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Časopis pro pěstování matematiky, roč. 100 (1975), Praha 

ON TREE-COMPLETE GRAPHS 

LADISLAV NEBESKÝ, Praha 

(Received January 30, 1974) 

If GQ is a graph, then we denote by V(G0), F(G0), and zl(G0) the vertex set of G0, 
the edge set of G0, and the maximum degree of G0, respectively; the number of vertices 
of G0 is called the order of G0. For the notions not defined here, see BEHZAD and 
CHARTRAND [2]. 

We shall say that a graph G of order p is tree-complete if for every tree Tof order p 
there is a spanning subgraph T of G such that the graphs T and T are isomorphic. 
Obviously, every complete graph is tree-complete. In the present paper, we shall 
construct tree-complete graphs. First, we shall prove three lemmas. 

Let F be a forest. A vertex u of F is said to be semi-terminal if either u is an end-
vertex or there is an end-vertex v such that the vertices u and v lie in the same com­
ponent and the maximum degree among the vertices lying on the u — v path in F 
is two. 

Lemma 1. Let F be a forest. Then either A(F) ^ 2 or F contains a vertex u of 
degree d ^ 3 such that u is adjacent to at least d — 1 semi-terminal vertices. 

Proof. Assume A(F) ^ 3. Then there is a component Tof F such that A(T) ^ 3. 
This means that T contains a vertex u of degree d ^ 3 such that for every vertex 
v e V(T) of degree d' ^ 3, e(u) ^ e(v), where is the eccentricity of the vertex w in the 
tree T Clearly, u is adjacent to at least d — 1 semi-terminal vertices of F. 

Lemma 2. Let T be a tree of order p ^ 4. Then there are distinct vertices vl9.. 

A(T-Vl -...-vlp/4})^2. 

v[p/4] such that 

Proof. Let F be a forest. Assume that F contains a vertex v of degree d ^ 3 
such that at least d — 1 vertices adjacent to v are semi-terminal. If at least three 
semi-terminal vertices are adjacent to v, then v is referred to as an auxiliary vertex. 
If precisely two vertices adjacent to v are semi-terminal, then d = 3 and the only 
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non-semi-terminal vertex adjacent to v is said to be auxiliary. If A(F) :_ 2, then an 
arbitrary vertex is said to be auxiliary. 

Let vt be an auxiliary vertex of T For every integer i, 1 rg i < [P/4], let vI+1 be 
an auxiliary vertex of the forest T — vi — ... — vt. The inequality of the lemma 
follows. 

Lemma 3. Let p _ 8, p be an integer. Then there is a tree T of order p such that 

(l) for every sequence of distinct vertices ul9 ..., W[P/4]-i, A(T — ut — ... 

. . . - W r p / 4 ] - l ) _ 3 . 

Proof. Let p = 4m + k, where k e {0, 1, 2, 3}. We denote by Tthe tree in Fig. 1 
(if m _ 3, then each of the vertices s3 , . . . , sm has degree 4). It is easy to prove that T 
fulfils (1). Hence the lemma follows. 

Let G be a graph. We denote by Jf7
P(G) the graph with the vertex set V(G) u V(G') 

and with the edge set 

E(G) u E(G') u {uv | u e V(G), v e V(G')} , 

where G' is the path of order p, and V(G) n V(G') = 0. 

Fig. 1 

Theorem 1. Let p be an integer, p ^ 4, and let G be a tree-complete graph of 
order n. Then the graph 2tfp(G) is tree-complete if and only if n = [(p - l)/3]. 

Proof. It is routine to prove that n ^ [(p - l)/3] if and only if n ^ [(p + n)/4]. 

Let n g [(p + w)/4], and let G be the same as in the definition of ^P(G). Con­
sider a tree Tof order p + n. Then there are distinct vertices vt9 ...,v„ of Tsuch that 
the forest T — vj — ... — vn is isomorphic to a spanning subgraph of G. The 
subgraph of Tinduced by {vu ..., vn} is isomorphic to a spanning subgraph of G. 
Hence Tis isomorphic to a spanning subgraph of J f p(G). 
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Let n < [(p + n)/4]. Then p + n = 8. If the tree T in Fig. 1 has order p + n, 
then Lemma 3 implies that T is isomorphic to no spanning subgraph of 2tf P(G). 
Hence the theorem follows. 

Obviously, every tree-complete graph is connected. Since a tree-complete graph 
contains both a spanning path and a spanning star, we get the following 

Proposition. Every tree-complete graph has at most two blocks. 

In the remainder of the paper we shall discuss tree-complete graphs with a cut-

vertex. 

Theorem 2. Let G be a tree-complete graph of order p, and let B be a block of G 
having order n, where n = (p + l)/2. If p + 8, 11, then n = 3. If p = 8, then 
n = 4. If p = 11, then n = 5 and n + 4. 

Proof. Let n = 4. Obviously, p = 2n - 1 = 7. If 2n - 1 = p = 2n + 1, then 
we denote by Tpn the tree in Fig. 2 (rp-2«+2> ?«» a n d un are all the end-vertices). 
If p = 2n + 2, then we denote by TPi„ the tree in Fig. 3 (v0, w0, v„, and wn are all 
the end-vertices). It is not difficult to see that Tpn is isomorphic to no spanning 
subgraph of G, except the following cases: p = 8 and n = 4; p = 9 and n = 4; 
p = 11 and n = 5. If P = 9 and n = 4, then the subdivision graph of the star 
K(l, 4) is isomorphic to no spanning subgraph of G. Hence the theorem follows. 

Note that there is a tree-complete graph of order 8 which contains a block of 
order 4, and that there is a tree-complete graph or order 11 which contains a block 
of order 5. 

Let G be a graph. We denote by ^ ( G ) the graph Gt with V(G,) = V(G) u {u, v} 
and with E(Gt) = {tu\te V(G)} u {uv}, where u and v are distinct vertices not 
belonging to G. We denote by ^2(G) the graph G2 with V(G2) = V(Gt) u {w} and 
with E(G2) = £(GX) u {uw, vw}, where w <£ V(Gj). 

ҶГv-гn+z 
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Fig. 2 
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Fig. 3 
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Theorem 3. Let i 6 {1, 2}, and let G be a graph of order p such that every tree T0 

of order p with A(T0) S [(p + 0/^] is isomorphic to a spanning subgraph of G. 
Then &t(G) is tree-complete. 
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Proof. Let Tbe a tree of order p + i + 1. A vertex of Tadjacent to an end-vertex 
will be referred to as an eL-vertex. A vertex of T adjacent either to at least two end-
vertices or to an eL-vertex of degree 2 will be referred to as an e2-vertex. We denote 
by di the maximum degree among the ervertices. 

Let i = 1. The case p ^ 2 is obvious. Assume that p ^ 3. Consider an ei-vertex r^ 
of degree dt and an end-vertex s t adjacent to rt. We have A(T — rL — st) S 
^ [(p + l)/2]. As T — ri — sL is a forest, it is a spanning subgraph of a tree T t 

with A(Tt) = max (2, A(T - r t - sx)) = [(p + l)/2]. As Tx is isomorphic to 
a spanning subgraph of G, T— r t — s t is also isomorphic to a spanning subgraph 
of G. Hence Tis isomorphic to a spanning subgraph of ^X(G). 

Let i = 2. Consider an e2-vertex r 2 of degree d2, and distinct vertices s2 and f2 

such that s2 is adjacent to r2, t2 is an end-vertex, and either (a) s2 is an end-vertex 
and t2 is adjacent to r 2 or (b) s2 is an ervertex of degree 2 and f2 is adjacent to s2. 
We have A(T - r 2 - s2 - t2) = [(p + 2)/2]. Clearly, T - r 2 - s2 - <*2 is a span­
ning subgraph of a tree T2 with A(T2) ^ [(p + 2)/2]. This means that T — r2 — 
— s2 — t2 is isomorphic to a spanning subgraph of G. Hence T is isomorphic to 
a spanning subgraph of <&r

2(G) and the proof is complete. 

Note that — in a certain sense — the value [(p + i)J2] in Theorem 3 is the best 

possible. This follows from Fig. 4 (for even p + i + 1) and from Fig. 5 (for odd 

p + i + 1). 

Г(p+i-D/гк (P+І-U/Z 

S(p+Í-І)/Z 
S(p+i-2)/2 

Fig. 4 Fig. 5 

Corollary 1. Let G be a tree-complete graph. Then both %\(G) and W2(G) are 

tree-complete. 

We denote by Dt and D2 the trivial graph and the connected graph with exactly 
one edge. If p is a positive integer, then we denote by Dp+2 the graph <&t(Dp). As 
has been shown by Behzad and Chartrand [1], the graph Dp, p ^ 2, is (up to iso-
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morphism) the only connected graph of order p which contains precisely two vertices 
of the same degree. 

Corollary 2. The graph Dp is tree-complete, for every positive integer p. 

Corollary 2*has been proved by SEDLACEK [3]. The present author was inspired 
by J. Sedlacek's result. 
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