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Časopis pro pěstovaní matematiky, roí. 101 (1976), Praha 

CERTAIN RELATION BETWEEN VECTOR FIELDS AND DISTRIBUTIONS 
ON A DIFFERENTIABLE MANIFOLD 

TOMAS KLEIN, Zvolen 

(Received September 9, 1975) 

Let M be a differentiable manifold. Let X be a vector field on M and let id be a dis­
tribution of ft-dimensional tangent subspaces on M. 

In this paper we shall study some relations between the fields X and distribution A. 
In the following computations we use the calculus of jets, see [2]. 

1. Let Th(M) be the vector space of all /^-velocities on the manifold M, i.e. the 
space of all 1-jets of local mappings from Rh into M with the source 0 e Rh. Let X 
be a vector field on M and f # its 1-parametric local group. Let us remind that the 
vector field X can be naturally prolonged to Th(M) according to the rule 

1X(w)=jJ[joC#.<p)], for ueT^M), where u = j£<p. 

Let (xl)9 i = 1, 2,..., n9 be local coordinates on M, dimM = n; let (x1, y})9 j = 
= 1, 2,.. . , h9 h ^ H, be corresponding local coordinates on Th(M) and let 

(1) XX ^ai(x)dldxi + b'jdldyi 

be the prolongation of the vector field X to the manifold Th(M). To determine the 
components bj let us remind that 

Th(M) =. (x\ yj) s jl<p , where <p : Rh ~+ M , i.e. q> : xl = (p\uj) . 

The vector field X determines a local 1-parametric group *<& of transformations on M 

<$ : x
k = fk(x\ t) for k = l ,2 , . . . ,n . 

Then 

Hence 
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(3) '*/ř(M) = «'(x) eieXi + °^j] (x*) eiey{ 

Consequently the vector field lX from (l) can be expressed in the form 

(T) iXsa'Wdldxt + ^fidldyi. 
oxK 

2. Let us consider a global cross-section 

(2) r:M-*Tl(M). 

In local coordinates 
f : x ' = x ' , y'j =/}{**). 

The restriction of the prolonged vector field lX to the submanifold F(M) c T£(M) 
is given by 

cbc* 

for A = 1, 2 , . . . , n. 

Definition 1. A vector field X on M is said to be conjugate to the map F if 

(4) r4x)m*xirw). 
F*(K) is a vector field on F(M). Therefore, according to (2) and (3), its local 

expression is given by 

(5) rjX) = a'(x) d/dxf + a* f # 5/3^ . 
OX* 

Substituing from (3) and (5) into (4) we obtain 

The map (2) determines h vector fields Xr on M with the local expressions 

(7) Xr^fi(x)dldXi for r = l,2,.. . ,fc. 

When X is an arbitrary vector field conjugate to the map F, we get 

(8) ix.xa-{«$.*w-'&a^>i»*, 
where [K, Xr] are Lie brackets. 

By comparison of (6) and (8) we obtain 

Lemma 1. A necessary and sufficient condition for a vector field X to be con­
jugate to the map F is that 

[K ,K r]=-0 for each r =- 1, 2,.. . , h . 
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3. Let J? Th(M) denote the set of all regular hl-velocities on M. Obviously, 
RTh(M) is an open submanifold of the manifold Th(M). If X is a vector field on M 
then iXJR Th(M) is a vector field on R Th(M). Let Kx

h(M) denote the factor space 
of RTh(M) consisting of all classes of the form Y. L\9 where Yis a regular /^-velocity 
on M and l)h is jthe full linear transformation group of JR\ Let A be the distribution 
of ft-dimensional tangent subspaces determined by a map T : M -> KJ;(M). We have 
the canonical projection Q : R Th(M) -» Kl(M). If *# is the 1-parametric local group 
on M generated by the vector field X and if *$l is the 1-parametric local group on 
R Th(M) generated by the vector field XXJR Tl(M) then 

(9) *4>i(u) = <<P.u, ue RT£(M) • 

Here the dot denotes the composition of jets. It follows from (9) that the map '#£ 
preserves the classes Y. l}h. Thus we can define a 1-parametric local group on Kl(M) 
by the formula 

(10) ' ^:WK^^] 
where \v\ eK^(M) denotes the class of v e R T£(M). The vector field *% on K\(M) 
induced by *$£ will be called the hx-tangent prolongation of the vector field X. 
Obviously we have 

(11) Q£X) = IX. 

The map F : M ~» F(M) is a diffeomorfism and r*(X) is a vector field on F(M) c 
<= Kl(M). 

Definition 2. A vector field on M is said to be conjugate to the distribution A 
if F*(X) = xljr(M). 

Let us remark that A. DEKR£T in [1] investigates the conjugacy of special vector 
fields and special distributions on the manifold T(M). 

Definition 3. A vector field on M is called a subfield of the distribution A if 
X(m) € Tm for all meM. 

Lemma 2. Suppose that9 for each subfield Y of A, the Lie bracket \X9 Y] is also 
a subfield of A. Then for each point ueM there is a neighbourhood U c M and 
vector fields X s Xl9X2i . . . ,Z f c+1 on U such that A is generated by X29..., Xh+t 

and [X, X8] = 0 holds for s = 2, 3, . . . , h + 1. 

Proof. Let UEM. Let (£7, JC1, x2
9..., x") is a chart on M such that X ss 3/dXi 

in the neighbourhood (7 of «. On U there are vector fields X = 3/3xt = Yt9 Y2,... 
••*»*fc+i> where Y2,..., Yfc+1 generate the distribution A on U. Because [X9 Y] 
is a subfield of .d for each subfield Y of ,4 we can see that [Yl9 Ya] are subfields 
of A on U for a = 2,.. . , ft + 1. Let 

I"! s X • 0/&C,., Ya = al
a6ldXi, 
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where a[ are real functions on 17. The matrix ||a«|| has rank h for each point xeU. 
Suppose e.g. that det. ||a*|| =# 0. Let ||fc;|| denote the inverse if \as

a\. Put 

X.-blY.-bMdldxt. 
Then 

Xs = djdxs + b*a£ djdx0 , where p = 1, h + 2,. . . , n , 
i.e. 

(12) Xs~dldxs + c*sdldxfi. 

Because [X, y] is a subfield of zi and the vector fields Xs generate the distribution A 
on 17, we get 

(13) [Kt, Xa] = Xs
aXs = ^ a/3x, + X\A dldxfi . 

From (12) and (13) we derive 

(14) ^..yj-p-a/ax,. 

By comparing (13) and (14) we obtain 

(15) XI = 0 . 

Finally, substituting (15) into (13) we get [X, XJ = 0, q.e.d. 

Definition 4. The map F : M -+ RT^(M) is called related to the distribution A 
given by the map f : M -> K,J(M) if f = £ . f. 

Lemma 3. Le* the map f be.related to the distribution A, let a vector field X be 
conjugate to the map T. Then X is conjugate to the distribution A. 

The proof follows from (11). 

Lemma 4. If the distribution A is conjugate to the field X then there is locally 
a map f from M into RT^(M) which is releated to the distribution A and conjugate 
to the field X. 

The proof follows from the definition of Kl(M). 

Theorem. Let A be a distribution on a manifold M given by a map F : M -* 
-> Kl(M). LetX be a vector field on M and Ya vector subfield of A. Then a necessary 
and sufficient condition for X to be conjugate with A is that [X, y] is a subfield 
of A for each subfield Y. 

Proof. Let X satisfy the condition that [K, Y"\ is a subfield of A for each subfield Y. 
According to Lemma 2 there are vector fields Xs such that \X, -KJ = 0. The vector 
fields X2,...,Xh+i determine uniquely the map F : M -+ RT£(M). From Lemma 1 
it follows that f is conjugate with X. Lemma 3 implies that A is conjugate .with K, too. 
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Conversely: Let A be conjugate with X. According to Lemma 4 there is a map f 
which is conjugate with X. The map f determines vector fields X2,...,K fc+1 such 
that [X, X j = 0, on account of Lemma 1. Let Y = /iaXa, the [X, 7] is of the form 
v*Xm9 as well, and hence [X, 7] is a subfield of A, q.e.d. 

The author is-grateful to A. DEKR£T for suggesting him this problem. 
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