck. Then it is easy to see that the 
set eO(2Ck) — Q(Sk) is countable, hence 

(11) dim Q(2Ck) = dim Q(Sk). 
00 

But g(2Ck) is equal to the set of all such real numbers x = £ 8j. 2~j that ej = 0 for 
1=i 

j 4= Ik + 1 (I = 0, 1,...) and elh+1 = 0 or 1 (/ = 0, 1,...). 
The Hausdorff dimension of the set tO(2Ck) can be established by virtue of Theorem 

2,7 from [3]. The following special result is a consequence of this theorem: 
Let P be a set of natural numbers, let {e°}, j eP be a sequence of numbers 0 

and 1. Denote by 
Z = Z{P;{e%jeP) 

00 

the set of all such x = ]T ej . 2~J that ej = e° for j e P and ej = 0 or 1 for j e N — P. 
1=i 

Then 
log n 2 

dim Z = lim inf &«>*"-* 
«-»oo n log 2 

Put P = N - Ck9 e°j = 0 forj e P. Then we get 

log n 2 
(12) dim e(2Ck) = Hm inf —^H j e C k = 

«-*oo n log 2 

-•iminf'°«2"-""-1iminfK!L^-ffl = l 
n-+oo ft log 2 «-*oo ft k 

([w] denotes the integer which satisfies [w] ^ u < [u] + 1). From (10), (11) and (12) 
we obtain dim Q(T*) ^ 1/fc. 

(ii) Denote by Zk the system of all arithmetical sets A with S2(A) g l/k. Then on 
account of Lemma 1,2 we have T* c Zk. It is well-known that dim Q(ZH) = d(\\k) 
(cf. [2], p. 195 or [5], Theorem 51). From these facts we get dim Q(TI) ^ d(l\k). 

(iii) We shall give two proofs for (iii). 

Proof I. Since T* a T* (fc = 2, 3,...) according to (ii) we have 

d i m ^ T * ) ^ ^ ^ (k = 2,3, ...) 

and so (see (8)) 

dim Q(T*) g lim d (- ) = 0 . 
*-oo \kj 
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Proof II. Denote by W0 the system of all arithmetical sets A with dt(A) = 0. 
Then 

(13) " dim Q(W0) = 0 

(see [2], p. 195). We have mentioned already that if A e T*, then 5(A) = 0 (cf. [1]). 
Hence 

(14) T* cz W0 . 

From (13), (14) we get dim Q(T*) = 0. The proof is complete. 

2. TOPOLOGICAL PROPERTIES OF SETS Q(Tk), Q(T*), Q(T), Q(T*) 

In this part of the paper we shall complete the first part by proving some further 
properties of the sets Q(Tk), Q(T*), Q(T), Q(T*). These sets are viewed as subsets of 
the metric space (0, 1> with the usual Euclidean metric. 

It was already proved in the first part of the paper that the sets Q(TU) (k ^ 2) are 
Grsets. This fact implies easily 

Theorem 2,1. The sets Q(T*), O(T*) (k = 2) are G8-sets, Q(T) is a GSa-set in (0,1>. 

Proof. Theorem 2,1 follows at once from Theorem 1,1 and from the equalities 

(15) Q(T*) = h6(Tj), Q(T*) = CIQ(T*), Q(T) = \J Q(Tk) . 
7 = 2 fc=2 fc=2 

Finally, we shall show that the sets studied in this part of the paper are poor 
from the topological point of view. 

Theorem 2,2. (i) The sets Q(T*), Q(T*), Q(Tk) (k = 2) are nowhere-dense sets in 

(0. i>. 
(ii) The set Q(T) is a set of the first Baire category in (0, 1>. 

Proof. Part (ii) follows from (i) in virtue of (15). Further, 

Q(T*) a Q(T*) CZ Q(Tk) (fc = 2,3, . . . ) , 

hence it suffices to prove that Q(TK) (k _ 2) is a nowhere-dense set in (0,1>. 
Let k ^ 2. On account of the well-known criterion of the nowhere-density of sets 

in metric spaces it is sufficient to prove that each open interval 7 c (0,1> contains 
an interval / which is disjoint with the set Q(Tk) (cf. [4], p. 74). 

Let I cz (0,1> be an open interval. Choose a natural number m such that for 
a suitable s, 0 = s = 2m - 1, we have 

\ 2 m ' 2m 

48 



Let Ij be associated with the sequence s^e^, ••-, £m- Put 

v = km + k(k + l \ £ + . = l (. = l,2,...,fc). 
2 

Let 

^ ^ . ^ ) p - « - í - « ) 
be an interval which is associated with the sequence 8°, &°2,..., 2„. Then obviously 
J a It c J. If A is an arithmetical set such that Q(A) e J, then 

k Ufa _|_ ft 
m + i e .4 (i = 1, 2,.. . , k) , X (m + 0 = km + -* * = yeA 

i=i 2 
and hence .4 £ T*. Therefore J n e(Tk) = 0. This completes the proof. 

Remark. Using the method of the proof of part (ii) of Theorem 2,2 we can show that 
also the set H[a) (see Lemma 1,1) is a nowhere-dense set in (0, 1>. The proof of this 
fact can be left to the reader. 
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