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(Received July 25, 1975) 

Let G be a graph. We denote by V(G) and E(G) the vertex set of G and the edge 
set of G, respectively. If v e V(G)9 then we denote by degG v the degree of v in G. 
Moreover, we denote by 6(G) and A(G) the minimum degree of G and the maximum 
degree of G, respectively. If U is a nonempty subset of V(G), then we denote by <1/>G 

the graph G' such that V(G') = U and 

E(G') = {ee E(G); e is incident with no vertex in V(G) - U} . 

Let G be a nontrivial connected graph. We say that a set S e E(G) is.a cut set of G, 
if the graph G — S is disconnected. A cut set S with | s | = n is referred to as an 
n-cut set. We denote by xt(G) the minimum integer k such that there is a fc-cut 
set of G; the integer xx(G) is called the edge-connectivity of G. (The terms not defined 
here can be found in M. BEHZAD and G. CHARTRAND [1].) 

It is obvious that for any nontrivial connected graph G, x1(G) <; d(G). A suf­
ficient condition for xx(G) = 8(G) is due to D. R. LICK [3]; note that Lick's result 
is an analogue of R. HALIN'S theorem on the vertex-connectivity [2]. In the present 
note it will be shown that an analysis of a nontrivial connected graph from the 
point of view of its edge-connectivity can lead to an upper bound for the minimum 
degree. In fact, we obtain an upper bound for a more general characteristic: if G is 
a graph and U is a nonempty subset of V(G), then we denote 

degG U = min {degG u; ueU} . 

Obviously, 5(G) = degG V(G). 
Let G be a nontrivial connected graph, and let U be a nonempty subset of V(G). 

We denote fG(U) = zi(G0), where G0 is the spanning subgraph of <17>G with the 
property that e e E(G0) if and only if e e £(<£/>G) and xt(G - e) = xt(G). We 
denote by hG(U) the minimum integer i such that there is an /-cut set R0 of G with 
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the property that for at least one component F0 of the graph G - R0 it holds that 
V(F0) S 17. Obviously, xx(G) <J AG(t7). It is clear that if Ut and U2 are subsets of 
V(G) such that 0 #- Ut £ 172, then /^ l / j ) g fG(t/2) and fcG(U2) g ftG(l/,.). Denote 
/* - /o(F(G)). Clearly, ftG(V(G)) = ^(G). 

The following theorem is the main result of this note: 

Theorem. Let G be a nontrivial connected graph, and let U be a nonempty subset 
of V(G). Then 

hG(U) £ degG 17 £ max (fG(U)9 hG(U)) . 

Proof. It is obvious that for each ueU, the set of edges incident with u in G is 
a cut set of G. Therefore, hG(U) <I degG U. 

We shall prove the inequality degG U g max (fG(U), hG(U)). Clearly, there is 
a nonempty subset U0 of U such that hG(U0) = hG(U) and that for each nonempty 
subset U' of U, |U'j < \U0\ implies hG(U') > hG(U). Obviously, U0 * V(G). We 
denote by F the graph <1/0>G. It is obvious that there is an /iG(U)-cut set R of G 
such that F is a component of G — JR. It is easy to see that E(F) n R = 0. Denote 
n = |t/0|. Obviously, 

(1) degG 17 = degG l/0 <; A(F) + f M ^ ) l g „ _ i + 
K(u) 

(Note that if x is a real number, then [x] denotes the maximum integer j such that 
J = x.) 

Let n 5̂  /iG(l/). If hG(U) < degG U, then it follows from (1) that hG(U). (n - 1) < 
< n(n — 1), and thus hG(U) < n, which is a contradiction. Hence degG U <I hG(U) ^ 
gmax(fG(t/),hG([/)). 

Let /iG(t7) < w. From (1) it follows that degG U <; A(F). We distinguish two 
cases: 

(I) For each e e £(F), xt(G - e) = xx(G). Then fG(U) = A(F). Therefore, 
degG U S A(F) £ fG(U) £ max (fG(U% hG(U)). 

(II) There exists e e E(F) such that xt(G — 0) 4= #i(G). Then there exists 
a Kx(G)-cut set S of G such that eeS. Obviously, the graph G — S has precisely two 
components, say Gx and G2, and £(Gj) n S = 0 = £(G2) n S. We denote by H 
the graph G — t/0. It is easy to see that E(H) n JR = 0. Next, we denote Vtl = U0 n 
n .KGi)» *u ^ o n V(G2), V21 = V(H) n V(GX), and V22 = V(H) n V(G2). 
Finally, we denote by 

£ l s . . . ,£ 5 , and £6 
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the set of all e e R u S with the property that e is incident 

with VX1 and V21, 

with V12 and V22, 

with Vlt and V12, 

with V21 and V22, 

with Vu and V22, 
and 

with V12 and V21 , 
respectively. 

It is clear the sets El9..., £5, £6 are mutually disjoint, R = Et u £2 u £5 u E6 

and S = £3 u £4 u £5 u £6. Since £(F) n S + 0, we have Vn =j= 0 + V12. Since 
V(H) + 0, we have that either V21 + 0 or V22 =f= 0. Without loss of generality we 
assume that V21 + 0 . We distinguish two subcases: 

(1) v22 = 0. Then £2 = £4 = £5 = 0. Therefore S = £3 u £6. This implies 
that hG(Vi2) S *i(G) ~ hG(U), which is a contradiction. 

(2) V22 + 0. Then both Et u £4 u £6 and £2 u £4 u £5 are cut sets of G. 
Therefore, \Et u £4 u £6 | = xx(G) and |£2 u £ 4 u £5 | = xt (G). Clearly, Et u 
u £3 u £5 and £2 u £3 u £6 are also cut sets of G. Since hG(Vtl)> hG(U) and 
^0(^12) > hG(U), we have \EX U £3 U £5 | > hG(U) and |£2 u £3 u £6 | > hG(U). 
Thus 2|JR| + 2|S| ,= 2 hG(U) + 2 xt(G) < \Et U £3 U £5 | + |£2 u £3 u £6 | + \Et u 
u £4 u £6 | + |£2 u £4 u £5 | = 2\R\ + 2JS|, which is a contradiction. 

Hence the proof is complete. 
Proofs of the following corollaries are omitted: 

Corollary 1. Let G be a nontrivial connected graph. Then KX(G) S <5(G) 5* 
S max (fG, KX(G)). 

Corollary 2. Let G be a nontrivial connected graph, and let U be a nonempty 
subset of V(G). IffG(U) g hG(U), then degG U = hG(U). 

Corollary 3. Let G be a nontrivial connected graph, and let n be a positive integer 
such that n ^ xt(G). Then there exists a vertex u of G such that degG u = n if and 
only if there exists a nonempty subset U of V(G) such thatfG(U) <£ hG(U) = n. 

Corollary 4. Let G be a nontrivial connected graph. Then 8(G) = xx(G) if and 
only if there exists a nonempty subset U of V(G) such thatfG(U) ^ hG(U) = ^i(G). 
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Corollary 5. (D. R. Lick [3]). Let G be a nontrivial connected graph such that for 
each e e E(G), xt(G - e) » xt(G) - 1. Then 5(G) = xx(G). 

Note that an upper bound for the minimum degree of a graph different from the 
upper bound in Corollary 1 was obtained by the author in [4]. 

Added in proof. The graphs G fulfilling the assumption of Corollary 5 were also studied 
by W. MADER (Minimale w-fach kantenzusammenhangende Graphen. Math. Ann. 191 (1971), 
21-28). 
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