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ON GENERALIZED WEINGARTEN SURFACES

M. AFwaT, Cairo
(Received June 30, 1975)

Following the ideas of A. SvEc [1], I am going to present further generalizations
of the H- and K-theorems.

L

Theorem 1. Let G = %#?* be a bounded domain, M : G U dG — E? a surface with
a net of lines of curvature, v, and v, the unit tangent vector fields of these lines,

k, and k, the corresponding principal curvatures. Let M(0G) consist of umbilical
points. Further, suppose

(1.1) . Kzo,
(1.2) (kl - kz) (Ulvl - Uzvz) H g 0
on M. Then M(G U 0G) is a part of a sphere.

Proof. On M, consider a field ot tangent orthonormal moving frames {m; v,

) 027
v3}. Then ‘

(1.3) dm =  o'v + @’v,,
dvl. = . wiv, + oy,
dv, = —wlv, + wlv,,
dvy; = —oiv, — w3,

with the usual integrability conditions. We have

(1.4) 0! =an!, o =cw?

(1.5) da = aw' + po?,
(@ = )i = po' + yo?,

de = yo! + é0?;
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(1.6)

and

(1.7)
(1.8)
(1.9)

(1.10)

For

(1.11)

da — 3Bw} = Ao' + Bo?,
dB + (x — 2y) @} = Bo' + (C + aK) w?,
dy + (28 — 8) o} =(C + cK) ' + Dw?,

dé + 3yw? = Do! + Ew?

va=a, va=f, vic=y, v,a=29,;
v H = Ha +7), v,H =4B +9);

(a =)o =36 + Ala — ¢),
(a—c)v,B =3By — af + B(a — c),
(a—c)vyy =B —2B) +(C+ cK)(a — ),
(a—c)v,8 = D(a — c) — 3py,

(a = c)v,a =3By + Bla —c),
(@=c)vp=2y* —ay + (C + aK)(a — ¢),
(@ =)oy =6 — 2B) + D(a — ¢),

(@ = ¢)v,6 = E(a — ¢) — 3y?;

(a—c)vypH= 3B+6)p+Ha—c)(4+C+cK),
(a —c)vyv,H = —Ho + 7) B + 3(a — ¢)(B + D),
(a—c)v,p;H= 3B +6)y+Ha—-c)(B+ D),

(@ =)oy, H = —3a +7)y + 4(a — ¢)(C + E + akK).

f=2H? —K) = ¥a - o,

define its covariant derivatives f;, f;; by

(1.12)
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df =fio' + f,0%;
df, _fzw} = f1,0' + f1,0%,

df; + fi0] = f,0" + f,,0%.



Then

(1.13) fiu=(*—a)K+(@-yP>+4p +(a—¢c)(4-C),
faa=(*—ac)K+ (B -6} +4?*+ (a—c)(C+E),
fia=(@=7)(B—-0)+4fy + (a — c)(B - D).

Now, set

(1.14) S=(v, +v,)H;
v H + v,0,H =0v,S,
v,0,H + vy0,H = 0,8,

ie.,

(1.15) P +ps+Kac—c*)—py—ap+(a—c)A+(a—c)B+
+(@a—c)C+(@—-c)D—-2a—-c)v,S=0,
By +y5 —y* —ay+(a*—ac)K+(a—c)B+(a—c)C +
+(a—c)D+(a—c)E—-2a—-c)v,S=0.

Eliminating 4, B, C, D, E from (1.13) and (1.15), we get

(1.16) fir + f22 = 4Kf + 2(a — ¢) (v,S — v,8) + o — 3ay +

+ 4y + 4B* — 385 + 6% + af + 2By + 5.
Now, ’
(1.17) v,S — 1,8 =v,0,H + v,0,H — v,0,.H — v,0,H,
(1.18) (@ — ¢)(v,S — v,8) = (a — ¢) (v;v,H — v,0,H) — ¥(B + 8)y —

- Ha+7)8,
and (1.16) turns out to be ' _
(119)  fiy + f22 — 4Kf = 2(a — ) (v, — vy0,) H + (¢ — 3) +
+ (6 — 38) + HB* +77).
This equation satisfies the conditions of the maximum principle because of (1.1)

and (1.2). Thus H? — K = 0 on M(9G) implies H* — K = 0 on M(G). QED.

Theorem 2. Let G = #? be a bounded domain, M : G U 8G — E* a surface with
a net of lines of curvature, v, and v, be the fields of the unit tangent vectors of
these lines, k, and k, be the corresponding principal curvatures. Let M(aG) consist
of umbilical points. On M, suppose
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(1.20) K>0,

(1.21) (ky = k3) (vy0, — v,0,) K 20,
. 2 :
(1.22) . 4 < ke < 1—1.
11~ k27 4

Then M(G L 0G) is a part of a sphere.
Proof. Let us keep the notation of the proof of the previous theorem. Then
(1.23) v,K=ay+ca, v,K=ad+cp;
(1.29) (@ = ¢)v,0,K = a[B(6 — 2B) + K(ac — ¢*)] + 3cp* +
+ala—c)C+cla—c)A+2a—c)ay,
(a = ) v0,K = c[y(2y — @) + K(a® — ac)] — 3ay* +
+ca—-¢c)C+ala—c)E +2a—c)pd,
(@ = ¢)v,0,K = cp(2y — «) — 3aBy + c(a — ¢) B +
+al@a—c)D + (a—c)(x — By),
(@a—c)v,v,K =ay(d — 2B) + 3cpy + cla—c)B +
+a(a—c)D + (a —c)(xd + By).

Set

(1.25) (v +v)K=S.

Then

(1.26) (040, + vy0,)K = 0,8,
(v2v, + v0,) K - v,S.

From (1.24)

(127)  a(Bé — 26%) + aK(ac — c*) + 3B + 2(a — c) oy —
— 3aBy + 2cBy — caf + (a — ¢) (28 + By) —
—(a—c)o,S + (ca— ) A+ (ca—c*)B +(a® — ac) C +
+(a* —ac)D =0,
a(yé — 2By) + 3cBy + (a — c) (ad + By) — 3ay* +
+ 20y — cay + Ke(a? — ac) + 2(a — ¢) B — (a — ) v,S +

+ (ca — *)B + (ca — ¢*)C + (a*> — ac) D + (a* — ac)E =0.

266



Eliminating 4, B, C, D, E from (1.13) and (1.27), we get

(1.28) “ofiutaf;—2K(@+c)f=(a~c)(v; —v)S +
+{(a + ¢) By + caB + ays} + (3a + c) B +

+(a +2)p6 — (2a + c)ay + (a + 3¢)y* +
+ coa? + ad?.

From (1.24) and (1.26),

(1.29) f11 + afy — 2K(a + ¢)f = (a = ¢)(v,v; — v0,)K +
-9
A E (-9

This equation satisfies the conditions of the maximum principle because of (1.20) to

(1.22). Again, H* — K = 0 on 9G implies H* — K = 0 on G. QED.

Remark. Let us replace (1.21) and (1.22) by the condition K = ac = const. > 0.
Then )

(1.30) v,K=cx+ay=0, v,K=cf+ad=0.
Put
(131) ®@ = pa, ﬁ=qa’ = —pc, 6='~qc

The equation (1.29) turns out to be
(1.32) of 11 + af2, — 2K(a + c) f = p*(3a*c + 2ac* + 3¢%) +
+ q*(3ac? + 2a%c + 3a®) = (cp® + aq®)(3a* + 2ac + 3c%),

and we get the proof of the K-.theorem.

2.

Let us consider the surfaces with nets of lines of curvature (for notatior, sée our
Theorems) for which they are functions P, Q, T': M — 2 such that

(2.1) Po,H + Qu,H + T=0.
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Following the remark to Theorem 2 in [1], we wish to establish the class of
operators (2.1) such that we might be able to prove by means of the maximum prin-
ciple that each surface satisfying (2.1) is a part of a sphere.

Without loss of generality, (2.1) may be written as

(2.2) ’ vH ¥ RoyH = 5.

Applying v, and v, to (2.2) and using (1.10), we get the equaiions of the form

(2.3) (a—c)(A+ RB+C + RD)=%,(a,C,aB7,9),
(a—c)(B+ RC+ D+ RE) =®,(a,C,0,B,7,0)

Now, our task is to eliminate 4, ..., E from (2.3) and (1.13). For this, the rang of
the matrix (of the coefficients at 4, ..., E)

(24 ' (@a-o¢.

SO = O =
OI—KOD—‘x

1
R
-1
0
1

o.—-o»—-z

0
R
0
0
-1

should be <5. This implies R = +1, and our operators are given by
- (2.5) - (v tv)H-S=0.
Similarly, for the operators of the form
(2.6) PvK + QuK+ T =0,
our class of “‘convenable” operators is given again by

(2.7 (v £ v)K—=58"=0.

3.

We might give a generalization of Theorems 1 and 2, this being, of course, not as
sharp in the suppositions.

Theorem 3. Let G = R#* be a bounded domain, M : G LU dG — E* a surface
with a net of lines of curvature, v, and v, the unit tangent vector fields of these
lines, ky and k, be the corresponding principal curvatures. Let M(0G) consist of
umbilical points; further, let us suppose
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(3.1)

K20,
2
4 k1
11 "k 4

on M, and let there be a function F : M — #?* satisfying

(3.3)
(3.4)
(3.5)
(3.6)

(kl - kz)(vlvl - 1.7202) F(H, K) g 0,

(k1 - kz) (v + v))H. {FHH(UZ - ”1) H + Fm((vz - ”1) K} 20,

(k1 - kz) (vl + Uz)H . {FKH(vZ - vl) H + FKK(vZ - vl)K} _Z__ 0

on M(G U 8G). Then M(G v 0G) is a part of a sphere.
Proof. The function S be defined by

(.7)
(3.8)

(v + v,) F(H,K) + S =0.

{F,.,,,.le + Fyg .v,K} . (v, + ) H + (0,0, + v,0,) H. Fy +
+ {Fgu . v.H + Fgg . 0,K} . (v, + 0) K + (vy0, + vlvz)K.FK +
+v,8S=0,

{Fup . v,H + Fgg . 0,K} . (v; + v,) H + (00, + v,0,) H. Fy +
+ {Fxn.v,H + FKK.vzi(} vy + v)K +

+ (Uzvl + vzvz)K.Fx + UzS =0.

From (1.8), (1.10), (1.23) and (1.24),

(3.9)

(a — ¢) {Fuu(3a + 3y) + Fux(ay + co)} (3o + 3y + 18 + 36) +
+3F (B + B — Py —af+(a—c)(4+ C+cK+B+ D)+
+ (a = ¢) {Fxu(3a + 3y) + Feglay + ca)} (ay + cox + ad + cf) +

+ Fy[a{p6 — 26* + cK(a — o)} + (a — ¢)ya + 3cB? + (a — c)ay +
+a@a-c)C+ca—c)A+a(a~c)D + c(a — ¢c)B — 3afy +
+(a—c)ad + 2cpy — caPp + (a — c) py] + (a.-— c)v,S =0,

(a = ¢) {Fau(38 + 39) + Fux(ad + cB)} (3o + 38 + Iy + 39) +
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+ 3Fg[py +v6 +(@a—c)(B+ D) —y* —ya + (a — ¢)(C +

+ aK + E)] + (a — ) {Fxu(38 + 33) + Fyx(ad + cB)} (ay +

+ co + ad + cf) + Fxlays — 2aPy + (a — ¢) By + 3cfy +

+ (a —‘c)aé +ala—=c)D+cla—c)B+a(a—c)E +
+cla—c)C—3ay* +(a—c)Bd + 2cy* — cay + c(a®> — ac)K +
+(@a—=c)Bs} +(a—c)v,S=0.

Multiplying the first two equations (1.13) by (—4Fy — cFg) and (—4Fy — aFy)
resp., and using (3.9), we can eliminate A, B, C, D and E, and we get

(3.10) (4Fm + cFx)f11 + 3Fy + aFy) fr, — (4FuK + 2FgH} 2f =
= (a = ¢)(vyv, — v,0;) F + 3F4[3(B — 16)* + 3(y — 4o)* +

+ B* + 9% + }o? + }0%] +FK[a{6—G+5)B}2+

a
+a<121——£;>ﬁz+c{a —G+S—)y}2+ c(—t%—g;)yz]+
+(a — ¢)Fyg(vy, + v;)H . (v, — v)) H +
+(a —c) Fax(vy + v2) H.(v; —0))K +
+ (a — ¢) Fgu(vy + v2)K . (v; — v,) H +
+ (a = ¢) Fgglvy + v,)K . (v; — v))K.

The result follows.
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