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ON OVALOIDS IN E*

Avors Svec, Olomouc
(Received January 19, 1976)

One of the main tools used for characterizations of hyperspheres in E" is the integral
formula (1.14.1) of [1]. For a simple situation to be described below, we are going
to rewrite this formula and to prove several more profound consequences of it.

Let M® = E* be an hypersurface satisfying: (i) on M?, there is a system of lines
of curvature, (ii) the principal curvatures are positive, (iii) the boundary oM?
of M3 consists of umbilical points. ,

In a suitable domain of M3, consider the moving orthonormal frames {M, vy, Uy,
v3, v,} such that v,, v,, v; are tangent to the lines of curvature. Then

1) dM =  o'v; + 0%, + @p;,
do;, = wiv, + 0ivy + wlv,,
dv, = —olv, + w3vy + w3y,
dvy; = —wiv, — oo, + wiv,,
dv, = —owiv, — 0lv, — vlv,

with the usual integrability conditions, and we may write

1 2 4 3

4
(2 o} = aw', 03 = bo?, of=co’®,

a>0,b>0,c> 0 being the principal curvatures. From (2), we get
(3) dano' +(@a-b)otAw?+(a-co} rw®=0,
(@a—b)oirw +dbAw®+(b-c)o; Aw =0,
(@a—coiro +(b-c)ojAw?+dera®=0
and the existence of functions ay, ..., ¢3, e such that
(4  da=a0" + a,0* + a;0°, (a — b) ®? = a,0' + b,0? + ew®,
db = byo' + b0? + by®, (a — ¢) 0} = a;0! + ew? + ¢,0°,

dec = ;@' + ;0% + ¢c30°, (b - ¢) W} = ew' + byw? + c00°.
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The curvatures-of M? be defined by
(5) H=a+b+c, L=ab+ac+ bc, K=abc.
On M3, consider the invariant 2-form

(6) 1=(b—clw Aw)—(a-c)Pao®Aranl+(@-bPlo Aowi;

we have |

) dt = {20(by, ¢;, a,) + 2¢(ay, ¢z, by) + 2¢(as, bs, c3) + 6€* +
+(a—b)lab+(a=c)lac+(b—c)bc}w' Ao’ Ao,

where

®. o(x,y,z) =x + y2 — xy — xz — yz.
Tlleorem 1. Let M.3 < E* satisfy (i)—(iii) and (iv): there is, on M?,
© Ada +Bdb + Cde =0,
A, B, C being functions such that
(100 4>0, B >'0, C>0; o4,B,C)20, ¢4,C,B)=0,
e(B,C,4)20; oX,Y,2):=4X+Z2)(Y+2)- (X + Y- 2Z).
Then M? is a (part of a) ﬁypersphere.
Proof. From (9), we gef
(11) Aay = —Bby — Ccy, Bb, = —Aa, — Cc,, Ccy = —Aa; — Bb,.
Then
(12)  Ap(by,ci,a) =(A+B)b] + (B+C —A)byc, + (4+C)c2 20,
Bo(az, ¢, b;) = (A + B)a; + (A+ C—B)aye, + (B+C)c3 20,
C(p(as,b by, ¢3) =(A+ C)aj+ (A+ B —C)azb,+ (B+ C)b2 20

as a consequence of (10). From the Stokes formula [, t = [mdz,wegeta=b=c.
QED.

Theorem 2. Let M* < E* satisfy (i)—(iii) and (iv): there is a function F(H, L, K)
such that on M?,

(14) - o(b,e)>0, o(ac)>0; a(a, b) > 0;
o(¢,n):= Fg + (& + 1) Fr + &nFy ;
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(15) x(a, b,c) 20, x(a,c,b) 20, x(b,c,a)20,
(u, v, w) :="15F5 + 4(2u® + 20 + Suv + 3uw + 3ow) F} +
+ (Bu?v? — w*w? — v*w? + 6uow + 6uv’w + 2uvw?) Fy +
+ 12(2u + 20 + w) FgF, + 6(3uv + uw + vw) FyFg +
+4(3u”v + u’w + 3uv® + v’w + Tuow) F Fx.

.

Then M? is a (part of a) hypersphere.
Proof. From (13), we get (9) with
(16) A =o(b,c), B=od(a,c), C = o(a, b)
and the conditions (10) turn out to be exactly (14) and (15). QED.
Let us prove just two consequences of our Theorem 2.
Corollary 1. Let M® < E* satisfy (i)—(iii) and (iv): we have, on M3,
(17) f(H,L,rHL + K) =0,

r € R satisfying 83r = 6 \/(3) — 5 and f(x, B, y) being a function with one of its
derivatives positive and the other two non-negative. Then M> is a (part of a)
hypersphere.

Proof. Set
(18) F(H,L,K) = f(H,L,rHL + K) .
Then ’
(19) Fy =f, +rLf,, Fy=fy,+rHf,, Fx=f,,

(0 oG =fa+t C+n)fp+{{E+n)QH =& —n)+(r+1)en}f,,
and we have (14). Further, '

(21) w(u, v, w) = ufE + l‘zfﬂz + p3fofs + Bafof, + usfef, +
+ {ue + (83r% + 10r — 1) w?(u* + v*)} £
with p; = pu, v,w) 2 0 for u 20, v 2 0, w 2 0, and (15) follow easily. QED.
Corollary 2. Let M*® < E* satisfy (i)—(iii) and (iv): we have, on M3,
(22) K = const., 4HK = I*.

Then M? is a (part of a) hypersphere.
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Proof. For F(H, L,K) = K — const., we get

x(u, v, w) = 3uv® — ww? — v®w? + 6ulvw + 6uv’w + 2uvw® =
=4u + v+ w)uow — (uv + uw + vw)® + duv(uv + uw + vw) .

Thus (22,) imphies (15). QED.
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