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HARMONIC MAPPINGS OF SURFACES

Avois Svec, Olomouc
(Received November 7, 1975)

We are going to study the harmonic and slightly less than harmonic mappings
f:M > N in the case dim M = dim N = 2. For further details, see [1]—[9].

1. Let M, N be Riemannian manifolds, dim M = dimN =2, f: M —» N a map-
ping; everything be of class C®. Let us suppose that M and N are oriented and
f: M — N is orientation preserving. Let M be covered by a system of domains such
that in each of them we are able to choose a field of orthonormal frames {v,, v,},
let {w', w?} be the dual bases. The Euclidean connection of M is then given by

(1.1) Vm = o'v, + 0*v,, Vv, =owl,, Vv, = —ol,;
do! = —0? A 0}, do? =o' A 0}, do} = —-Ko' A 0?,
K being the curvature of M. Analoguously, the connection on N be given by
(1.2) V¥n = QU + Q%3 ; V*T = Qvy, V*} = —QvT;
dQ' = —Q? A @}, d2? = Q' A Q3, dQ?} = —K*Q' A Q2.

On M, we get the induced forms

(1.3) =Y, =%, 1} =0}
satisfying
(1.4) di' = =12 A 13, di? =1 A1}, di? = —K*t! A 2.

Let us write

(1.5) ! = q,0' + a,0%, 1 = a0 + a,0*.
Then
(1.6) A2 =po' A w?*, where p=aa, —aa; 20.

By means of successive exterior differentiations of (1.5), we get the existence of
functions b,, ..., bg, ¢y, ..., cg such that
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(1.7)  (day — a,0% — as1]) A @ + (da; + a,0% — agti) A 0> =0
(day — a,0} + a;7%) A ! + (dag + a;0% + a,72) A 0?2 =0;
(1.8) . da, — azwf — ayt? = b,0' + b,0?,
da; — a,0? + a,72 = by0! + bsw?,
da, + a,0% — a,13 = b,o! + byw?,
da, + a;0% + a,72 = bsw! + bgw?;
(19)  (dby — 2b,0% — byt®) A 0! + {db; + (b, — b;) 0? — bt} A 2
= (a,K + a;uK*) o' A 0?,
"{db; + (by — bs) @} — bsti} A @' + (dbs + 2b,07 — beti) A ©?
= (;-alK + auK*) o' A @?, |
(dby — 2bsw? + by7}) A @' + {dbs + (by — bg) ®] + by7}} A @02
= (a,K — a,pK*) o' A @,
{dbs + (bs — be) 0} + b,y13} A @' + (dbg + 2bsw} + by1) A @2
= (—a3K — a,pK*) o' A 0?;
(1.10) db, — 2b,0? — b1} = c,0! + c,0?,
db, + (by — by) @} — bstt = (c; + a,K + azuK*) 0! +
A + (c3 + a,K — a,uK*) 0*,
db, + 2b,0% — betr = c;0" + c0?,
db, — 2bsw? + b;7? = cs0' + csw?,
dbs + (by — bg) @} + byt = (c6 + asK — a,uK*) ' +
| + (c7 + a3K + a,uK*) 0?,
dbg + 2bsw? + by13 = ;0" + cgw? .
Of course, we have
(1.11) ds? = (0')? + (0?)?,
‘ dst = ()P + (@ = ,
= (a? + a%) (@) + 2(a,a, + a3a4;) o'ew? + (a3 + ad) (0?)*.
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The fundamental invariants of f are
(1.12) I, =al+al+al+a}, I, =(a, — a,)* + (a; + a3)*.

The mapping f is called constant if I, = 0; f is said to be conformal if I, = 0; the
geometrical signification is obvious. To each point m € M, we get the induced qua-
dratic mapping

(1.13) Fan : T(M) > TrfN),
Faa(xvy + yv,) = (byx? + 2byxy + byy?) v + (bax? + 2bsxy + bey?) v3 ;
see [2]. Further, we get the mappiﬁg | |
(114)  t:M > T(N), t(m)eTym(N); t=(b; + by)o* + (b + be)v};
t is the so-called tension field. The expressxons
(1.15)  J, = (b, + 1;3)2 + (bs + b6) , J2 = b2 + 2b2 + b3 + b4 + 2b3 + b

are invariants of fas Well; fis said to be harmonic if J ; = 0,and it is totally geodesic
if J, =

2. Let us produce several integral formulas.
First of all, consider the 1- form

(2.1) = {(a, — a4) (bz + b4) — (a; + a3) (b; — bs)} @ +
+ {(al - 04) (bs + bs) - (azi + a,) (bz - bs)} o*;

¢, is invariant. Then

(2-2) ‘ -[ 0, =J. {2L, - IZ(K + uK*)} 0! A 0?,
oM J M o
_ bl - bs bz - b6 .
where Ly =1} | b, b, + b,

For the invariant form

(2:3) @y = {(ay + a) (b, — by) — (az — a3)(by + bs)} 0 +

t + {(a1 + a4) (b3 — bs) — (a5 — a3) (b + be)} &7,
we ge

(24) [ o= fra s 1uxe - )0t e,
oM M

| by + by by + b
where sz_—' by — by by ~ by
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and

(2.5) 13 = (al + a4)2 + (az - a3)2 .
Further,
(2.6) %dl] = (a,bl + a2b2 + a3b4 + a4b5) wl +

+ (ayb, + aby + azbs + azbe) ©*,
ie.,

(2.7 %J. »dI, =J' {ay(cy + ¢3) + ay(c; + ¢4) + as(cs + ¢7) + aq(ce + c5) +
oM M

+ Jz + I,K — 2p°K*} o' A 0*.

Analoguously,

(2.8) 3dI, = {(a; — ag) (b, — bs) + (a2 + a3) (by + by)} ' +
+ {(a; — ay) (b, — bs) + (a, + a3) (b3 + bs)} ?

and

(2.9)

lj. *dIz=J. {(ay; —as)(c; + c3—cs—cg) + (ar + a3)(ca + co + ¢5 + ¢7) +
2 oM M

+ (by — bs)? + (by + by)? + (by — bg)®* + (b3 + bs)* + (K + pK*)} o' A 0.
Next,
(2.10) ‘}dI3 = {(al + 04) (bl + bs) + (az - 03) (b2 - b4)} wl +

+ {(ay + ag) (b, + be) + (az — a3)(bs — bs)} @?

and

(2.11) 1J. »dl, =J. {(ay + ag)(c; + ¢35 + ¢ + c5) +
¢ 2 ) e .
+ (a; — a3)(c; + ¢4 — c5s — ¢7) + (by + bs)* + (b, — by)* +
+ (b + b)* + (b3 — bs)? + I;(K — pK*)} o' A o?.
Finally, consider the invariant 1-form
(2.12) @3 = {(by + b3)(cs + ¢7) — (by + bg)(c; + ¢3)} @* +
+ {(b; +.b3)(cs + c5) — (bs + bg) (c; + c4)} @*.
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From (1.10), we get
(2.13) d(by + b3) — (ba + be) 1] = (c; + c3) 0! + (cz + cq) 02,
©d(bs + bg) + (by + b3) 1} = (c5 + c;) 0! + (c6 + cg) 2.
The exterior differentiation yields
(2.19) {dle, + €3) = (c2 + ca) ©F = (c5s + ¢5) 12} A 0! +
+ {d(c; + ca) + (¢; + c3) @} — (c6 + c5) T} A 0? = (bs + bg) uK*w* A ?,
{d(es + ¢7) = (cs + eg) 01 + (c1 + ¢3) 11} A 0! +
+ {d(cs + cg) + (cs + ¢7) @] + (2 + )T} A P = =(by + by) uK*o' A 02
and the existence of functions e,, ..., e; such that
(2.15) d(ey + ¢3) = (c2 + ca) F = (c5 + €)1} = e,0" + (e; — buuK*) w?
d(c; + ca) + (e + ¢3) @ = (c6 + cg) 72 = (e, + bsuK*) o' + e;0?,
d(cs + ¢;) — (cs + cg) 0] + (cy +¢3) 1} = 0! + (es + buK*) 0?,
d(cs + c5) + (s + c) 0F + (e + c4) 1} = (e5 — byuK*) 0" + eg? .
By means of (2.13) and (2.15), we get the integral formula

¢ + ¢y C; + ¢4

(2.16) J‘ 03 =f 2Ly — JiuK*) o' A @*, where L, = )
oM M . Cs + ¢7 ¢ + Cg

3. Let us explain the geometrical interpretation of the invariants L;. Introduce the
invariant operator

(B1) T (M)>T(M), meM; »(xv, +yo,) = —yv, + xv,;

satisfying w(*v) + *0(v) = 0 for ve T,(M), we THM). To f" (1.13), consider
the associated bilinear mapping

(3-2) 2L : T(M) x T,(M) > Tym(N),
L(x'vy + xPvy, ylo, + ¥?0;) = (byx'y' + byx'y? + byx?y! + byx?y?) v} +
o+ (bax'y! + bsx'y? + bsxp' + bex?y?) v} .
Finally, consider the operator
(3.3) « :T(N)> T(N), neN; »(&} + n}) = —nt + 'év}'.
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Lemma 1. Let v € T,,(M) be an arbitrary unit vector. Then
(34) L, = (ZL(v, v) + »Z(v, »v), L(sv, *v) — +»ZL(v, %)),
L, = (ZL(v,v) — «L(v, #v), L(»v, #v) + +L(v, %)) .

Proof. Because of the invariance of L,, L, and %, we may choose the frames such
that v = vy, i.e., 0 = v, at me M. Then

.?(01, Ul) = blv: + b4U; >
L(vy, 0,) = byv} + bsvy, L(vy, v,) = by} + bevs,

and our Lemma follows. QED.

Lemma 2. Let t (1.14) be the tension field, v € T, (M) an arbitrary unit vector and

(3.5 Vi=fa, Wi=fy(w).
Then
(3.6). : Ly = (#Vyt, Vit .

Proof. We have
V*t = (by + be) (11 — Q1) v} + (by + by) (RF — 73) 0} +
+ {(c; + c3) @' + (c; + cg) @} T + {(c5s + ¢;7) @' + (c6 + c5) @*} v},

Notice that, for each form Q € T*(N) and each vector v € T(M), we have f *Qv) =
= (f4v). Set v = v, at m e M. Then

vt=(c; + c3) v} + (cs + ¢;) 03, Vgt =(c; + c4) o] + (cs + ¢5) 03, :
and the Lemma follows. QED. '

Lemma 3. Let t (1.14) be the tension field and V, W be defined by (3.5). Lete = +1.
Then :
(3.7) Vi +exVii=0
for each ve T(M) if and only if
(38 ¢, + ¢y —&(cg + cg) =cy + ¢y + 8(cs +¢;) =0.
Proof. Let v = xv, + yv,. Then ’
Vot ={(c, + c3)x + (c; + ca) y} o} + {(¢cs + 1) x + (cs + cs) ¥} 7,
Vit = {(c; + c4) x = (e + c3) ¥} ot + {(cs + cg) x — (cs + ¢7) ¥} v}
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and
Vit + ex Vit = {c; + c3 — &(ce + cg)} (xv] — eyv3) +
+ {cz + cq + &(cs + 7))} (v} + exv}).
The Lemma follows easily. QED.

4. Our main task is to obtain several typical geometric consequences of our integral
formulas (2.2, 4, 7, 9, 11, 16). In all theorems, M and N are Riemannian manifolds,
dimM =dim N =2, f:M — N is an orientation preserving mapping, dM the
boundary of M. All other notions have been explained above.

First of all, let us state the following

Lemma 4. The condition

(4.1) f is harmonic
and|or the condition
(4.2)  for each me M there is dim fu4(T,(M)) < 1 and there exists a vector
0 * ve T, (M) such that f,,(v) =0
implies
(4.3) L,£0, L,<0.
Proof. The condition (4.1) is equivalent to b, + b; = b, + bs = 0. Hence
Ly = —(by — bs)* = (b, + by)2.< 0, L, = —(b, + b,)* — (b2~ ba)* < 0.

From (4.2), we get — see (1.13) — the existence of functions g, 6, By, B;, By such
that

b, =0B,, b, =¢B,, by=¢B;, b,=0B;, bs=0B:, bs=0B,
and

Sax(xvy + yv;) = (Byx* + 2B,xy + Byy?) (ev} + ov3).
Further,

Ll = IJ2 = (Qz + 0'2)(BIB3 - Bg),

and ouf Lemma follows. QED.

3

Theorem 1. Suppose: (i) L, < 0 on M, (i) K > 0on M, (iii) K* Z 0onf(M) < N,
(iv)I, = 0 on OM. Then f is conformal.

Proof is a direct consequence of (2.2). QED.

Theorem 2. Suppose:'(i) M is compact, (ii) L, < 0 on M, (iii) K > 0 on M,
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(iv) K* < 0 on f(M) = N. Then f is a constant mapping. We may suppose (i’)
J, = 0 on M instead of (i).

Proof. From (2.4), a, + a4 =a, — ay =0. Hence pu = —a} - a?; from u = 0,

we get a; = a;, = 0. QED.

Theorem 3. Suppose: (i) f is harmonic, (ii) K 2 0 on M, (iii) K* < 0 onf(M) c N,
(iv) J, = 0 on OM. Then f is totally geodesic. Replacing (ii) by (i) K > 0 on M, f
has to be a constant mapping.

Proof is a consequence of (2.7). QED.
Theorem 4. Suppose: (i) for each ve T\M), we have Vyt + *Vyt = 0, t being the

tension field and V : = fyv, W := f(sv), (ii) K > 0 on M, (iii) K* = 0 on f(M) = N,
(iv) I; = 0 on OM. Then f is conformal.

Proof follows from Lemma 3 and (2.9). QED.
Theorem 5. Suppose: (i) for each ve T(M), we have Vyt + *Vyt =0, t being the

tension field and V := f,0, W:= fy(#v), (ii) K = 0 on M, (iii) K* 2 0 on f(M) = N,
(iv)I, = 0 on M. Then f is harmonic and we have

(4.4) I,(K + pK*) =0
at each point me M.
Proof. From Lemma 3 and (2.9),
by —bs=b,+by,=b, —bg=b;+bs=0

and f is to be harmonic. From (1.10),
ci —cg —aK + auK* =0, ¢, —c; + a,K + a;uK* =0,
¢, —¢q7 —az;K — azyK_* =0, ¢3—cg+aK—aukK*=0,
¢y +cs+ a,K+ auK* =0, c¢3+cg+aK—auk*=0,
c3+cs+aK—auK*=0, c4+c;+a3;K+auK*=0.

By the elimination of c,, ..., ¢y from these equations and from (3.8) for & =1,
~we get

(a; — a4) (K + pK*) = (a; + a3) (K + pK*) = 0,
ie., (44). QED. '

Theorem 6. Suppose: (i) M is compact, (i) for each ve T(M), we have Vyt =
= aVyt, t being the tension field and V:= fy(v), W:= fy(sv), (iii) K > 0 on M,
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(iv) K* < 0 on f(M) = N. Then f is a constant mapping. Instead of. (i), it is suf-
ficient to suppose (i’) J, = 0 on OM.

Proof. From Lemma 3 and (2.11), we get I; =0, ie., p = —a? — a2. From
u=0,wegeta, =a, =0 QED.

Theorem 7. Suppose: (i) M is compact, (ii) for each ve T(M), Vyt = #Vyt, t being
the tension field and V:= fy(v), W:= fy(»v), (iii) K 2 0 on M, (iv) K* <0 on
f(M) = N. Then f is harmonic and we have

(4.5) Iy(K - uK*) =0
at each point m e M. Instead of (i), it is sufficient to suppose (i) J, = 0 on oM.
Proof. From Lemma 3 and (2.11),
by + bs=b, — by =b; + bg =by — by =0,

and f is harmonic. From (1.10),

¢, +cg+aK—auK* =0, c,+cy+ a,K+ auK* =0,

¢+ ¢+ a;K+ auK* =0, c¢3+czg+aK—auK*=0,

c; —¢s + a,K + azuK* =0, ¢3 —cs —aK + a,uK* =0,

¢;—¢cs +a, K —auuK*=0, c4~c;—a3K—auK*=0.
The elimination of c,,..., cg from these equations and from (3.8) for ¢ = —1
implies

(ay + a;)(K — uK*) =0, (a, — a3)(K — pK*) =0,

i.e., (4.5). QED.

Theorem 8. Suppose: (i) Ly = 0 on M, (i) K* < 0 on f(M) < N, (iii) fu(T\M)) =
= Tym(N) for each me M, (iv) J, = 0 on OM. Then f is a harmonic mapping.

Proof. From (2.16), J, = 0 on M. QED.

Theorem 9. Suppose: (i) M is compact, (i) J, = const. + 0 on M, (jii) K* > 0
or K* < 0 on f(M) = N. Then dim f«(T,(M)) < 1 for each me M.

Proof. From J; = const. and (1.10), we get
© (by + b3)(ey + c3) + (ba + bﬁ)(?ﬁ,“" ¢;) =0,
(by + b3)(cs + ca) + (ba + bg)(cs + ¢c5) =0
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and the existence of g, o such thét

¢+ ¢y =0lbs +bs), c¢s+c;=—eb, + by) s
¢C2 + C4 = a(b4 + bﬁ)’ C6 + CB = “'a(bl + b3) .

Thus L; = 0 and our Theorem follows from (2.16). QED.

Theorem 10. Suppose: (i) M is compact, (i) I, = const. + 0 on M, (iii) K 2 0
on M, (iv) K* > 0 on f(M) = N. Then K = 0 on M and dim f,(T,(M)) < 1 for
each me M.

Proof. From I, = const. and (1.8),

(a; — a4) (by — bs) + (az + a3) (b, + by) =0,
(ay — as) (b2 — bg) + (a2 + a3)(bs + bs) =0,

and we may write _
b, — bs = g(a, + a3), b, + b, = —g(a; — a,),
bz - b6 = U(az + 03), b3 + b5 = —O'(al - a4)

for suitable functions g, ¢. Thus L, = 0, and our Theorem follows from (2.2). QED.

The last theorem presents an interesting characterisation of the flat tori: In the
class of compact surfaces with K = 0 just the flat torus might be mapped into a posi-
tively curved N in such a way that I, = const. % 0. It is obvious that the conditions

(iii) + (iv) of Theorem 10 may be replaced by (iii’) K < 0 on M, (iv') K* < 0 on
f(M) = N.

Bibliography

[1] Bishop R. L., O’Neill B.: Manifolds of negative curvature. Trans. AMS, 145 (1969), 1—49.
[2] Chern S. S., Goldberg S. I.: On the volume-decreasing property of a class of real harmonic
_mappings. Amer. J. Math., 97 (1975), 133—147.

[3) Eells J. Jr., Sampson J. H.: Ha_rmonic mappings of Riemannian manifolds. Amer. J. Math.,
86 (1964), 109—160.

[4] Goldberg S. I.: Mappings of nonpositively curved manifolds. To appear.

[5] Goldberg S. I., Ishihara T.: Harmonic quasiconformal mappings of Riemannian manifolds.
Bull. AMS, 80 (1974), 562— 566.

[6) Goldberg S. 1., Ishihara T., Petridis N. C Mappings of bounded dilatation. J. of Math.,
Tokushima Univ., 8 (1974), 1—7.

[7] Kiernan P. J.: Quasiconformal mappings and Schwarz’s lemma. Trans. AMS, 148 (1970),
185—197.

[81 Ruh E. A., Vilms J.: The tension field of the Gauss map. Trans. AMS, 149 (1970), 569— 573
[9] Smith R. T.: Harmonic mappings of spheres. Amer. J. Math., 97 (1975), 364— 385.

Author’s address: 771:46 Olpmouc, Leninova 26 (Pfirodovédeck4 fakulta UP).

292



		webmaster@dml.cz
	2012-05-12T07:52:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




