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1. INTRODUCTION

Let f; (i =1,.., n) be operations defined for every system of real functions
(71(8)s --., y4(2)) of locally bounded variation in the interval (a, b) = R!. Moreover,
let f(y4(2), ..., y,(t)) be a measure in (a, b) (i.e. fi(yy(t), ..., yu(t)) is the first distribu-
tional derivative of a real function of locally bounded variation in (a, b)) In this
paper we consider the following system of equations

(% vl = fly1(0), ..o () (E=1,...n),

where the derivative is understood in the distributional sense. By a solution of the
system (*) we understand every system of real functions (yy(?), ..., y.(t)) of locally
bounded variation in the interval (a, b), which satisfies equation (). This class will
be denoted by V{,;). We prove some theorems on the existence and the uniqueness
of solutions of the system (). Our results generalize some theorems for linear and
non-linear differential systems (see [6], [9], [10], [12], [13]). The sequential theory
of distributions will be used (see [4]).

2. THE PRINCIPAL RESULTS

First we introduce some notations.

A sequence of smooth, non-negative functions {5,(t)} satisfying: {2, 8,(t) dt = 1,
5i(t) = 0u(—1), 8y(t) = O for || Z &, where {&} is a sequence of positive numbers
with o, = 0 as k — oo is called a d-sequence. ’

We understand the product, the mean value and the modulus of distributions as
generalized operations (see [2], [3], [4]).

One may prove that if P is a function of locally bounded variation in the interval
(a, b), then for every t, € (a, b) the mean value P*(t,) of P at the point t, exists and
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o Plto+) + P(to—)
(2.1) PX(to) = 5 ;

where P(to+) (P(to—)) denote the right (resp. left) hand side limits of the function
P at the point t, (see [3]).
Let p be a measure defined in the interval (a, b) ((— o, o)). Then we put

@) [wu-r@-r0, [ ya-in j‘p(z)dt,

= 00
c—= —

where P’ = p and ¢, d € (a, b).
In the case when P is a function of locally bounded variation in the interval (a, b)
and g is a measure (in (a, b)), then it has been proved in [11] that

23) j:m) () = fIPI (1l & < sup [Pl j Jal () a].

Now we shall introduce two hypotheses.

Hypothesis H,. 1. Let f; (i = 1, ..., n) be operations defined for every system
of functions (ys(t), ..., y.(t)) of locally bounded variation in R'. Moreover, let
F{y1(2), ..., ya(t)) be measures in R

2. There exist non-negative measures L;(t) (i,j = 1, ..., n) defined in R such

that for two arbitrary systems of functions (ys(2), ..., y«(t)) and (75(2), ..., 7.(t))
of locally bounded variation in R! we have

@) 1010 20 = S5 5] = T LD ) = 5001,
(2:5) _il ’ Lidt <1, J‘m |fdts - t)] dE < 0,

where t,, ..., t, denote constant functions®).

Hypothesis H,. 1. Let f; (i = 1, ..., n) be operations defined for every system of
functions (yy(2), ..., y?)) of locally bounded variation in the interval (a, b) = R*
and such that f(y4(t), ..., y(t)) is a measure.

2. There exist non-negative measures L,(t) defined in the interval (a, b) such that
for arbitrary two systems of functions (y,(t), ..., (1)) and (74(t), ..., (1)) of locally
bounded variation in the interval (a, b), inequality (2.4) holds.

Example 1. Let L(f) and g(f) be measures defined in'R* and such that 2, |L|(f)dt <’
<1, {2, |g| (t) dt < co. Moreover, let h be a constant and let y(t) be a function of
locally bounded variation in R!. Then it is not difficult to check that the operation f
defined by

(2.6) 1O:(0) = L(9)

satisfies the hypotheses H; and H,.

+4(7)

1+ 2(t+h)

1y The inequality between two distributions is understood as in [2].
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Theorem 2.1. Let hypothesis H, be fulfilled. Moreover, let h be a constant. Then
the problem .

(27) {yi(t) = St + B), o 3t + b))
y?(to) =y), i=1,..,n
has exactly one bounded solution in the class V(_ ,,q)-

Remark 1. We understand that two systems of functions from the class V{, , are
equal, if they are equal in the distributional sense.

Remark 2. The assumptions (2.5) in Theorem 2.1 is essential. This can be observed
from the following :

Example 2.
(2.8) ' v =260 ¥
{y*(— 1)=0,
where 6 denotes Dirac’s delta distribution. In fact, let H denote Heaviside’s function
and let ¢ denote a constant. From the equality
(2.9 Hé =46 (see [14])
it is not difficult to show that the distribution y = cH is a solution of the problem

(2.8).
Let all elements of the matrix L = (L;;) (i,j = 1, ..., n) be measures defined in the
interval (a, b) = R'. We say that the matrix L has the property (P) in the interval

(a, b) if for every t, € (a, b) there exists a number & > 0 such that

n to+e .
(210) [to—eto+elc(ab) and 3 f ILy| () dt < 1.
Li=1 ) yo-¢

It is easy to verify that every locally integrable function in the interval (a, b) has the
property (P). There exists a matrix of measures, which has not the property (P).
In fact, let us put L(t) = 26(t),a = — o0, b = o0 and t, = 0.

Theorem 2.2. Let hypothesis H, be satisfied. Moreover, let the matrix L = (L;;)
have the property (P) in the interval (a, b). Then the problem
(2.11) {y;(t) = fiy1(t), ..., (1))
yilto) = W, to e(a,b), i=1..,n
has exactly one solution in the class Vi, .
- Remark 3. Let fi(t,v,, ..., v,,) (i = 1,..., n) be real functions defined in the set
Dia<t<b, —0<v..,0,<00.
Moreover, let us assume that:
1. The functions j{t, v,, ..., v,) are measurable with respect to ¢ for every system
(015 o5 Dw)- :
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2. The functions ft, vy, ..., v,) are continuous with respect to (vy, ..., v,) for every
te(a, b). .

3. There exist non-negative, locally integrable functions (in the interval (a, b))
L;ft) (i,j = 1, ..., n) and u(t) such that

(2.12) it 510 v 02) = Fi(t, 51y o0 5,) gj;L,.j(z) lo, = 5,

(2.13) |7, 0, ..., 0)| < u(?).
Then the problem :
@14) YO =Tt yi(0)s - 9:(1)

{y,-(to) =y, toe(a,b), i=1,..,n
has exactly one solution in the Carathéodory sense in the interval (a, b) (see [5]).
It is easy to verify that the right-hand side of the system (2.14) satisfies hypothesis

H,, too. Thus in this case Theorem 2.2 generalizes the classical Carathéodory’s
result.

Remark 4. Non-continuous solutions of ordinary differential equations have been
considered either by means of integral equations with generalized Stieltjes integral
(see'[7], [8], [15], [16]) or by means of theory of distributions (see [6], [9], [10], [12],
[13]). The distributional solutions of non-linear differential equations have not been
sufficiently studied. In [6], [9] and [10] the authors give theorems on the distribu-
tional solutions of some linear differential equations, but the product of two distri-
butions is understood more generally in our paper than by those authors. More
precisely, the existence of the product of a measure and a continuous function or
a function of locally bounded variation does not result in general from the definition
given in [6]. Hence our results may be applied even to some types of linear differential
equations in the case when the theorems from [6], [9] and [10] cannot be used.

3. PROOFS

Proof of Theorem 2.1. We shall apply the method of successive approximations.
Thus we consider the sequence of functions {g;,} defined as follows

(3.1) gio(‘) =)y, giv(t) =) + J.tfi(glu—l(s + h), ...y Guo—1(s + h))ds,

i=1..,n, v=1,2,..., teR'.
We put

(3:2) L, =-=i, J ) L,-J-(t)‘dt, M; = J‘ ) |fd»3s .o yo)| dt.

33



In view of (2.3) and (2.4), we have

(3.3) lgi(t) — gle-1(t)] < M,Li™" forevery te(—oo, ).
Hence we infer thdt the sequence of functions {g},(t)} is uniformly convergent to
a function g; € V(_(,° ©) a8 v = 0. In fact, the inequality (3 3) implies

M
(34) lgal* (7) = ] + — =
1-L,

Thus g, is a bounded function in R'. We consider a finite sequence of numbers {¢,}
such that t; < t, < ... < t,. Since

¢9) py 0 - ) [~ 10 snar +

+ Z 'f Lif(t) |gjv—1(t + h) - y_?l dt < M, +

+zj Li,(t)(|yﬂ + )d:+z( 199 Liy(e) e,

g, is a function of locally bounded variation in R?. Taking into account that by (3.3)
the sequence of functions {g7,(¢)} is uniformly convergent, we obtain

(3.6) gitot) = ¥ + hm hm (F (1) — Fii(to)) =

= y? + lim hm (Fi(t) — Fi. (to)) ¥+ ;Hlm (Fifto+) = Fufto—=)),

v t-to

where Fi,(f) = fi{gs.(t + h), ..., gt + h)). Similarly
(37) gi{te—) = yi + llm hm (F (1) — Fi(to)) =

= y? + lim hm (F (t) F} (to)) y) — J;hm (Filto+) — Fi(to—)) -

v t-t

Hence g7(to) = . Next, by (2.3) and (2.4) we conclude that

(38) j Lo+ B le + 1) = Sons + B oo s + W] 5

= LY, suplg; = g,f* (1) -

Thus the system of the functions (g,(¢), ..., g,(f)) is a solution of the problem (2.7).
It remains to prove the uniqueness of the solution. Let g4, ..., g, be bounded functions
of locally bounded variation in R such that g (to) = ¥, (91(%), ..., g.(t)) *
% (34(), .., @u(1)) (i = 1,..., n). Moreover, let the system of the functions (gy(¢), ...
... Ga(t)) satisfy the'system (2.7). Then the.inequality (2.4) yields

(39) | K% K( 5 j Ly(f) dt)

1,j=1
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n

where K = ) sup lg, - gil* (t) The last inequality contradicts (2.5), which implies |
i=1 teR!

our assertion.

Proof of Theorem 2.2. Let (a,, by) and (a,, b,) be two intervals such that
(ay, b)) N (az, by) £ 0, [ay, b,]u[ay b,] =(a,b) and Y, [orLi(t)dt <1 for
1i=1

r =1,2. Moreover, let § >0 and a, + B, b, — Be(ay, by), a, + B, b, — e

E(az, bz), (al + ﬁ, b1 - ﬁ)n(az + ﬂ, bz - ﬁ) 4: (0 al’ld toe(al + ﬂ, bl - ﬁ).
. We consider the sequence {g,,} defined as follows

(G10) ) =30, gul) = »7 + f :fi(gl.,-l(s), oo Gunma(s)) ds,

i=1,..,n, v=1,..., te(ab).
It is not difficult to verify that the sequence of functions {g},(f)} is uniformly conver-
gent to a function g; (i = 1, ..., n) of bounded variation in the interval [a; + B,
b, — B]. Moreover, the system of functions (g,(t), ..., g,(t)) is the unique solution
of the problem (2.11) in the class V{,,+p4,-p). Applying the property (P) we can
extend uniquely the local solution to the whole interval (a, b), which completes
the proof of Theorem 2.2.
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