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časopis pro pěstování matematiky, rot. 100 (1975), Praha 

COMPATIBLE RELATIONS ON ALGEBRAS 

IVAN CHAJDA, Přerov, and BOHDAN ZELINKA, Liberec 

(Received May 8, 1974) 

The concept of tolerance relation compatible with a given algebra is studied in 
[3], [4], [5], A tolerance relation is (according to [1], [2]) a reflexive and symmetric 
binary relation. Here we shall extend the definition of compatibility onto relations 
which are not tolerances in general. 

Let an algebra 21 = {A, &} with finitary operations be given. (Here A denotes 
the set of elements of 21 and $F denotes the set of operations.) Let Q be a binary rela­
tion on A. We say that Q is compatible with the algebra 21, if and only if the following 
condition is satisfied: If/ e J^ is an w-ary operation (n is a positive integer), xl9..., xn, 
yl9 ..., yn are elements of A9 (xi9yt)eQ for i = 1, ..., n, then (f(xl9 ..., xn), 
f(yi> •••Jy«))eo. 

We shall prove several theorems; some of them are generalizations of the results 
from [3] and [4], When we speak about an algebra, we always mean an algebra 
in which all operations are finitary. 

Even an empty relation on A can be considered a relation compatible with 2t. 
If Q is a binary relation on a set A, then by Q* we denote the relation {(j, x)\x e A, 
ye A, (x,y)eo). 

Theorem 1. Let 21 = <A, «^> be an algebra, let QU Q2 be two relations on A com­
patible with 21. Then Q1 n Q29 Q* are relations compatible with 21. 

Proof. Let fe ^ be an n-ary operation, let xl9..., xn, yl9..., yn be elements of A 
such that (xi9 y) eQ1 n Q2 for i = 1,..., n. As (xi9 yt) e Qt for i = 1,..., n, we have 
(f(xl9 ..., x„), f(yl9 ..., yn)) e QU AS (xi9 yt) e Q2 for i = 1, ..., n, we have 
(f(xl9..., x„), f(yl9..., yn)) e Q2. Thus (f(xl9..., x„), f(yl9..., yn)) e Q1 n Q2 and 
Q1 n Q2 is a relation compatible with 21. The assertion for Q* is evident. 

Theorem 2. Let 21 = <A, 3F} be an algebra, let Q be a reflexive relation on A 
compatible with 21. Then Q n Q* is a tolerance compatible with 21. 

Proof. The reflexivity and the symmetry of Q n Q* is evident. Its compatibility 
with 21 follows from Theorem 1. 
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Theorem 3. Let 91 = <A, ^} be an algebra, let Q be a reflexive and transitive 
relation (i.e. a quasi-ordering) on A compatible with 91. Then Q n Q* is a con­
gruence on 91. 

P roof is analogous to that of Theorem 2. 

Let the product Q1Q2 °f t w o binary relations gl9 Q2 on the same set A be defined 
so that (x, y) e QXQ2 for x e A, y e A, if and only if there exists z e A such that (x, z) e 
e Qi, (z, y)e Q2. We can define also the n-th power of a binary relation Q so that 
Qn = Q for n = 1 and Qn = QQ"'1 for n = 2. 

It is easy to prove the following 

Theorem 4. Let 91 = <A, J5") be an algebra, let Qt, Q2 be two relations on A com­

patible with 91. Then their product Q1Q2 is compatible with 9t. 
Now we shall prove 

Theorem 5. Let 91 = <A, ^y be an algebra, let { ^ } J L I be a sequence of com­
patible relations on 91 such that Qj £ QJ+1 for every positive integer j . Then 

00 

U Qj = Q IS compatible relation on 91. 
1=i 

Proof. Let fe F be an w-ary operation, let x t , . . . , xn, yl9..., yn be elements of A 
such that (xhyi)eQ for each i = 1,. . . , n. Then for each i = 1,. . . , n we have 
(xi9 yf) e Qj{i) for a positive integer j(i). Let j = maxj(i). Then (xf, y,.) e £ ; for each 

i = 1,. . . , n and thus (f(xu ..., x„), f(yl9 ..., yn)) e Qj S= Q. 

Theorem 6. Let 91 = <A, #"> be an algebra, let Q be a reflexive relation on A 
compatible with 91. Then the transitive hull QT of Q is compatible with 91. 

00 

Proof. We have QT = U Qs- According to Theorem 4 the relation QJ is compatible 
1=i 

with A for every positive integer j . As Q is reflexive, we have QJ C QJ+1 for every posi-
00 

tive integer j . Thus according to Theorem 5 the relation QT = U QJ 1s compatible 
i = i 

with 91. 

Example 1. This example will show us that: 

1) the reflexive hull and the symmetric hull of a relation compatible with 91 need 
not be compatible with 91; 

2) the union of two relations compatible with 91 need not be compatible with 91. 
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Let 91 be the semigroup with elements a, b9 c, d9 e,f9 g, h given by the following 
Cayley table: 

a b c d e f 9 Һ 

a a e h h e h h Һ 
b e b f h e f h h 
c h f c 9 h f 9 Һ 
d h h 9 d h h 9 Һ 
e e e h h e h h Һ 
f h f f h h f h Һ 
9 h h 9 9 h h 9 Һ 
Һ h h Һ h h h Һ Һ 

Let Q = {(a, c), (b, d), (e, g)}. This is a compatible relation on 91. The reflexive 
hull QR of Q is not compatible with 91; we have (a, c) e QR, (C, C) e QR9 ac = h9cc = c, 
but (h9 c) $ QR. This is also an example that the union of two compatible relations 
on 91 need not be a compatible relation on 91, because the reflexive hull of Q is the 
union of Q and of the relation of equality on A which is evidently also compatible 
with 91. Also the symmetric hull Q u Q* = {(a, c), (c, a), (b, d)9 (d9 b)9 (e9 g)9 (g9 e)} 
is not compatible with 91. We have (a, c) e Q U Q*, (d, b) e Q U Q*9 ad = h9 cb = /, 
but (h,f)$QKJQ*. 

Example 2. This example will show that the reflexivity of Q in Theorem 6 is sub­
stantial. 

Let 91 be the semigroup with elements a, b9 c, d9 e9f given by the following Cayley 
table: 

a b c d e f 

a a d f d f f 
b d b e d e f 
c f e c f e f 
d d d f d f f 
e f e e f e f 
f f f f f f f 

Let Q = {(a, b), (b, c), (d9 e)}. This is a compatible relation on A, evidently not 
reflexive. The transitive hull of Q is QT = {(a, b)9 (b9 c), (a, c), (d9 e)}. We have 
(a, b) e QT9 (a, c) e QT9 aa = a, be = e9 but (a, e) $ QT. Thus QT is not compatible 
with 91. 

Theorem 7. Let 91 = <A, &) be an algebra, let Q be a relation on A compatible 
with 91. Let e be an idempotent element of 91 (i.e. such an element thatf(e9 e9..., e) = 
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= e for each fe &). The set Ae of all elements xe A such that (e, x)eQ forms 
a subalgebra of St. 

Proof. For i = 1, ..., n let x{ e Ae, this means (e, xt) e Q. IffeF is an n-ary opera­
tion, then (e,f(xu ..., x„)) = (f(e, ..., e),f(xx,..., x„)) e Q, because Q is compatible 
with 81. This means f(xx,..., x„)e Ae. As the elements x l5 ...,xn and the operation/ 
were chosen arbitrarily, Ae forms a subalgebra of 91. 

Corollary 1. Let Lbe a lattice (or semilattice), let Q be a compatible relation on L. 
Then for each xeLthe set Lx of all elements yeLsuch that (x, y)e Q forms a sub-
lattice (or sub semilattice respectively) of L. 

Remark . Theorem 7 implies immediately Theorem 11 from [3]. 

Theorem 8. Let Gbea group, let Qbea compatible relation on G. Let Q be reflexive. 
The set N of all x e G satisfying (e, x)e Q is a normal subgroup of G. (The symbol e 
denotes the unit of G.) 

Proof. From Theorem 7 it follows that set N is a subgroup of G. Let xeN, 
i.e. (e, x) e Q. From the reflexivity of Q we obtain (z, z)e Q and (z~1,z~1)e Q for 
arbitrary z e G. From the compatibility of Q we obtain finally (e, z~1xz) = (z~iez, 
z~*xz) e Q, thus z~xxz e N. Therefore N is a normal subgroup of G. 

Remark . In [4] it is proved that each compatible relation on a group which is 
reflexive and symmetric is also transitive, i.e., it is a congruence. 

Theorem 9. Let G be an involutory group (i.e. x2 = e for each xe G, where e 
is the unit of G), let Q be a reflexive compatible relation on G. Then Q is a con­
gruence relation on G. 

Proof. Let (x, y) e Q for x e G, y e G. From the reflexivity of Q we have 
(x"1 , x""1) e Q, (y - 1 , y"1) ' Q and from the compatibility of Q we have (e, x~*y) = 
= (x~1x,x~1y)eQ and thus (y" 1 , *" 1 ) = (ey~1,x~1yy~1)e Q. But G is an invo­
lutory group; this means y~l = y, x " 1 = x, thus (x,y)eQ implies (y, x)eQ. By 
the theorem in [4] quoted in the above remark 0 is a congruence on G. 

Theorem 10. Let L(v) be a complete v-semilattice, let Q be a compatible relation 
on L (v ) . Denote M(x) = V yf0r xeL(v). The mapping M which assigns the 

(x,y)£e 

element M(x) to any xeL(v) is an isotone mapping of L(v) into itself. 

Proof. Let x e L ( v ) , let Q be a compatible relation on L(v) . The existence of 
M(x) for each x e L ( v ) follows from the completeness of L(v) . Let x _^ y, i.e. 
x v y = y. From the definition of M(x) we have (x, M(x)) e Q, (y, M(y)) e Q 
(because L ( v ) is complete) and from the compatibility of Q we obtain (x v y, 
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M(x) v M(y)) e Q therefore M(x) v M(y) is one factor in the join V Z = 
(xvy,z)ee 

= M(x v y). This means M(x) v M(y) ^ M(x v y). But x v )> = y and thus 
M(x) v M(y) ^ M(y), which means M(x) ^ M(y). 

Corollary 2. Lef L( A ) be a complete A-semilattice, let Q be a compatible relation 
on L(A). Denote m(x) = A y for X G L ( A ) . The mapping m which assigns the 

(x,y)eQ 

element m(x) to any X G L ( A ) is an isotone mapping of L(A) into itself. 

Proof of Corollary 2 is dual to that of Theorem 10. 

Corollary 3. Let L be a complete lattice, let Q be a compatible relation on L. 
Let M(x) and m(x) be defined as in Theorem 11 and Corollary 2. The mappings 
M : x -> M(x), m : x -> m(x) are isotone mappings of L into itself. 

Theorem 11. Let S be a semigroup, let Q be a compatible relation on S, let T be 
a subsemigroup of S. The set QTof all elements x G S such that (x, x') G Q for some 
x' e T is a subsemigroup of S. 

Proof. Let x e QT, y e QT. Then there exist elements x' e T, y' e Tsuch that (x, x') e 
G Q, (y, y') e Q. From the compatibility of Q we have (xy, x'y') e Q. But x'y' G Ty 

because Tis a subsemigroup of S, thus xy e OTand QT is a subsemigroup of S. 

Theorem 12. Let S be a semigroup, let Q be a compatible relation on S. Let Q 
be reflexive. Let T be an ideal of S (right or left or two-sided). The set QT defined 
in Theorem 11 is an ideal of the semigroup S (right or left or two-sided, respec­
tively). 

Proof. Let x e QT, let Tbe a left ideal of S. There exists x' e Tsuch that (x, x') e O. 
Let y e S; from the reflexivity of Q we have (y, y) e Q. From (x, x') e Q and (j;, y) e Q 
we obtain (xy, x'y) G Q. But x'y e T, because T is a left ideal of S. Therefore xy G QT 
and QT is a left ideal of S. Analogously for right and two-sided ideals. 

Theorem 13. Let Rbe a ring, let Q be a compatible relation on R, let 0 be the zero 
element of R. Let Q be reflexive. The set R0 of all xe R such that (O, x)e Q (or 
(x, O) G Q) is an ideal of R. 

Proof follows immediately from Theorems 12, 8 and 1. 

For a ring whose additive group is involutory, the assumption that Q is reflexive 
is unnecessary. We obtain 

Corollary 4. Let R be a ring whose additive group is involutory, let Q be a com­
patible relation on R. The set R0 of all xeR for which (0, x)eQ (or (x, O) e Q) 
holds (where 0 is the zero element of R) is a subring of the ring R. 
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