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RELATIONS BETWEEN GENERALIZED
SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

JAROSLAV PELANT, Praha
(Received June 10, 1975)

This paper is concerned with existence theorems for ordinary differential equations
with discontinuous right-hand sides in a space of finite dimension for various defini-
tions of generalized solutions. We substitute the Viktorovskij definition [2] by an
equivalent definition in terms of differential inclusions and then we establish the
relations between the new definition and the Filippov definition [1].

This paper will be followed by another one dealing with a modification of the
Viktorovskij definition and with an equivalent definition in terms of differential
inclusion, which will be shown to coincide with the Filippov definition. Consequently,
we shall obtain an existence theorem for the modified Viktorovskij solution.

I. AUXILIARY LEMMAS AND DEFINITIONS

Let us introduce the following notation. Let (E,, S, u) be a space with a Lebesgue
measure u, where E, is an n-dimensional real linear normed space with the norm " | ,
S is a c-algebra of Lebesgue measurable subsets. Let the closed convex hull of the

subset E = E, be denoted by conv E. The base formed by n linearly independent
vectors ey, ..., e, will be denoted by (e,,...,e,). U(x,d) will denote an open o-
neighbourhood of the point x in the space E, considered.

Definition 1. A function f defined in a measurable set E < E,, f(E) < E, will be
called weakly asymptotically continuous at the point x, with respect to E if it satisfies

the condition :
V(e > 0) V(6 > 0) (6, € (0, 6)) I(N)V(x e E) .

(> = Xo| < 8o, x¢N = |£(x) — f(xo)} < ©)

where u(N) < p(U(xo, 85) N E) for p(U(xo, 5o) N E) > 0 and if p(U(x,, S0)NE)=0

then N is arbitrary.
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Definition 2. A point x will be called a point of metrical density of the measurable
set E < E,, if y(U(x, 8) n E) > 0 for arbitrary 6 > 0.

Lemma 1. Let an arbitrary measurable set E c E, be given. If E' is the set of all
points of metrical density of the set E, then the set E — E’ is of measure zero.
Proof. We shall use Vitali’s covering of the set E — E’ with the cubes H chosen
small enough to satisfy the condition u(H n E) = 0 for each H. Following Vitali’s
theorem, an at most countable disjoint system of cubes H; can be chosen so that
u((E — E') — UH,) = 0 holds. This implies u(E — E’) = 0.
i

Lemma 2. For every simple measurable function f defined on E < E,, f(E) < E,,
the set of all the points of E at which the function f is not w.a. cont. with respect
to E is of measure zero.

Proof. For p(E) = 0 the assertion is trivial. Suppose therefore u(E) > 0. Let f
be an arbitrary measurable simple function defined on E by the formula f(x) = e;
for xeB;, i =1,...,m where B; c E are measurable disjoint sets which satisfy
U B, = E, and e, are points in E,. The set E’ is the set of all points of metrical density
i=1
of the set E. From now on it is sufficient to consider the sets E” = E' N E, B} =
= B; n E" instead of E, B, respectively, since y(E — E’) = 0.

Let us choose an arbitrary x, € E” and suppose x, € B} for a certain fixed i. The
following cases may occur:

1) w(U(xo, 8) N (E" — BY)) = 0 holds for a certain §, > 0. Then f (x) is w. a. cont.

at the point x,.

2) u(U(xo, 6) n (E" — B})) > 0 holds for every é > 0.
a) u(U(xo, 8) N (E" — B})) < u(U(x, 8) n E”) for every & > 0, then f(x) is w. a.

cont. at x,.

b) There exists d; > 0 such that w(U(xe, 6;) N (E" — B})) = w(U(xe, 6;) N E”).

This implies p(U(xo, 6;) N B}) = 0 and, therefore, f(x) is not w. a. cont. at x,.

It will be shown that the set of all the points in B} at which the function f is not
w. a. cont. is of measure zero. To every point x € Bi with that property there exists
8, > 0 such that p(U(x, é,) n B;) = 0. Now it suffices to use Lemma 1 with B}

m
written instead-of E. As the number of the disjoint sets By is finite and E” = {J B,
. i=1
the measure of the set of all the points in E” at which the function f is not w. a. cont. -
with respect to E” is zero.

Lemma 3. For every function f defined on E c E,, f(E) < E,, which is the uniform
limit of a sequence of simple measurable functions, the measure of the set of all
the points in E at which f is not w. a. cont. with respect to E, is zero.

Proof. We shall prove the non-trivial case i.e. g(E) > 0. Suppose f(x) = lim f,,(x)

m-» o0

uniformly on E where f,, are simple measurable functions. We shall omit the set D
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of measure zero where the functions f,, are not w. a. cont. We shall show that the
function f is w. a. cont. on E — D with respect to E — D and, therefore, also with
respect to E because (D) = 0. Suppose x, € E — D is an arbitrary point of metrical
density of the set E — D. Let us prove the inequality

176e) = 1Geo)ll = 17Gx) = £l + 1) = Sulxo)]| + [ u(x0) = S(xo)]| < &

For an arbitrary ¢ > 0 we find m such that |[f(x) — f,(x)| < 3¢ on E — D. Now,
for the fixed function f,, and for every & > O there exist 5, € (0, ) and a set N
satisfying p(N) < p(U(xo, 3p) N E) such that the implication (|x — xo| < &,
x¢N = | fulx) = fulxo)| < 38) = (|x = xo]| < 80, x¢N = |f(x) = f(x0)| < 2)
holds.

If x, € E — D but x, is not a point of metrical density, then the weakly asymptotical
continuity is obvious.

Lemma 4. For every function defined and measurable on E < E, f(E) < E,
the measure of the set Dg of all the points of E at which f is not w. a. cont. with
respect to E, is zero.

Proof. It suffices to suppose u(E) > 0 and that all points of the set E are its points
of metrical density. Given a measurable subset A — E consisting exclusively of its
points of metrical density, then D, > Dy N A. Let p(E) < + oo. Following Egoroff
Theorem, to an arbitrary ¢ > O there exists E, = E such that u(E,) > p(E) — e,
and there exist simple measurable functions on E, uniformly converging to f. Now
we shall use the results of Lemmas 2 and 3. Let the set of all the points of metrical
density of E, be denoted by E,. Let E, n E be denoted by E,. This set satisfies again
H(E)) > p(E) — ¢, and moreover, Dy, > Dy E; where p(Dg.) =0. We may
writt Dy = (Dg N E])U (Dgn (E,— E})). Then u(Dg) = pu(Dgn(E - E))) <e
where ¢ is an arbitrary positive number. Hence u(DE) =0, q. e. d. In the case of
H(E) = + oo it is possible to use a countable covering of the set E by sets of finite
measure.

Lemma 5. To every function f defined and measurable on E < E,, f(E) < E,,
there exists a set Ng = E such that p(No) =0, ) f(E — N) = f(E — N,),
N,u(N)=0

N convf(E — N) = conv f(E — N,).
N,u(N)=0

Proof. Let N, contain all the points of E at which the function f is not w. a. cont.
with respect to E as well as all the points that are not points of metrical density of

the set E. Lemmas 1 and 4 imply u(N,) = 0.

Lemma 6. For any measurable function f defined and bounded on an open set
EcE,f(E) c E,

N N convf(U(x,3) - N) %= 0 holds for every xeE.

8>0 N,u(N)=0
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Proof. Use Lemma 5 for every fixed > 0, then Cantor’s theorem on intersection
of compact sets.

II. DEFINITION OF GENERALIZED SOLUTIONS

Considering an ordinary differential equation x = f(f, x), we suppose the right-
band side f (t x) to be a function defined almost everywhere on an open connected
set G < E,,, and to map this set into E,.

Remark 1. Definition 3 was introduced by A. F. FiLippov (cf. [1]), Definition 4
is due to E. E. VIKTOROVSKU [2].

Definition 3. A function x(¢) defined on an interval T = {1y, t,> where (¢, x(t)) € G
for every t € T, is an F-solution of the equation X = f(t, x) if it is absolutely con-
tinuous on T and if there exists a subset T; = T, p(T;) = u(T) such that
#()eN N convf(t, U(x(t), 8) — N) for every teT,.

3>0 N,u(N)=0

Remark 2. The intersection of the sets in Definition 3 will be written briefly as
K¥(f, 1, x(1)).

Remark 3. When passing from one base (e, ..., e,) where the system in Defini-
tion 3 has the form X; = f(t, x,,...,%,), i = 1,2,...,n with a solution x(f) =
= (x4(t), ..., x,(t)), to another base (by, ..., b,) the system transforms into the
form y; = g(t, y,, ..., ) and the solution assumes the form y(t) = (y,(2), ..., y.(?))
where y(t) = C x(t), g(t, ¥) = Cf(t,C"'y) and C is a regular matrix of the cor-
responding transformation. Vectors x(t), y(t), g, f are taken as column vectors. When
passing from one base to another, the set T, in Definition 3 remains unchanged.
This is directly concluded from the properties -of linear mapping represented by
a regular matrix C. Hence, Definition 3 does not depend on the choice of the base.

Definition 4. A function x(f) defined on an interval T = {ty, t,)> where (1, x()) € G
for every te T, is a V-solution of the equation % = f(t, x) with respect to a given
base B, where the equation is represented by x; = fi(t, Xiy e Xp)y i = 1,2, .., 1,
if it is absolutely continuous on T and if to any ¢ > 0 and to an arbitrary set N = G,
#(N) = 0 there exist functions y'(f) defined on T, with their ranges in E, and with

the following properties:

Fori=12...,n, ¢
(1) (t¥'(1))e G forevery teT,
)] ft, ¥'(t)) areintegrable on T,
() |x(® - ¥'()| <& on T,
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and
' ) (t, ¥'(r)) ¢ N almost everywhere on T.

Definition 5. A function x(f) defined on an interval T = {t,, t,)> where (1, x(f)) € G
for every t € Tis an MF-solution of the equation % = f(t, x) with respect to a given
base B where the equation is represented by x; = f,-(t, Xis ooy x,,), i=1..,n,
if it is absolutely continuous on T and if there exists a subset T; = T such that
u(T,) = p(T) and for every t e T, it is %(t) € Ky (f, t, x(t)) where

K37/, 50) = TTK 1. X0)
and
Kf(fot,x()) =N N convf{t, U(x(t), ) — N)
0>0 N,u(N)=0

fori=1,...,n.

Remark 4. If the right-hand side of the equation % = f(f, x) is defined on G,
measurable on G and continuous in x for arbitrary (but fixed) , then K3 (f, t, x) =
= K¥(f, t, x) = f(t, x) and, therefore, every solution in the sense of Definition 3
and Definition 5 is a solution in the sense of Carathéodory.

Definition 6. A function x(t) defined on an interval T = {t,, t,)> whete (¢, x(t)) € G
for every t e Tis an MV-solution of the equation % = f(t, x) if it is absolutely con-
tinuous on T, and if to any ¢ > 0 and to an arbitrary set N < G, u(N) = 0 there
exists a function Y() € E, defined on T, with the following properties:

(6) (t,y(1)eG forevery teT,

(7 f(t,y(t)) is integrable on T,

®) | X)) —v@)] <& on T,

©) Mpmmﬁﬁw@WRsmn
and ‘

(10) (tLy()¢N a.e.on T.

III. RELATIONS BETWEEN GENERALIZED SOLUTIONS

Remark 5. Everywhere in this chapter we suppose that the right-hand side
f(t, x) of the system x = f(t, x) is defined a.e. on an open connected set G < Ep4 1,

163

[



and that it maps this set into E,. Let the function f(f, x) be measurable on G. Assume
that to every compact set K = G there exists a locally integrable function m(r)
defined a. e. on the projection of the set K to the axis ¢, satisfying || f(, x)| < m(z)
a.e. on K. It follows from this remark and Lemma 6 that the sets K*(f, t, x(t)) are
non-empty almos{ everywhere on T provided x(f) is a continuous function defined
on a closed interval T, (1, x(f)) € G for every te T. :

Definition 7. We shall say that an absolutely continuous function x(¢) defined on
T = (t, t,) fulfils condition CF if (T, = T: u(T,) = w(T)) V(i) V(B,) ¥(te Ty) .

.{o v B}, where B, = C,B and B is a given orthonormal base and C; are all the
regular matrices of the type (n, n) with rational elements. Hence {B;} is a countable
system of orthonormal bases in E,. An index i is the index of the coordmate in a given
base. The condltlons o and P read as follows:

a) for an arbitrary open interval I = G(r) with x(¢) € I and for any & > 0 it holds
u(M; ;) > 0, where M}, , = {xel:|x(t) — fi(t,x)| <&}
B) for an arbitrary open interval I < G(f) with x(t)eI, it holds u(Nj,,) >0
as well as p(N} ;) >0 where N}, = {xel:f(t,x)> %(t)}, N3,,={xel:
:ft, x) < x(t)} and G(¢) is the projection of the set G into E, with fixed t.

Theorem 1. (F <> CF) An absolutely continuous function x(t) defined on T =
= (ty, t,) is an F-solution of the system x = f(t, x) from Remark 5 in the sense
of Definition 3 if and only if the condition CF holds for x(t).

Proof. Let us suppose x(t) is an F-solution of the equation x = f(¢, x) on an inter-
val T = (t;, t,). Then there exists a subset T, = T, u(T,) = p(T) such that x(t)e
€ K*(f, t, x(t)) provided t € T;. We shall prove that « v B holds for any index i, for
every te T,, and with respect to any base B. According to Definition 3 it holds
x(t) € conv f(t, U(x(t), 8) — Ny(t)) for every te T, and & > 0. The set N¢),
H(N(t)) = 0 has the same meaning as the set N, in Lemma 5. For the sake of
brevity, let us denote A,(f) = conv f(t, U(x(t), ) — Ny(t)). Let us choose a base
(cf. Remark 3). Now let u(M; ;, ,,) = 0hold for some ¢, € T, and fixed i and certain I,
and ¢ > 0. Consequently, the condition a does not hold at ¢,. At the same time, let
there exist I, such that, for instance, #(N3 , ,,) = 0. Let us choose & > 0 such that
U(x(t,), 8) = I, n I, where the intersection is a non-empty set because it contains
the point x(t,). Consequently, the inequality x(t,) < f(t;, x) — ¢ must be valid
for every x € U(x(t,), 8) — N(t,) where theset N(t,) = (Ny(t)) v M 1, ., VN5 1,.0)
has measure zero. Hence & + %,(t;) < y; for every y = (yy,..., y,) where ye€
econv f(ty, U(x(t,), 8) — N(t,)) = A,(t,). This implies x(t,) ¢ A4,(t,), which is a con-
tradiction. This yields that the condition a v B is satisfied on the whole set T, for
every base Band i = 1, ..., n. The argument is analogous for u(Nj s, ,,) = 0.
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"It remains to prove CF = F. Let us suppose CF holds, i.e. (T, = T: u(T) =
= p(T)) ¥(B,) V(i) ¥(t € T) {« v B}. For sufficiently small 5, > 0 the set
U (¢, U(x(#), do)) is a compact subset of G. Hence, cf. Remark 5, there exists 7" = T,
teT

w(T’) = u(T) such that ||f(t, x)| < m(r) for every te T". Then for every 5 & (0, 5)
the sets f(t, U(x(t), 8) — N,(t)) where p(N,(t)) = 0 are bounded for every fixed
t € T'. In the sequel we consider the set T; = T, n T’ for which again u(T;) = p(T3).
Let o v B be satisfied on T, with respect to any base B; e {B;} and for each index
i =1,..., n. It depends on the choice of the base B; which of the conditions « or ]
holds for a given i and ¢ € T,. However, both o and B imply the inequality

(11) {vrai min f|(t, x) : x € U(x(t), 8)} < %) <
< {vrai max f(t, x) : x € U(x(?), 9)}

fori =1,...,n and te T;. Let us choose 6 € (0, o) and let V denote the set of all
vectors v € E, with rational coordinates in the base B. The set V'is countable and dense
in E,. We shall prove that for every v € V and ¢ € T, the inequality

(12) (%(2), v) < {vrai max (f(t, x), v) : x € U(x(1), 8)}

holds. Let us choose a fixed ¢, € T, and a fixed v e V and let us consider an ortho-
normal base (ey, ..., e,) € {B;} such that v = k.e; for a certain fixed i, where k is
a positive rational number. With respect to this base, let the equation be represented
by the system y; = g{t,y), j =1,...,n (cf. Remark 3). The inequality (11) is
satisfied in every base B;. Furthermore, (X(t,), v) = k.y{t,), hence (f(t,, x), v) =
= k.g(t,, y) and, therefore, the inequality (12) holds. This inequality can be rewritten
into the form (x(f), v) < {sup (x, v)": x € f(t, U(x(2), ) — N,(t))} where u(N (1)) = 0.
Let us denote A(t) = f(t, U(x(t), §) — Ny(t)). The inequality (x(t), v) < {sup (x, v) :
: x € A(7)} has been proved for arbitrary fixed ¢t € T, and arbitrary ve V. We shall
prove that inequality for every v e E,. There exists a sequence {v,} = V such that
v, = v for n - oo. In the inequality (%(t), v,) £ {sup (x, v,) : x € A(?)} let n > oo.
The continuity of scalar product yields (x(f), v,) = (X(¢), v) for n —» co. Further,
{sup (x,v,) : x € A(t)} > {sup (x,v) : x € A(t)} for n— oo because [{sup(x,v) -
— sup (x,v,) : x e A()}] < [{sup ((x, ) — (x, v,)) : x € A} = |{sup (x, (v — v,)) -
< e AD|'S {sup (5,0 - o) % € AQ) % s [5] o — ] x € AQ) =

= {sup ||x| : xe A(t)}.|v — ]| < c.]]o — v,|| where ¢ is a positive constant because
the set A(f) is bounded. To complete the proof, it suffices to show that the implication

V(v € E,) ((*(t), v) < {sup (x, v) : x € A(t)}) = %(z) € conv A(r)

holds for fixed ¢ € Tj. To this end, assume that %(f) ¢ conv A(z). Then there exists
a hyperplane I' dividing the space E, into two open parts I'*, I'" such that

conv A(t) = I'* U T and x(t) e I'". Let us substitute v by a vector vy perpendicular
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to I' and directed into I'". We get (X(t), v;) > {sup (x, v;) : x € A(f)} which is
a contradiction. Thus we have proved that x(f) € conv A(f) = A,(t) on Tj. Since
x(t) € A,(t) holds on T; for arbitrary § € (0, 8,), the function x(t) is an F-solution of
the equation x = f(f, x) on T.

Remark 6. Th; condition CF

(T, e T: u(Ty) = u(T)) V(B;) V(i) V(te Ty) {o v B}

where the number of B;’s is countable while that of indices i is finite, can be rewritten
into the form

V(B)) ¥(i) (T, = T: u(T,) = w(T)) W(te T;) {o v B},

since for every B, and i there exists T{*' < T, p(T{*") = u(T) and we can put T, =
= ) T{*, measure of T, being equal to u(T).
Jsi

*

Theorem 2. (F = MF) If an absolutely continuous function x(t) defined on T =
= {t;, t,) is an F-solution to the equation x = f(t, x), then it is an MF-solution as
well.

Proof. The function x(t) is an F-solution on T which means x(t) e K*(/, ¢, x(¢))
holds a. e. on T. Let us choose an arbitrary base B. With respect to this base, let the
system be expressed in the form x; = f(t, x4, ..., x,.), i = 1, ..., n. From Definition 5

we get K3 (f,t,x(t)) = []K*(fi, t, x(t)). Hence the inclusion K*(f,t, x(t)) =
i=1

< K¥¥(f, t, x(¢)) can be derived from the inequality (11) in the proof of Theorem 1.

Thus obviously x(f) € K3 (, t, x()) holds a. e. on T and, therefore, x(t) is an MF-
-solution of the equation % = f(z, x) on T.

Corollary 1. For n = 1 we have K*(f, t, x) = K3 (f, t, x) and hence Definitions 3
and 5 are equivalent.

This equivalence is introduced in [1] without proof.

Example 1. In this example it will be shown that for n > 1 there exist equations
whose MF-solutions need not be F-solutions.

Let an equation x = f(x) be glven on E, which has, in a given base B, the form
fi(x) = 2 — sign x,, f,(x) = — sign x,. Each trajectory in the sense of Definitions 3
and S reaches the axis x, after a certain time, and continues along this axis. On the
axis x, we obtain the F-solution x,(t) = 21, x,(t) = 0, unique in the sense of increas-
ing t. There are infinitely many MF-solutions on the axis x;, with a given base B,
~ their form being x,(f) = ct, x,(f) = 0 where ¢ is an arbitrary constant from the
interval {1, 3). -
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Theorem 3. Let a function x(t) be defined and absolutely continuous on T and let
it be an MF-solution of the equation % = f(t, x) on T in a given base B but not
an F-solution of this equation on T. Then there exists a base B’ such that x(t) is
not an MF-solution on T of the equation x = f(t, x) in the base B'.

Proof. Let us consider all regular matrices C; with rational elements of the type
(n, n). Transforming the given base B by means of these matrices we obtain a coun-
table system of bases B; = C;B for which K¥(f,t, x) = NK}. (f,t, x). The last

By

identity follows from the separability of a closed convex set from a point that does
not belong to the set. Hence the countable system of bases B, includes a base B’
such that x() is not an MF-solution of the equation % = f(t, x) on the interval T
with respect to this base.

Definition 8. We shall say that an absolutely continuous function x(t) defined
on T = {t,t,) fulfils condition CMF if T, = T: u(T,) = w(T)) V(i) ¥(te T}).
.{o v B}, where i = 1,...,n and the condition « v B is from Definition 7. The
index i is the index of the coordinate in a given base B.

Theorem 4. (MF <> CMF) An absolutely continuous function x(t) defined on
T = {t,, 1, is an MF-solution of the system % = f(t,x) from Remark 5 with
respect to a given base B if and only if the condition CMF holds for x(t).

Proof. Let us suppose x(f) is an MF-solution of the equation % = f(¢, x) on the
interval T = {t,, t,) with respect to a given base B. The equation has the form x; =
= ft, X4, ..., X,), i = 1, ..., n with respect to B. Then there exists a subset T; <= T,
#(Ty) = u(T) on which x(t) € K(f,, t, x(t)) holds for every i = 1,..., n. '

Hence, %(t) € conv f(t, U(x(t), 8):— Ni(t)) = A1) for every te Ty, i=1,...,n
and & > 0 where Nj(¢), #(Nj(f)) = O has the same meaning as the set N, in Lemma 5.
Now let (M. ;, ) = 0 hold for some t, € T, and fixed i and I, and & > 0. Simul-
taneously, let there exist I, such that, for instance, u(Ni,,z,,l) = 0. Let us choose
8 > 0 such that U(x(ty), ) = I; nI,. Consequently, the inequality X(t;) <
< fdty, x) — ¢ is valid for every xe U(x(t,),6) — N(t;) where the set N(t,) =
= (Ni(t;)u M}, , UN% ., ) has measure zero. This implies %(t,) ¢ 4j(t,), which
is a contradiction. This yields that the condition o v B is satisfied on the whole set T}
foreachi=1,...,n.

It remains to prove CMF => MF. Let a or B be satisfied on some T, = T, p(T,) =
= u(T) for each index i = 1,..., n. We shall prove x,(t)e 4;(t) for every 6 > 0
and for each index i and all t € T, which implies that x(t) € KF(f;, t, x(?)) is satisfied
for every te T, and i. Then x(t) € Ky*(f, , x(t)) is satisfied for every t € T,. Let us
choose a fixed 6 > 0and an index i and let I(t) = U(x(t), 5). Further, let o hold for
a given 1, € T,. Then there exists x € I(t;) — Ni(t,), |%{(t;) — fi(ts» x)| < & for an
arbitrary e-neighbourhood of the point x(1,). We get X,(t,) € 45(t,) because the set
AY(t,) is closed. Now let B hold for a given t, € T;; then there exists x;, x, € I(t;) —
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— Nj(t,) and it holds f(t;, x;) < %{t2) < f(ts, x,). Consequently x(t,)e 4;'t;)
since the set A4j(t,) is convex. x(t;) € 4j(t,) holds for each i= 1, ..., n and for arbi-
trary 6 > 0 and t, € T;, p(T;) = u(T). Hence %(t,) € K" (f, t2, x(1,)) for all t, € T,.
Then x(¢) is an MF-solution of the equation % = f(t, x) on Tin a given base B.

» Lemma 7. Let a function x(t) be defined and absolutely continuous on T =
= (ty, t;), mapping the interval Tinto E,. Let a real function f(t, x) be defined a. e.
and measurable on the set M =) (t,R,), where R, =[] R, R, =<{x(t) -3,

i=1

teT
x{t) + 6) and & is a fixed positive number. Let T' denote a subset of T with the

following properties: For every te T’ and every ¢ > 0, u{xe R, : |x — x(1)| <e,
f(t,x) <&} >0 holds and for every te T — T', there exists ¢ > 0 such that
u{xeR,: |x — x(t)| <& f(t.x) <&} =0. Then the set T’ is measurable and
there exists a measurable function h(t) on T with the properties: h(t) equals zero
on T' and is positive or +o0 on T — T’; for every te T — T,

u{xeR,: |x — x(1)] < h(e), 7t x) < W)} = 0.

Proof. Let a measurable function A(f) be given on T. Let us choose a function
g(t, x) on the set M:
g(t.x) =1 for f(t,x) > A(r)
and
g(t,x) =0 for f(t,x) < Ar).

This function g(t, x) is measurable and integrable on M. By virtue of Fubini’s
theorem it holds [y g(t, x) dt dx = [ dt [, g(t, x) dx; therefore, [g, g(t, x) dx =
= u{xeR,:f(t,x) > At)} is a measurable function on T with respect to the
variable . Then the sets

(13) {te T:pu{xeR,:f(t,x) > A1)} =0}
{te T:u{xeR,:f(t,x) > A1)} > 0}

are measurable. Let us choose a sequence {r,}%,, where r, are all positive rational
numbers and define a function h,(t) on the interval T by

h,(t) = r, for every t satisfying u{xeR,:|x — x(t)“ <r, f(t,x)<r} =0,
hy(t) = 0 for every t satisfying p{xeR,:|x — x()] < r, f(t,x) <r} >0.

From (13) we derive that the function h,(f) is measurable on T, hence also the function
lim sup h,(t) is measurable on T. This function will be denoted by h(r).

n—o

‘The function h(f) can be + oo for some t € T. If h,(tf) > O for a certain fixed te T
and for a certain n, then u{xeR,: |x — x(t)| < r,, f(t, x) < r,} =0, therefore
p{x€eR,: |x - ()| < rw f(t, x) < r,} = 0 for every r,, where 0 < r, < r,. For
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every positive integer ! there exists k(I) > max (n,l) such that ir, < r,y) <7,
Then it holds hy(t) = riyy > 37, > 0 and this yields h(f) > 4r,. Thus we have
proved that h,(f) > 0 = h(f) > O for every te T. Hence h(t) = 0 for a certain
t € T implies h,(t) = 0 for every positive integer n. Then h(t) = 0 yields u{x € R, :
tlx = x(8)] < ra, £(t.x) < 7.} > O for every positive integer n and this implies
that the function h(t) is positive or + oo on the set T — T". The identity h(t) = 0
on T follows from the definition of h,(r). Now we shall prove the last assertion of
this lemma. If h(f) > O for a certain ¢ € T, then there exists a nondecreasing sequence
haa(t) = h(1), therefore r,;) — k() and u{xeR,:|x — x(t)] < ru, f(tx) <

< Tyay} = O implies pu{x e R, : |x — x(8)]| < h(z), £(t, x) < h(t)} = 0. Let us choose
h(t) = {sup h,(t) : n = 1, ...} for every te T; then we reach the same result.

Lemma 8. Let a measurable function f(t, x) be given on an open connected set
G c E,,,.'Let a mapping Mo(t) into sets from E, be defined on an interval T =
= {1y, t,), such that for every te T the sets M(t) are subsets of E,, u(Mo(t)) > 0,
(t, Mo(?)) = G and My = U (1, Mo(t)) is @ measurable set in E,.,. Then there

teT

exists a measurable function (t) defined on T such that f(t, Y(t)) is measurable
on T and Y(t) € M(t) for every te T.

Proof. We shall proceed similarly as in [2]. Let us denote N, = {x € G" : f(¢, x)
is not measurable on T with respect to the variable t}, where G’ is the projection
of the set G into E,. We shall leave the set T x N, out of the set G. In this way we
have reduced the sets M(t) at most by sets of measure zero. We shalt keep the same
notation M(f) for the new sets. The set M, is measurable, therefore we can write
#(Mo) = {7 u(Mo(t))dt > 0. Let us denote X = {x € E, : p(My(x)) > 0}, where
My(x) are the projections of the sections of M, with a fixed x into the axis . Then
we can rewrite u(M,) = [x u(Mg(x)) dx > 0. Now, there exists x, € X such that
#(Mg(xo)) 2 m(Mo)/u(X). Let us denote M, = {(t,x)e My : t¢ My(xo)}, then
u(My) = [x u(M(x)) dx holds, where M)(x) is the projection of the section of the"
set M, with a fixed x into the axis ¢. Again there exists x, € X such that u(Mj(x,)) =

i

2 p(M)[u(X). Let us write generally M., = {(t,x)e M, : t¢ ) M)(x,)} for
j=0

i=1,2,..; then u(M;, ) = fx u(M;,(x)) dx and there exists x;,, € X such that
WMy 1(Xi41)) = p(M ;s q)[u(X). The set sequence {M,} 2, is nonincreasing

Let lim u(M,) = a > 0, then u(M,(x,)) = o/u(X) and we derive p( U M;(x,) =

n— o

= 4 oo which is a contradiction because the sets M,(x,) are disjoint and the union
of these sets is included in the interval T with a finite measure. From the preceding
result we obtain lim u(M,) = 0. Further u(M,) = ,fr-"ﬁ'm'(x.) p(M,(1) dt =

n—=>w

= frn U wren H(Moff)) dt - because My(t) = M, t) on the mtegratxon domain.

The implication lim p(M,) = fr- G moen p(Mo(9))dt = 0= u(T — U Mi(x)) = 0

n— o

169



is true because p(M(t)) > 0 for every ¢ € T. Thus we have proved that u(UM,(x,)) =

= p(T), where the union is at most countable. Now let us define a function ¢ on T:
¥(t) = x, on eachset M,(x,),
Y(t)e Mo(t) on T — UM,(x,).

Theorem 5. (CMF = V) Let the condition CMF from Definition 8 3T, = T:
:u(Ty) = w(T)) V(i) V(te T,) {oa v B} be satisfied in a given base B for an absolutely
continuous function x(t) given on an interval T = (t,, t,>. Then x(t) is a V-solution
of the equation % = f(t, x) from Remark 5 on the interval T in the base B.

-

Proof. Let an absolutely continuous function x(t) be given on the interval T and
let o v P be satisfied on a certain set T; = T, p(T;) = p(T) in the given base B for
eachi = 1,;...,n. Let T} = {te T, : « holds at the point t}, then only B holds on the
sets T; = T, — T;. According to Lemma 7 the sets T; and T are measurable. Let
us choose an arbitrary ¢ > 0 and N = G, u(N) = 0. For each i = 1, ..., n we shall
find a function y(f) on T satisfying (1)—(5) with the norm |x|| = {max |x;[:i =
=1,.., n}. Thus we shall have proved the assertion of Theorem 5. Let us fix an
index i and an interval I, = [] I for every te T, where I; = (x(t) — &, x,(t) + ¢)

j=1

J

with ¢ > 0 sufficiently small so that U (t,1,) = G. Now let us choose ¢, > 0 such
teT

that : ‘
(14) 26, u(T) < .

The condition o holds for every € T}, which implies (M., 1,..) > 0 on the set T},
where

M= {xel,  |5{0) = £t x)| < &} -

The condition B holds for every t € T;, which implies u(N .1o1) > 0and u(N% ;) >
> 0, where

Ni,lg,t = {in' : i:l(t) _fi(t’ x)- < 0} )
N;,Ih! = {xEI' . J'c;(t) —’fi(t, x) > 0} .
Now let us define for j = 1, 2:
‘Mj(t) = Ml‘l.’t.' on T; N
Mjt) =N}, on Ti,
M) =1, on T—(TivTi).
The sets J (t, M/(t)) are measurable.
teT £
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Evidently u(M (t)) > 0 for every te Tand j = 1, 2. The function f(t, x) is defined
a.e. on G and there exists a set G, = G, u(G,) = 0 such that f(t, x) is defined on
G — G,. We shall denote N, = N U G, while N(f) is the projection of the section
of the set N, with a fixed ¢ into E,. Now let new mappings be defined on T for j =
= 1,2: M(t) = M(t) — No(¢) for every ¢ satisfying u{M (t) — No(t)} > 0, M(t) =
= I, for every t satisfying u{M(t) — No(t)} = 0, where the last identity is satisfied
on a set of measure zero. In virtue of Lemma 8 there exist functions y*. 1(t) and l//',(t)
such that y_q)(r) € Mj(f) holds for j = 1,2 and for every te T because the set

U (¢, M(t)) is measurable which again is an immediate consequence of the mea-
tE

" surablhty of the functions x(t), x(t), f(t, x) and the set T}. This implies (1) for
YL 4(r) and yi(1). The functions f(t, ¥{_,,.(t)) are measurable on Tand (t, Y¢-1,A1)) €

€ U (t,1,) on T, where K = |J (1, 1) is a compact set. There exists a locally integrable
teT teT

function m(f) such that

(15) | ' |/(t, )| < m(t) holds a. e. on K.

(Cf. Remark 5.) This yields that f(t, y(_;,/t)) are integrable functions, therefore,
(2) holds. Further, (3) holds for y{_,,(t) because y_,,,(t) €I, on T. The definition
of the mappings M}(f) implies (5) for both functions y(_,)/f). Let us choose
1o = t; and define B (1) = [, n e,y (Xi(t) — fi(v, ¥i(r))) dr on T. The function
B.(f) is nondecreasing on Tand B} (t,) = 0. If the inequality B, (f) < 4& hold on T,
then we choose 7, = t,. If the contrary is true, then we choose the first 1, e T for
which Bl (t,) = %e. If 7, < t, we define

B (1) = (*7) = fillx, ¥L1(x))) dr on <1y, 1)

Ti" A (T1,t)

This function is nonincreasing and B;,'(r,) = 0. If B.'(f) > —& on {7y, t,), then
we choose t, = t,. If this last inequality does not hold on the whole {1, ¢, ), then we
choose the first 7, € {t,, t,> for which B, '(r,) = —e. If again 1, < t,, we define
an analogous function B1(f). If B.(t) < & on (13, 15>, then we choose 13 = 1,. If
this inequality does not hold, then we continue further analogously. Now we have
defined

1§ BV0- j (52) — S0 W) e on o)
Ti"n{tj,t)
forj =0,1,2,.... We choose 175 = 1, and define auxiliary functions
(17) AEV() = J’ Ge) + (=1 m(d)) de on <zhtsy
Ti"n{ty',t)

by the same method as the functions (16), where m(t) is the function from (15).
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As
fltWi@®) £ m@p) on T
and

. [t yi() 2z —m(®) on T,

the inequality 7, < 7, holds for n = 0,1, .... If 1, < t, for all n, then 7, converge
to a certain 7, 7’ < t,. We get
2]

g = +00

-

i (%) + m(z)) dr = % +

1=0 J T A¢t 2yt 20+ 1)

which is a contradiction because x(f) and m(f) are absolutely integrable functions
on T. Hence it holds 1, = t, for a certain positive integer no. We have proved that
a finite number of steps t; is sufficient in (17) and (16). Let us define a function f(t)
onT:

B(r) = Bi(t) for te (1o, 1,),
ﬁ(t) = S'n—l)n(t) +"—Zlﬁ£_,_l)j(‘tj+1) fOf te (Tm T+ 1> ’
j=0

where n = 1,2,.... The inequality —4¢ < B(f) < 4¢ holds on T. Let us define
a function y¢(t) on T:

l/’(i)(t) = ‘I/;(t) on (TZM Tzn+ 1>
‘/’:)(t) = '/’i—-1(t) on  (Tans1> Tan+2”

forn =0,1,2,... and yi(t,) = ¥i(t,).

This function yj(?) satisfies (1), (2), (3), (5) because the functions y/(f) and ¢~ ,(¢)
satisfy the same conditions. Now we must prove that y(¢) satisfies the inequality (4),
too. It holds

xit) — xdts) - j s ) &

<

_ ' j(() AV

<

=< j IJ'c,.(t) - fz, wa(r))l dr + J (%42) = £z, ¥o(x)))de
A T:'n(t{,!) T ()

\g w(T)e, + Iﬁ(t)[ < g + ; =g

on T because x(t) is absolutely continuous and owing to the definition of the map-
pings M(f) on T for j = 1, 2. Thus we proved that the inequality (4) holds for the
function y(f). Hence the function x(z) is a V-solution of the equation % = f(t, x)
on Tin the given base B. _
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Theorem 6. (V= CMF) If an absolutely continuous function x(t) is a V-solution
of the equation X = f(t, x) from Remark 5 on the interval T = {ty,t;) in the
given base B, then the condition CMF from Definition 8 holds for x(t) onT.

Proof. The condition CMF can be written in the form
V(i) AT, = T: (Ty) = W(T)) ¥(te Ty) {a v B}

because CMF obviously implies this condition and also the proof of the converse

implication follows easily: Let us choose for i = 1,...,naset T{ < T, u(T}) = p(T)
n

where the condition o v B holds and denote T; = () T%. The set T, so constructed
i=1

can be used in CMF. The converse to this new condition has the form: 3(i) (T, = T:

:u(T,) = (7)) I(t e Ty) {non (« v B)}. This coincides with the condition
(i) (T < T: uX(T') > 0) ¥(te T') {non (« v B)},

where p* is the outer measure. Suppose that o v B does not hold for a certain index i
on T' = T with y*(T’) > 0 while o v B holds on T — T'. We shall prove that x(¢)
is not a V-solution of the equation % = f(¢, x) on T in the given base B. Now there
exists &, > 0 and a certain open interval I;, x(t) € I; such that

u{xel,:|%(r) — fi{t,x)| <&} =0 forevery teT’

and at the same time there exists a certain open interval I3, x(¢) € I such that, for

example, u{x eIy : x(t) — f(t, x) < 0} = 0 for every te T'. To every te T let us

choose an open interval I? with the following properties: x(t)e IY and U (t,I7) is
teT

bounded and I? = G(t), where G(f) is the projection of the section of the set G with
a fixed t into E,. Moreover, I c I, n I} for every te T'. The intervals I? can be

written on T by the formula IY = [] I}, where I has the form (x/(f) — &} ;, x,(t) +
j=1 n
+ &7 ;). Let us denote &, = {min (6, ;,6;,):j =1,...,n} and I, = [ (x() - 6,
j=1

x,(t) + &,) in the space E, for every te T. By virtue of Lemma 7 the set T’ is
measurable with a positive measure and we can choose ¢,, d, positive on T’ and
measurable on T’ with respect to the variable t and such that p{xel, : |%(f) —
= f{t,x)| < &} =0, u{xel,: %(t) — fi(t, x) < 0} = 0 for every te T'. Now there
exists a measurable subset T” < T’, u(T”) > 0 such that there exists a positive
integer k for which the inequality 1/k < &, holds for every te T". Let us denote
B(t) = {xel, : |5() — filt, x)| < &} v {xel, : x(t) — ft, x) <0} and
N’ = { (t, B(t)). The set N’ is measurable because f,(t, x) is measurable with respect
teT”

to (¢, x) and ¢,, J,, X (t) are measurable with respect to ¢. Then the measure of the set N’
can be written in the form p(N’) = [ u(B(t)) dt. Hence u(N’) = 0 because u(B(f)) =
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= 0 holds for every te T". Given 4 > 0, there exists an open set G, such that
T" < Gy < T and p(G, — T") < 4. For brevity, let us write b = [7.¢ dt. The
value b is positive and obviously b is independent of 4 and ¥, N from (1)—(5).
Let us denote by s(f) the minorant function of the functions %,(f) — fi{(t, ¥(t))
on (ty, t,>, where y(f) is an arbitrary function on T with the property y(t)el,.
The inequality '

(18) s{t) < x(t) — fi(1, ¥()

holds for such functions ¥ and the existence of an integrable minorant s(t) follows

(cf. Remark 5) from the compactness of the set U_(t,—l,) < G. Further, let us choose
teT

4 > 0 small enough so that the inequality

J‘ s,dt+j si(t)dt>é>0
GanT” Ga-T" 2

holds. Let G, be written in the form G, = UG;, where G; are the components of the
set G,; then J

Z(J. a,dt+J‘ s,-(t)dt)>é>0.
j G;nT” G;~T" 2

This implies the existence of a certain G; and b’ € (0, b) such that
(19) f g dt +f s{f)dt > b" > 0.
GjnT” G;—T”

The value b’ depends only on &, s{t) and G, and does not depend on N and ¥.
Now we have defined the functions e, d,, s(f), the sets T”, G,, N, G; and the
constants b’ > 0 and k. In the sequel we shall use the fact that the function x(t)
is a V-solution of the equation x = f(¢, x). Let us choose ¢ > 0 satisfying

1 b
20 e<min{-, —
™ (14

and N < G, p(N) = 0, and let us denote the union N U N’ again by N. From the
definition of the set N’ and from (5) the inequality

(21) %(t) - ft,Y()) 26, >0 a.e.on T

follows for every function y(z) satisfying the conditions (1), (2), (3), (5) and we
shall prove that the inequality (4) does. This inequality can be written in the form

J.‘(xi(t) - Iz, ll/(r))) dt|<e on T.

Further,
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[ wo-sevma=[  co-sev)es

GdnT"

+ J 00) = fi(t, w(e) dt 2 j 5, dt + '[ (1) dt
Ga-T" GanT” Ga-T"

holds for every y(t) satisfying (1), (2), (3), (5) (cf. (18), (21)). The inequality (19)
implies

(22) L i) = 76, WD) dt > b’ > 0 for every y(r)

satisfying (1), (2), (3), (5). We assume that x(¢) is V-solution. Therefore for a given
¢ > 0,& < min (1/k, 3b') and N < G, u(N) = 0 there exists a function y(¢) satisfying
(1)=(5)- Let y(t) satisfy the properties (1), (2), (3), (5). Denoting ¢(t) = x(f) —
— fdt, ¥(r)) we can write the last inequality (22) in the form [g, @(f) dt > b’ > 0.
Let G; = (14, 7,) = T. Now due to (4) |[i ¢(r) dr| < &¢ must hold for t,, hence
—e < [ o(r)dt < & and [ @(r) dtr = [}! o(r) dt + [;2 @(r) dr > [} o(r) dt +
+ b > —& + b’ > ¢ holds because the value ¢ > 0 was defined in (20) so that
2¢ < b’. The inequality Ijﬁf o(1) d-c| < ¢ does not hold for 7, which is a contradiction
to the inequality (4).
This contradiction completes the proof of the theorem.
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