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Časopis pro pěstování matematiky, roč. 101 (1976), Praha 

RELATIONS BETWEEN GENERALIZED 
SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 

JAROSLAV PELANT, Praha 

(Received June 10, 1975) 

This paper is concerned with existence theorems for ordinary differential equations 
with discontinuous right-hand sides in a space of finite dimension for various defini­
tions of generalized solutions. We substitute the Viktorovskij definition [2] by an 
equivalent definition in terms of differential inclusions and then we establish the 
relations between the new definition and the Filippov definition [1]. 

This paper will be followed by another one dealing with a modification of the 
Viktorovskij definition and with an equivalent definition in terms of differential 
inclusion, which will be shown to coincide with the Filippov definition. Consequently, 
we shall obtain an existence theorem for the modified Viktorovskij solution. 

I. AUXILIARY LEMMAS AND DEFINITIONS 

Let us introduce the following notation. Let (En9 S9 fi) be a space with a Lebesgue 
measure \i9 where En is an n-dimensional real linear normed space with the norm || ||, 
S is a c-algebra of Lebesgue measurable subsets. Let the closed convex hull of the 
subset E cz En be denoted by conv E. The base formed by n linearly independent 
vectors et,...,en will be denoted by (el9..., en). U(x9S) will denote an open <5-
neighbourhood of the point x in the space En considered. 

Definition 1. A function / defined in a measurable set E c Eni f(E) cz Er will be 
called weakly asymptotically continuous at the point x0 with respect to E if it satisfies 

the condition 
V(e > 0)V(<5 > 0)3(50e(0,d»3(N)V(xe£). 

. (||x - x0|| <80,x$N*> \\f(x) - / ( x 0 ) | < e) 

where /i(JV) < fi(U(x0, S0) n E) for [i(U(x0, 80) n E) > 0 and if fi(U(x0, S0) n E) = 0 
then N is arbitrary. 

159 



Definition 2. A point x will be called a point of metrical density of the measurable 
set E c En, if n(U(x, 8) n E) > 0 for arbitrary 8 > 0. 

Lemma 1. Let an arbitrary measurable set E c Enbe given. If E' is the set of all 
points of metrical density of the set E, then the set E — E' is of measure zero. 

Proof. We shall use Vitali's covering of the set E — E' with the cubes H chosen 
small enough to satisfy the condition n(H n JB) = 0 for each H. Following Vitali's 
theorem, an at most countable disjoint system of cubes Ht can be chosen so that 
li((E - E') - (JHt) = 0 holds. This implies fi(E - E') = 0. 

i 

Lemma 2. For every simple measurable function f defined on E c En,f(E) c Er, 
the set of all the points of E at which the function f is not w.a. cont. with respect 
to E is of measure zero. 

Proof. For fx(E) = 0 the assertion is trivial. Suppose therefore fi(E) > 0. Let / 
be an arbitrary measurable simple function defined on E by the formula f(x) = e{ 

for xeB{, i = 1,..., m where B( c E are measurable disjoint sets which satisfy 
m 

U Bt = E, and et are points in Er. The set E' is the set of all points of metrical density 
f*-*i 

of the set E. From now on it is sufficient to consider the sets E" = E' n E, B[ = 
= Bt n E" instead of E, Bh respectively, since fi(E - E') = 0. 

Let us choose an arbitrary x0 e E" and suppose x0 e B'[ for a certain fixed i. The 
following cases may occur: 
1) n(U(x0, 80) n (E" - B'[)) = 0 holds for a certain <50 > 0. Then/(x) is w. a. cont. 

at the point x0. 
2) fi(U(x0, 8) n (E" - B'[)) > 0 holds for every 8 > 0. 
a) fi(U(x0, 8) n (E" - B'[)) < fi(U(x0, 8) n E") for every <5 > 0, then f(x) is w. a. 

cont. at x0. 
b) There exists 8X > 0 such that /*(U(x0, 5X) n (E" - B'[)) = /<U(x0, 8t) n £"). 

This implies fi(U(x0, 8t) n BJ) = 0 and, therefore, f(x) is not w. a. cont. at x0. 
It will be shown that the set of all the points in B'[ at which the function / is not 

w. a. cont. is of measure zero. To every point x e B'[ with that property there exists 
8X > 0 such that pi(U(x, 8X) n B'$ = 0. Now it suffices to use Lemma 1 with B'[ 

m 

written instead of E. As the number of the disjoint sets B'[ is finite and E" = (J Bf[, 
i = l 

the measure of the set of all the points in E" at which the function/is not w. a. cont. 
with respect to E" is zero. 

Lemma 3. For every function f defined onE c En,f(E) c Er, which is the uniform 
limit of a sequence of simple measurable functions, the measure of the set of all 
the points in E at which f is not w. a. cont. with respect to E, is zero. 

Proof. We shall prove the non-trivial case i.e. JA(E) > 0. Suppose/(x) = limfm(x) 
m-*oo 

uniformly on E where fm are simple measurable functions. We shall omit the set D 
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of measure zero where the functions fm are not w. a. cont. We shall show that the 
function / is w. a. cont. on E — D with respect to E — D and, therefore, also with 
respect to E because fi(D) = 0. Suppose x 0 e E — D is an arbitrary point of metrical 
density of the set E — D. Let us prove the inequality 

< є \\f(x) -f(x0)\\ ^ \\f(x) -fm(x)\\ + \\fm(x) -fm(x0)\\ + \\fm(x0) -f(x0)\\ 

For an arbitrary e > 0 we find m such that |/(x) — / m (x) | < | e on E — D. Now, 
for the fixed function fm and for every d > 0 there exist <50 e (0, <5> and a set N 
satisfying ju(N) < fi(U(x0, d0) n E) such that the implication (||x — x0 | | < 50, 
x t -V => |/m(x) - / M (x 0 ) | < ie) => (||x - x 0 | <S0, x$N=> \\f(x) - /(x 0 ) | | < a) 
holds. 

If x 0 € E — D but x0 is not a point of metrical density, then the weakly asymptotical 
continuity is obvious. 

Lemma 4. For every function defined and measurable on E c En, f(E) c Er 

the measure of the set DE of all the points of E at which f is not w. a. cont. with 
respect to E, is zero. 

Proof. It suffices to suppose fi(E) > 0 and that all points of the set E are its points 
of metrical density. Given a measurable subset A c E consisting exclusively of its 
points of metrical density, then DA ZD DE n A. Let fi(E) < +oo. Following EgorofF 
Theorem, to an arbitrary s > 0 there exists EB c E such that jx(Ee) > p,(E) — e, 
and there exist simple measurable functions on Et uniformly converging to / . Now 
we shall use the results of Lemmas 2 and 3. Let the set of all the points of metrical 
density of Ez be denoted by E[. Let E'£ n E be denoted by E^. This set satisfies again 
lx(El) > fi(E) - e, and moreover, DEm» 3 DEn El where H(DEB») = 0. We may 
write DE^i^DEnEl)Kj(DEn(E-K)). Then fi(DE) = fi(DE n (E - K)) < e 
where e is an arbitrary positive number. Hence fi(DE) = 0, q. e. d. In the case of 
p(E) = + oo it is possible to use a countable covering of the set E by sets of finite 
measure. 

Lemma 5. To every function f defined and measurable on E c En, f(E) c Er, 

there exists a set N0 c E such that j*(N0) = 0, f) f(E - N) = f(E - JV0), 
v N,n(N) = 0 

n conv/(£ - N) = conv/(E - N0). 
N,/i(N)-=0 

Proof. Let N0 contain all the points of E at which the function/is not w. a. cont. 
with respect to E as well as all the points that are not points of metrical density of 
the set E. Lemmas 1 and 4 imply /*(-V0) = 0* 

Lemma 6. For any measurable function f defined and bounded on an open set 
EcEn,f(E)cEr 

0 fl conv/(U(x, <5) - 1v) * 0 holds for every x e E . 
6>Q N,fi{N)*=Q 
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Proof, Use Lemma 5 for every fixed d > 0, then Cantor's theorem on intersection 
of compact sets. 

II. DEFINITION OF GENERALIZED SOLUTIONS 

Considering an ordinary differential equation x = f(t, x), we suppose the right-
band side f(t, x) to be a function defined almost everywhere on an open connected 
s e t G c £ n + 1 , and to map this set into En. 

Remark 1. Definition 3 was introduced by A. F. FILIPPOV (cf. [1]), Definition 4 
is due to E. E. VIKTOROVSKIJ [2]. 

Definition 3. A function x(t) defined on an interval T = <*1} t2} where (t, x(t)) e G 
for every t e T, is an F-solution of the equation x = f(t, x) if it is absolutely con­
tinuous on T and if there exists a subset Tt c T, ^(Tt) = fi(T) such that 

x(t) 6 0 0 conv/(r, U(x(t), 5) - N) for every t e 7\. 
d>QN,n(N)~0 

Remark 2. The intersection of the sets in Definition 3 will be written briefly as 
KF(f, t, x(t)). 

Remark 3. When passing from one base (el9..., en) where the system in Defini­
tion 3 has the form xt = f(t, xl9..., xn), i = 1, 2,..., n with a solution x(t) = 
— (*i(0» *• *' *it(0)> t 0 another base (bl9..., bn) the system transforms into the 
form yt = g%(t, yt,..., yn) and the solution assumes the form y(t) = (yt(t),..., yn(t)) 
where y(t) * C x(t), g(t, y) = Cf(t, C~"iy) and C is a regular matrix of the cor­
responding transformation. Vectors x(t), y(t), g,f&rQ taken as column vectors. When 
passing from one base to another, the set 7\ in Definition 3 remains unchanged. 
This is directly concluded from the properties of linear mapping represented by 
a regular matrix C. Hence, Definition 3 does not depend on the choice of the base. 

Definition 4. A function x(t) defined on an interval T = (tut2y where (t, x(t)) e G 
for every re T, is a V-solution of the equation x = f(t, x) with respect to a given 
base B, where the equation is represented by x( = ft(t, xl9..., xw), i = 1, 2,.. . , n, 
if it is absolutely continuous on Tand if to any e > 0 and to an arbitrary set N c G, 
^(N) =s 0 there exist functions $l(t) defined on T, with their ranges in En and with 
the following properties: 

For i « 1,2,...,«, 

(1) (f,^f(*))eG for every teT, 

(2) fi(*> $*(*)) are integrable on T, 

(3) 1*0) - *V)l < a on T, 
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(4) WO-(*i(*i )+lV^^))dt) |<« on T, 

and 
(5) (r, ^(t)) $ N almost everywhere on T. 

Definition 5. A function x(t) defined on an interval T = <*i, f2> where (f, x(t)) e G 
for every t e Tis an MF-solution of the equation x = /(f, x) with respect to a given 
base 2? where the equation is represented by xf = /,(*, xi9..., xw), i = 1,..., n, 
if it is absolutely continuous on T and if there exists a subset Tt c T such that 
/i(Tx) = /i(T) and for every f 6 Tt it is x(t) e K*£F(f t9 x(t)) where 

Kr(ft9x(t)) = f[KF(fi9t9x(t)) 
i=l 

and 

KF(fh t9 x(t)) = H n c^f((t9 U(x(t)9 5) ~ N) 
d>0 JV,ji(N) = 0 

for i = 1,..., n. 
Remark 4. If the right-hand side of the equation x = f(t9 x) is defined on G, 

measurable on G and continuous in x for arbitrary (but fixed) t9 then KgF(f919 x) = 
= KF(/, f, x) = f(t9 x) and, therefore, every solution in the sense of Definition 3 
and Definition 5 is a solution in the sense of Caratheodory. 

Definition 6. A function x(t) defined on an interval T = (ti9 f2> where (t9 x(t)) e G 
for every t e Tis an MV-solution of the equation x = f(t9 x) if it is absolutely con­
tinuous on T, and if to any e > 0 and to an arbitrary set N c G, ^(N) = 0 there 
exists a function ij/(t) e En defined on T, with the following properties: 

(6) (t9 \l/(t)) e G for every f e T, 

(7) f(U^(t)) is integrable on T, 

(8) ||x(f) - ^(r)|| < e on T, 

(9) ||x(0 - (x(h) + J V ( T , *(T)) dt)|| < a on T, 

and 
(10) (t9\l/(t))$N a. e. on T. 

III. RELATIONS BETWEEN GENERALIZED SOLUTIONS 

Remark 5. Everywhere in this chapter we suppose that the right-hand side 
f(t9 x) of the system x =/ ( t , x) is defined a. e. on an open connected set G <= £„+i> 
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and that it maps this set into En. Let the function f(t, x) be measurable on G. Assume 
that to every compact set K c G there exists a locally integrable function m(t) 
defined a. e. on the projection of the set K to the axis t, satisfying \f(t, x)| S #*(t) 
a. e. on K. It follows from this remark and Lemma 6 that the sets KF(f, t, x(t)) are 
non-empty almost* everywhere on T provided x(t) is a continuous function defined 
on a closed interval T, (t, x(t)) e G for every t e T. 

Definition 7. We shall say that an absolutely continuous function x(t) defined on 
Tss Ou *2> fulfils condition CF if 3(Ti c T:ii(Tt) = fi(T)) V(i) V(Bi) V(r 6 Tt) . 
. {a v P}, where Bj = CjB and B is a given orthonormal base and Cj are all the 
regular matrices of the type (n, n) with rational elements. Hence {By} is a countable 
system of orthonormal bases in Ett. An index i is the index of the coordinate in a given 
base. The conditions a and P read as follows: 

«) for an arbitrary open interval J <= G(t) with x(f) e I and for any e > 0 it holds 
KKj.t) > 0, where M[iItt = {x € J : |xf(t) - /,(*, x)| < e}. 

P) for an arbitrary open interval J c G(t) with x(*)e J, it holds ti(N[Jtt) > 0 
as well as fi(N2Jtt) > 0 where N\Jjt = {xeJ :f{(t,x) > x^i)}, N2Jft = {xeJ : 
:/*(*> *) < *i(t)} and G(*) is the projection of the set G into En with fixed t. 

Theorem 1. ( F o C F ) An absolutely continuous function x(t) defined on T' = 
— <fl9 *2> *s aw F-solution of the system x = f(t, x) from Remark 5 in the sense 
of Definition 3 if and only if the condition CF holds for x(t). 

Proof. Let us suppose x(t) is an F-solution of the equation x = f(t, x) on an inter­
val T = <tt, t2>. Then there exists a subset Tt c T, fi(Tt) = ix(T) such that x(i)e 
€ KF(f, t, x(t)) provided t e Tt. We shall prove that a v p holds for any index i, for 
every teTt, and with respect to any base B. According to Definition 3 it holds 
x(t) e Qomf(t, U(x(t), 8) - Ns(t)) for every t e Tt and 8 > 0. The set N5(t), 
j*(Nfi(t)) = 0 has the same meaning as the set N0 in Lemma 5. For the sake of 
brevity, let us denote Ad(i) = conv/(f, U(x(t),8) - Nd(t)). Let us choose a base 
(cf. Remark 3). Now let ̂ (Ml

eJi stl) = 0 hold for some tx e Tt and fixed i and certain J t 

and B > 0. Consequently, the condition a does not hold at tt. At the same time, let 
there exist I2 such that, for instance, n(N2j2it^ = 0. Let us choose 8 > 0 such that 
U(x(tt), 8) a It n I2 where the intersection is a non-empty set because it contains 
the point x(tt). Consequently, the inequality ifa) jS fi(tu x) - e must be valid 
for every x e U(JC(^), 5) - N(tx) where the set N(tt) = (N^t) u .MjfIl,fl u Nl

2j2it) 
has measure zero. Hence e + X|(rt) :g y* f° r every y = (yt,..., y„) where y e 
econv f(t%, U(x(tt), 8) - N(t%)) « -4a(*i). This implies x(*x) # A-a(f J , which is a con­
tradiction. This yields that the condition a v P is satisfied on the whole set Tt for 
every base B and t -* 1,...,«. The argument is analogous for n(N[tr2tti) = 0. 
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It remains to prove CF => F. Let us suppose CF holds, i.e. 3(T2 <= T: ju(T2) «= 
- fi(T)) V(By) V(i) V(* e T2) {a v J?}. For sufficiently small <50 > 0 the set 

(J (t9 U(x(t)9 d0)) is a compact subset of G. Hence, cf. Remark 5, there exists V a T, 
teT 

li(T) = n(T) such that ||/(f, x)|| ^ m(f) for every t e T'. Then for every <5 e (0, 80) 
the sets f(*, t/(x(t), 8) - N^)) where ii(N8(t)) = 0 are bounded for every fixed 
t e T. In the sequel we consider the set T2 = T2r\T for which again fi(T2) = #(T2). 
Let a v p be satisfied on T2 with respect to any base Bj e {Bj} and for each index 
i = 1,..., n. It depends on the choice of the base Bj which of the conditions a or p 
holds for a given i and 1e T2. However, both a and J3 imply the inequality 

(11) {vrai mm flt9 x) : x e U(x(t)9 S)} £ xt(t) g 

ig {vrai maxf^r, x) : x € U(x(t)9 d)} 

for i = 1,,.., n and leT2 '. Let us choose 8 e (0, 80) and let V denote the set of all 
vectors v e Ert with rational coordinates in the base B. The set Vis countable and dense 
in En. We shall prove that for every v e Vand t e T2 the inequality 

(12) (x(/), v) ^ {vrai max (f(t9 x), v): x e t/(x(f), 5)} 

holds. Let us choose a fixed *2 e T2 and a fixed v e V and let us consider an ortho-
normal base (ei9..., en)e {Bj} such that v = fc.ef- for a certain fixed i, where k is 
a positive rational number. With respect to this base, let the equation be represented 
by the system ys = gj(t9 y), j = 1,..., n (cf. Remark 3). The inequality (ll) is 
satisfied in every base Bj. Furthermore, (x(t2)9 v) = k.yi(t2)9 hence (f(tl9 x), v) = 
= k.gi(t29 y) and, therefore, the inequality (12) holds. This inequality can be rewritten 
into the form (x(t)9 v) S {sup (x, v)': x ef(t9 U(x(t)9 6) - Nd(t))} where n(N3(t)) = 0. 
Let us denote A(t) = f(t9 U(x(t)9 S) - Nd(t)). The inequality (x(t)9 v) ^ {sup (x, v) : 
: x e A(t)} has been proved for arbitrary fixed t e T2 and arbitrary veV. We shall 
prove that inequality for every v e En. There exists a sequence {vn} c V such that 
vn -> v for n -> oo. In the inequality (x(t)9 vn) ^ {sup (x, vn): x e A(t)} let n -* GO. 
The continuity of scalar product yields (x(f), v„) -* (x(r), v) for w -* oo. Further, 
{sup (x, vn): x € A(t)} -> {sup (x, t?) : x e A(*)} for n ~» oo because |{sup (x, t>) 
- sup (x, vn): x e A(t)}\ g |{sup ((x, v) - (x, vn)): x e A(t)}\ = 
: x e A(t)} g {sup |(x, t; - vn)\ : x e A(t)} «£ {sup ||x| ||i? 
= {sup ||x I : x e A.(f)}.||v — t?Bj| ^ c.||i> — v„l where c is a positive constant because 
the set A(t) is bounded. To complete the proof, it suffices to show that the implication 

(sup (x, (v - vn)) : 
x e A(t)} ш 

V(t;eEn)((x(t)9 v) S {sup(x, v):x€ A(t)}) *> X(t)e conv A(t) 

holds for fixed t e T2. To this end, assume that x(t) $ conv A(t). Then there exists 
a hyperplane F dividing the space Ett into two open parts JT+, F~~ such that 
conv _4(*) c f ^ u f and x(f) e f " . Let us substitute v by a vector vr perpendicular 
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to F and directed into T". We get (x(t)9 vr) > {sup (x, vr) : x e A(t)} which is 
a contradiction. Thus we have proved that x(t) e conv A(t) = A8(t) on T2. Since 
x(t) € Ad(t) holds on T2 for arbitrary 8 e (0, <50), the function x(f) is an F-sdlution of 
the equation x = f(t, x) on T. 

Remark 6. The condition CF 

3(TX c T: ^TO - ^(T)) V(By) V(i) V(* e T,) {a v p} 

where the number of Bfs is countable while that of indices i is finite, can be rewritten 
into the form 

V(Bj) V(i) 3(T1 cz T: ^T t ) - fi(T)) V(* e T-.) {a v £} , 

since for every Bj and i there exists T($i c T, ,w(T/'f) = l/(T) and we can put Tt = 
=- H 7i "*> measure of 7\ being equal to pi(T). 

Theorem 2. (F => MF) If an absolutely continuous function x(t) defined on T = 
= (tl912} is an F-solution to the equation x = f(t9 x), then it is an MF-solution as 
well. 

Proof. The function x(t) is an F-solution on T which means x(f)eKF(/, t, x(t)) 
holds a. e. on T. Let us choose an arbitrary base B. With respect to this base, let the 
system be expressed in the form xt = ft(t9 xl9..., xM), i = 1,..., n. From Definition 5 

n 

we get K%F(f919 x(t)) = fj KF(fi919 x(t)). Hence the inclusion KF(f91, x(t)) c 
i = l 

c KsF(f919 x(t)) can be derived from the inequality (11) in the proof of Theorem 1. 
Thus obviously x(t)6KgF(f919 x(t)) holds a. e. on Tand, therefore, x(t) is an MF-
-solution of the equation x = f(t9 x) on T. 

Corollary 1. For n = 1 we have KF(f919 x) = K^F(f919 x) and hence Definitions 3 
and 5 are equivalent. 

This equivalence is introduced in [1] without proof. 

Example 1. In this example it will be shown that for n > 1 there exist equations 
whose MF-solutions need not be F-solutions. 

Let an equation x = f(x) be given on E2 which has, in a given base B9 the form 
ft(x) = 2 — sign x2,/2(x) = — sign x2. Each trajectory in the sense of Definitions 3 
and 5 reaches the axis x% after a certain time, and continues along this axis. On the 
axis xt we obtain the F-solution xjj) = It, x2(t) = 0, unique in the sense of increas­
ing t There are infinitely many AfF-solutions on the axis xx with a given basd B9 

their form being xt(t) *• ct9 x2(t) « 0, where c is an arbitrary constant from the 
interval <1, 3>. 
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Theorem 3. Let a function x(t) be defined and absolutely continuous on T and let 
it be an MF-solution of the equation x = f(t9 x) on T in a given base B but not 
an F-solution of this equation on T. Then there exists a base B' such that x(t) is 
not an MF-solution on T of the equation x = f(t9 x) in the base B'. 

Proof. Let us consider all regular matrices Ct with rational elements of the type 
(n, n). Transforming the given base B by means of these matrices we obtain a coun­
table system of bases Bt = CtB for which KF(f, t9 x) = n^,F(/> U *)• The last 

Bi 

identity follows from the separability of a closed convex set from a point that does 
not belong to the set. Hence the countable system of bases Bt includes a base B' 
such that x(t) is not an MF-solution of the equation x = f(t, x) on the interval T 
with respect to this base. 

Definition 8. We shall say that an absolutely continuous function x(t) defined 
on T = (ti912} fulfils condition CMF if 3(Tt c T:n(Tt) = n(T)) V(i) V(f e Tt). 
. {a v ($}, where i = 1,..., n and the condition a v p is from Definition 7. The 
index i is the index of the coordinate in a given base B. 

Theorem 4. (MF o CMF) An absolutely continuous function x(t) defined on 
T = {tl9t2y is an MF-solution of the system x =f(t9x) from Remark 5 with 
respect to a given base B if and only if the condition CMF holds for x(t). 

Proof. Let us suppose x(t) is an MF-solution of the equation x = f(t9 x) on the 
interval T = (jl9 *2> with respect to a given base B. The equation has the form x{ = 
= fi(t9 xu ..., xn), i = 1,..., n with respect to B. Then there exists a subset Tx c. T9 

^(Tj) = /i(T) on which x((t) e KF(f, t9 x(t)) holds for every i = 1,..., n. 
Hence, x ^ e comfit, U(x(t), <5)-~ N](f)) = -4J(f) for every t e Tl9 i = 1,..., n 

and 8 > 0 where Nl
d(t)9 ti(N

l
d(t)) = 0 has the same meaning as the set N0 in Lemma 5. 

Now let fi(Ml
eJutl) = 0 hold for some tt e Tx and fixed i and Ix and e > 0. Simul­

taneously, let there exist I2 such that, for instance, fi(Nl
2>l2>tl) = 0. Let us choose 

8 > 0 such that U(x(tt)9 5) c It n I2. Consequently, the inequality x ^ ) ^ 
= /*('i> x) — 8 is valid for every x e U(x(tx)9 S) - N(tt) where the set N(fi) = 
= (Nj(fi) u M\yIutx u -V2>j2}fl) has measure zero. This implies Xi(tx) # Al

d(t^), which 
is a contradiction. This yields that the condition a v p is satisfied on the whole set Tx 

for each i = 1,..., n. 
It remains to prove CMF => MF. Let a or p be satisfied on some T2 c T, fi(T2) = 

= n(T) for each index i = 1,..., n. We shall prove xfyeAKt) for every 8 > 0 
and for each index i and all t € T2, which implies that xt(i) e KF(fi919 x(t)) is satisfied 
for every t e T2 and i. Then x(t) e K^F(f, t9 x(t)) is satisfied for every t € T2. Let us 
choose a fixed 8 > 0 and an index f and let I(t) == U(x(f), o"). Further, let a hold for 
a given r2e T2. Then there exists xe/( t2) - Ni(t2)» 1*^) ~ Mh> x)\ < s f o r a i l 

arbitrary a-neighbourhood of the point xt(t2). We get X|(t2) e >4J(t2) because the set 
A[(t2) is closed. Now let p hold for a given t2eT2; then there exists x u x2 € l(t2) -
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— Nt(t2) and it holds /,(t2, xt) < x((*2) < ft(t2, x2). Consequently xf(f2) e A\{t2) 
since the set A*d(t2) is convex. x*(*2) e A\(t2) holds for each i= 1,..., n and for arbi­
trary 5 > 0 and *2 € T2, /*(T2) « ^(7). Hence x(t2) e K?F(/, *2, x(*2)) for all f2 6 T2. 
Then x(t) is an MF-solution of the equation x = f(t, x) on Tin a given base B. 

i Lemma 7. Let a function x(t) be defined and absolutely continuous on 7' = 
= <*i» t2}9 mapping the interval Tinto En. Let a real function f(t9 x) be defined a. e. 

n 

and measurable on the set M = U (t, Rt), where Rt = J~J Rh JR, = <x,(r) — 8, 
teT 1=1 

xf(t) •+* 5> and 5 is a fixed positive number. Let T denote a subset of T with the 
following properties: For every te T and every e > 0, n{xe Rt : ||x — x(f)| < e, 
f(t, x) < s} > 0 holds and for every teT — T, there exists e > 0 such that 
n{xe Rt: ||x — x(t)\\ < s, f(t, x) < s} = 0. Then the set T is measurable and 
there exists a measurable function h(t) on T with the properties: h(t) equals zero 
on T and is positive or + oo on T — T;for every te T — T, 

n{x e Rt: ||x - X(J)|| < h(t), f(t, x) < h(t)} = 0 . 

Proof. Let a measurable function X(t) be given on T. Let us choose a function 
g(t9 x) on the set M: 

g(t, x) = 1 for f(t, x) > X(t) 
and 

0(*,x) = O for f(t,x)^X(t). 

This function g(t, x) is measurable and integrable on M. By virtue of Fubini's 
theorem it holds | M g(t, x) df dx = fT At \Rt g(t, x) dx; therefore, j * t g(t, x) dx = 
= n{xeRt :f(t, x) > X(t)} is a measurable function on T with respect to the 
variable t* Then the sets 

(13) {te T:fi{x€Rt :f(t9x) > X(t)} = 0} 

{t e T: n{x e Rt :f(t, x) > X(t)} > 0} 

are measurable. Let us choose a sequence {rn}nsst, where r„ are all positive rational 
numbers and define a function hn(t) on the interval Tby 

*«(*) * rn for every t satisfying fx{x e Rt: ||x - x(t)\\ < rn, f(t, x) < rn} = 0 , 

hjt) « 0 for every t satisfying fi{x € Rt: \\x — x(f)|| < rn, f(t, x) < rn} > 0 . 

From (13) we derive that the function hn(t) is measurable on T, hence also the function 
lim sup hn(t) is measurable on T This function will be denoted by h(t). 

The function h(t) can be + oo for some 16 T. If Jtn(t) > 0 for a certain fixed t e T 
and for a certain n9 then /*{xe Rt: j|x - x(i)|| < rB, /(f, x) < r„} = 0, therefore 
ti{x®Rt: |jx - x(l)| < rfc, /( i , x) < rk} «• 0 for every rfc, where 0 < rfc < rn. For 
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every positive integer / there exists k(l) > max (n, 1) such that |r„ < rkil) < r„. 
Then it holds hk(l)(t) = rkil) > \rn > 0 and this yields h(t) > \rn. Thus we have 
proved that hn(t) > 0 => h(t) > 0 for every t e T. Hence h(t) = 0 for a certain 
t e T implies hn(t) = 0 for every positive integer n. Then h(t) = 0 yields n{x e Rt: 
: || x — x(r)| < rn, f(t, x) < rn} > 0 for every positive integer n and this implies 
that the function h(t) is positive or +oo on the set T — V. The identity h(t) = 0 
on T" follows from the definition of hn(t). Now we shall prove the last assertion of 
this lemma. If h(t) > 0 for a certain t e T, then there exists a nondecreasing sequence 
hHi)(t) -* h(t), therefore rM(0 ~> h(t) and //{xefl,: ||x - x(f)|| < rw(0, f(f, x) < 
< r«(o} = 0 implies /*{x e Rr : ||x — x(r)|| < h(t),f(t, x) < h(t)} = 0. Let us choose 
h(t) = {sup hn(t): n = 1,...} for every te T; then we reach the same result. 

Lemma 8. Let a measurable function f(t, x) be given on an open connected set 
G c En+v*Let a mapping M0(t) into sets from En be defined on an interval T = 
= <rt, t2}, such that for every te T the sets M0(t) are subsets of En, fi(M0(t)) > 0, 
(t,M0(t)) c G and M0 = \J (t, M0(t)) is a measurable set in En+l. Then there 

teT 

exists a measurable function \j/(t) defined on T such that f(t, \l/(t)) is measurable 
on Tand \l/(t) e M0(t)for every t e T. 

Proof. We shall proceed similarly as in [2]. Let us denote N0 = {xe G' :f(t, x) 
is not measurable on T with respect to the variable t}, where G' is the projection 
of the set G into En. We shall leave the set T x N0 out of the set G. In this way we 
have reduced the sets M0(t) at most by sets of measure zero. We shall keep the same 
notation M0(t) for the new sets. The set M0 is measurable, therefore we can write 
n(M0) = lT n(M0(t)) dt > 0. Let us denote X = {x e En : ju(M0(x)) > 0}, where 
M'0(x) are the projections of the sections of M0 with a fixed x into the axis t. Then 
we can rewrite pt(M0) = Jx fi(M0(x)) dx > 0. Now, there exists x0 e X such that 
li(M0(x0)) ^ fi(M0)lfi(X). Let us denote M t = {(t, x)eM0 : t $ M'0(x0)}, then 
n(Mx) = jx ju(Mi(x)) dx holds, where M't(x) is the projection of the section of the 
set Mt with a fixed x into the axis t. Again there exists xteX such that /i(Mi(xt)) 2* 

i 

>n(Mt)ln(X). Let us write generally Mi+1 ~ {(t,x)eM0:t$(\M)(x$ for 
y-o 

i = 1, 2,.. .; then fi(Mi+t) = JxMM-+i(x))dx and there exists x i + 1 eX such that 
n(M'i+l(xi+i)) = n(Mi+i)l[i(X). The set sequence {Mt}?i0 is nonincreasing. 

00 

Let lim p{Mn) = a > 0, then ii(M'n(xn)) ^ a//*(K) and we derive fi( \J M'n(xn)) = 
it-*oo n=-0 

= -foo which is a contradiction because the sets M'n(xn) are disjoint and the union 
of these sets is included in the interval T with a finite measure. From the preceding 
result we obtain lim fx(Mn) « 0. Further n(Mn) « Jr-^yWc*,) MM»(0)d ' ^ 

= Jr--Mu1Mr(xoMMoT03^ b e c a u s e Mo(r)-^«(0 o n t h e i n t ^ i o n domain. 

The implication H m ^ - fr- y K r c ^ ^ O ) * - 0-*i<r-UM'^)) « 0 
«->00 i s s 0 
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is true because fi(M0(t)) > 0 for every t e T Thus we have proved that n(\JM'n(xn)) = 
n 

= fi(T)9 where the union is at most countable. Now let us define a function \j/ on T: 

\j/(t) = xn on each set M'n(xn), 

Ut)eM0(t) on T~\JM'n(xn). 
n 

Theorem 5. (CMF => V) Let the condition CMF from Definition 8 3(TX c T: 
: fi(Tt) = #(T)) V(i) V(* e Tt) {a v p} be satisfied in a given base Bfor an absolutely 
continuous function x(t) given on an interval T = (tl9 f2>. Then x(t) is a Vsolution 
of the equation x = f(t9 x)from Remark 5 on the interval Tin the base B. 

Proof. Let an absolutely continuous function x(t) be given on the interval Tand 
let a v P be satisfied on a certain set Tt c T, ^(T^ = pi(T) in the given base B for 
each i = 1;..., n. Let TJ = {t e Tx : a holds at the point t}9 then only p holds on the 
sets T1 = Tt — TJ. According to Lemma 7 the sets T\ and T" are measurable. Let 
us choose an arbitrary e > 0 and N c G, /*(N) = 0. For each i = 1,..., n we shall 
find a function ^'(f) on T satisfying (l)—(5) with the norm ||x| = {max [xf| : i = 
= ! , . . . , «} . Thus we shall have proved the assertion of Theorem 5. Let us fix an 

n 

index i and an interval It = f\ I) for every t e T, where Jj = (*,(*) — e, x/f) + e) 

with e > 0 sufficiently small so that \J (t9 It) c G. Now let us choose et > 0 such 

that 
(14) 2fi! fi(T) < e . 

The condition a holds for every te T'i9 which implies fi(Ml
Sljttt) > 0 on the set T'i9 

where 
Mlt j»t = {xelt: \xi(t) - fit, x)\ < et} . 

The condition P holds for every t e T'i9 which implies n(N[jtft) > 0 and fi(N2jttt) > 
> 0, where 

N[jut = {xelt:xi(t)~-fi(t9x)<0}9 

N(
2jttt = {xelt: xt(t) - f{t9 x) > 0} . 

Now let us define for j = 1,2: 

Mj(i)~MluIut on Tf', 

Mj(t) ~ N)jtft on T"i9 

Mj(t)**it on r - ( r ; ^ 0 . 

The sets U (** -M^l)) are measurable. 
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Evidently fi(Ms(t)) > 0 for every t e Tand j = 1, 2. The function/(f, x) is defined 
a. e. on G and there exists a set G0 c G, fi(G0) = 0 such that f(t, x) is defined on 
G — G0. We shall denote N 0 = J V U G 0 while No(0 *s the projection of the section 
of the set N0 with a fixed t into En. Now let new mappings be defined on T for j = 
= 1, 2: AfXO = Mj(t) - N0(f) for every t satisfying p{MJ(t) - N0(t)} > 0, M}(0 = 
= It for every f satisfying n{Mj(t) — No(0} = 0» where the last identity is satisfied 
on a set of measure zero. In virtue of Lemma 8 there exist functions ^ - I C O and \l/[(t) 
such that il/l„t)j(t)€ Mj(t) holds for j = 1, 2 and for every re T because the set 
\J (t, Mj(t)) is measurable which again is an immediate consequence of the mea-
teT 

surability of the functions x(t), x ,(*),/»(*, x) and the set T\. This implies (l) for 
^L t(t) and \jj\(i). The functions/^, ^|_ i>./(t)) are measurable on Tand (t, $[„ t)j(t)) e 
e U (r, I,) on T, where K = \J (t, It) is a compact set. There exists a locally integrable 

f€T f€T 

function m(i) such that 

(15) \\f(t, x)\\ S m(t) holds a. e. on K. 

(Cf. Remark 5.) This yields that ft(t, xj/l-^/t)) are integrable functions, therefore, 
(2) holds. Further, (3) holds for ^(

l_1)y(r) because $l-x)jt)elt on T. The definition 
of the mappings Mj(t) implies (5) for both functions xj/l^D^t). Let us choose 
T0 = tt and define #0(f) = JT|» n<t0,.> (**(*) - /i(t, ^i(*))) dT on T. The function 
/^(f) is nondecreasing on Tand P10(T0) = 0. If the inequality filjf) < |e hold on T, 
then we choose TX = t2. If the contrary is true, then we choose the first xx e T for 
which / ^ ( T J = ^e. If TX < t2 we define 

/C(0=f (*i(*WiMU*)))<fc on <Tt,*2>. 
JTi"n<T!,r> 

This function is nonincreasing and >Ŝ  1CTi) ^ *̂ ^ ftiHO > ~fi o n ^Tl ' '2X then 
we choose T2 = f2. If this last inequality does not hold on the whole <T15 f2>, then we 
choose the first T2 e <TX, t2} for which #6T~1(T2) = —6. If again T2 < t29 we define 
an analogous function f}$2(t). If fi]2(i) < e on <T2, t2}9 then we choose T3 == t2. If 
this inequality does not hold, then we continue further analogously. Now we have 
defined 

(i6) /^"'(O-f (ifc)-fk>*l-M))te on <*P*i> 
J Ti"n<tj,0 

for; = 0, 1, 2,.... We choose T0 = T0 and define auxiliary functions 

(17) 4 " 1}'(0 - f (**(*) + (" 1)J' «(*)) dT on <TJ, t2> 

by the same method as the functions (16), where m(t) is the function from (15). 
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As 

and 
fjt,4,[{t)) á m(t) on T 

flUil/í^t))^ -m(t) on T, 

the inequality < £ xn holds for w = 0,1,.... If < S h for all n, then xn converge 
to a certain T', T' :g f2- We get 

t f (xi(T)Tm(T))dT = U E a = + ^ 
nSS°Jrj"n<t'2M,t'2n+i> 2 " = 1 

which is a contradiction because x(t) and m(t) are absolutely integrable functions 
on T Hence it holds <0 = t2 for a certain positive integer n0. We have proved that 
a fytiite number of steps xJ is sufficient in (17) and (16). Let us define a function p(t) 
on T: 

#r) = #o(0 for f e ^ o , ^ ) , 

iS(0 = C1 ) n(0 + E1^;1)^1+i) for 'e(r„,T,l+1>, 
1=o 

where n = 1, 2,.... The inequality - i s jg /?(*) <* ê holds on T. Let us define 
a function ^o(0 o n ^: 

^0(0 = ^i(0 ° n (T2n^2n+l> 

^ ( 0 = ^-1(0 0 n (T2„+l,*2n + 2> 

for n = 0,1, 2,... and ^0('i) = ^i('i)-
This function \}/0(t) satisfies (1), (2), (3), (5) because the functions ^[(t) and ^L.^0 

satisfy the same conditions. Now we must prove that \j/0(t) satisfies the inequality (4), 
too. It holds 

k(0 - *&) - f V f c ^ d J = \[\x{x)^f{x^x)))dx 
I J tt I IJ n 

< [ \X{x) - f{x, *J(T))| dT + I f (x{x) - fit, V0(x)))dx 
Jrc'n<ti.f> UTY'r.<ri,0 

^li(T)el + \p(t)\<-2 + -2 = e 

on T because x(t) is absolutely continuous and owing to the definition of the map­
pings Mj(t) on T[ for j = 1, 2. Thus we proved that the inequality (4) holds for the 
function ^4(0* Hence the function x(t) is a V-solution of the equation x = f(t, x) 
on Tin the given base B. 
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The3rem 6. (V=> CMF) If an absolutely continuous function x(t) is a V-solution 
of the equation x = f(t9 x) from Remark 5 on the interval T = <*i, *2> in the 
given base B9 then the condition CMF from Definition 8 holds for x(t) on T. 

Proof. The condition CMF can be written in the form 

V(i) 3(7\ cz T: fi(Tx) = fi(T)) V(f e Tt) {oe v p} 

because CMF obviously implies this condition and also the proof of the converse 
implication follows easily: Let us choose for i = l na set T[ C T, fi(T[) = fi(T) 

n 

where the condition a v P holds and denote Tt = f) T[. The set Tx so constructed 

can be used in CMF. The converse to this new condition has the form: 3(i) V(Tt c T: 

: fifa) = [i(T)) 3(* e Tt) {non (a v p)}. This coincides with the condition 

3(i) 3(T' c T: pL*(T') > 0) V(f e T') {non (a v J?)} , 

where p* is the outer measure. Suppose that a v p does not hold for a certain index i 
on T' <= T with ii*(T) > 0 while a v P holds on T - T. We shall prove that x(r) 
is not a V-solution of the equation x = f(t9 x) on T in the given base B. Now there 
exists et > 0 and a certain open interval It9 x(t) e l\ such that 

fi{x e It : \xt(t) - ff(r, x)| < ej = 0 for every t e T 

and at the same time there exists a certain open interval Tt, x(t) e I^ such that, for 
example, jx{x e I;/ : xt(t) — f((t9 x) < 0} = 0 for every t e T. To every t e T let us 
choose an open interval if with the following properties: x(t)el° and \J (t9I°) is 

__ teT 

bounded and I° c G(f)» where G(0 is the projection of the section of the set G with 
a fixed t into FM. Moreover, I°t cz I't n T't for every r e f . The intervals I? can be 

n 

written on T by the formula I? = \\ l{9 where l{ has the form (xj(t) — Stj9 Xj(t) + 
j = l n 

+ O'ij). Let us denote 8t = {min (dtJ, dtJ) :j = 1,..., n] and If = n ( x X 0 "" ^" 
XX0 + <5f) in the space En for every teT By virtue of Lemma 7 the set T' is 
measurable with a positive measure and we can ch'oose ef, St positive on T' and 
measurable on V with respect to the variable t and such that pt{x e It: \xt(t) — 
~ ft(t, x)\ < e j = 0, ju{x e If: x((t) - ff(r, x) < 0} = 0 for every t e T. Now there 
exists a measurable subset T" cz T', n(T") > 0 such that there exists a positive 
integer fc for which the inequality l/fc < <5, holds for every t e T\ Let us denote 
£(*) = {x G It : \xt(t) - fit, x)\ < e j u {xelt : x^) - ft(t, x) < 0} and 
N' = U (r, £(*)). The set N' is measurable because ft(t9 x) is measurable with respect 

teT" 

to (r, x) and ef, 5-, xt(t) are measurable with respect to t. Then the measure of the set N' 
can be written in the form fi(N') = Jr» /*(#(*)) dr. Hence p(N') = 0 because /i(B(f)) = 
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» 0 holds for every t € T. Given zl > 0, there exists an open set GA such that 
T c GA c T and /x(Gj - T ) < .4. For brevity, let us write b = JT» e, dr. The 
value b is positive and obviously b is independent of A and i/r, N from (1)—(5). 
Let us denote by st(t) the minorant function of the functions x((t) — f((t, \j/(t)) 
on <*!, *2>, where *̂ (f) is an arbitrary function on T with the property \l/(t)elt. 
The inequality 

(is) S i(.)^*.(t)-LM(0) 

holds for such functions \j/ and the existence of an integrable minorant st(t) follows 

(cf. Remark 5) from the compactness of the set U (f, If) c G. Further, let us choose 
teT 

A > 0 small enough so that the inequality 

ßř dř + s^ř) dí > - > 0 
J GAnT" JGA-T" 2 " 

holds. Let Gj be written in the form GA = IJGj, where G; are the components of the 
set GA; then •* 

£(T e,d*+f S/(OdA>^>0. 
I UGjnT" jGj-T" ) 2 

This implies the existence of a certain Gj and b' e (0, %b) such that 

(19) f grdt + f s((t)dt > b' > 0 . 
j G j n T " JGj-T" 

The value b' depends only on ef, st(t) and Gd and does not depend on N and \jf. 
Now we have defined the functions sr, 8t9 st(t), the sets T", Gj9 N', Gj and the 
constants b' > 0 and k. In the sequel we shall use the fact that the function x(t) 
is a V-solution of the equation x = f(t, x). Let us choose s > 0 satisfying 

(20) c < m i n f - , - J 

and N c G, /*(N) = 0, and let us denote the union N u N' again by N. From the 
definition of the set N' and from (5) the inequality 

(21) * i ( 0 ~ / i ( ^ ( 0 ) ^ s . > 0 a.e. on T 

follows for every function \]s(t) satisfying the conditions (1), (2), (3), (5) and we 
shall prove that the inequality (4) does. This inequality can be written in the form 

í (*,(т) - Mr, Цr))) dт 
ř i 

< e on T. 

Further, 
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f (ifr) - fit, *(.•))) dt = f WO - fit, <H0)) d. + 
J GA J GAnT" 

+ f (*<(0 - H^ *('))) d ^ f er dt + f 5,(0 dt 
JGA-T" JGACST" JG*-~T" 

holds for every i>(t) satisfying (l), (2), (3), (5) (cf. (18), (21)). The inequality (19) 
implies 

(22) f (xt(t) - fit, iftt))) dt>b'>0 for every f(t) 
JGj 

satisfying (l), (2), (3), (5). We assume that x(t) is V-solution. Therefore for a given 
e > 0, e < min (l/k, \b') and N c G, /j(N) = 0 there exists a function ^(f) satisfying 
(l)-(5). Let $(*) satisfy the properties (l), (2), (3), (5). Denoting q>(t) = x^t) -
— ft(t, \J)(t)) we can write the last inequality (22) in the form $Gj q>(t) dt > b' > 0. 
Let Gj = (xi9x2) c T. Now due to (4) |ft (p(x)dx\ < e must hold for xu hence 
- e < ft <?(T) dT < e and ft <p(t) dT = ft <p(x) dx + ft q>(x) dx > ft <p(x) dx + 
+ 6' > — e + *V > e holds because the value e > 0 was defined in (20) so that 
2e < bf. The inequality |ft (p(x) dx\ < e does not hold for x2 which is a contradiction 
to the inequality (4). 

This contradiction completes the proof of the theorem. 
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