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ON SOME BOUNDARY VALUE PROBLEMS FOR NONLINEAR
FOURTH ORDER ORDINARY DIFFERENTIAL EQUATIONS

MicHaL CverEko, Kosice
(Received January 25, 1974)

The aim of this paper is to investigate the relationship between the existence of
functions satisfying differential inequalities and the existence of a solution to the
boundary value problems (1), (2), then (1), (3), and (1), (4), where

(1) Y@ =h(x, 5, ¥, ¥"),
(2) J’(a) =dop,
y'(a) = ay,
y”(a) =4a,,
y”(d) =d,,
(3) y"(a) =a,,
,V(d) =dy,
y'(d) =d,,
y'(d) = d,,
(4) y”(a) =4a,,
.)’(b) =by,
.V/(b) = by,
y'(d)=d,.

The method of G. A. KLAASEN from his article [1] will be used.

Throughout this paper it is assumed that R is the set of real numbers, I = [4, d],
a<b<d, ayay,a, by, by,dy,dy,d, ate from R, D=1 x R*, h:D—R is
a continuous function.

Lemma 1. If h is continuous and bounded, then for any numbers ao, ay» 32, d;
there exists a solution of the boundary value problem (1), (2).
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Proof. Since the corresponding homogeneous boundary value problem
©) @ =0,
(6) ¥a) = y'(a) = y"(a) = y'(d) = 0

has only the trivial solution, there exists the Green function G(x, t) of the non-
homogeneous BVP (6), y® = r(x) so that the investigated BVP is equivalent to the
integro-differential equation

-

) = (o) + [ 6 0 20 Y0, YO ) 0,

where w : 1 = R, w(x) = ¢,;x> + ¢,x* + c3x + c, is the solution of the BVP (5), (2).
Let us denote

Ko = sup {|G(x, t)| : (x, t) eI x I},

K, =sup {|G(x, )| : (x, 1) eI x I},

K; =sup {|G(x,0)| : (x, ) eI x I},

Ky =sup {|Gea(x, )] : (x, ) eI x IN{(t,0) : tel}},
K =max{K,;:ie{0,1,2,63}},

m = sup {|h(x, y, z, u, v)| : (x, y, z, u, v) €I x R*},
M =sup {|wW9(x)|: xel, s€{0,1,2,3}}.

Il

In the Banach space B of all functions defined on I which have continuous third deriv-
ative with the norm defined by |r| = max {{max |[r®(r)| : tel} :s€{0,1,2,3}},
the set S = {reB:|r| < mK(d — a) + M} is closed and convex. The mapping
T: S — B defined by

(Tr) (x) = w(x) + j‘dG(x, 1) h(t, r(2), r'(2), r'(e), r"(¢)) dt

is continuous as well as compact and maps S into itself. It then follows from the
Schauder Fixed-Point Theorem that T has a fixed point in S. The fixed point is a solu-
tion of the stated BVP.

Remark. Similar statements hold for the BVP (1), (3) and (1), (4). Applying any
one of these statements, we shall refer always to Lemma 1.

Lemma 2. Assume that 1. h is continuous;

2. all solutions of the initial value problems for the equation (1) extend to all I or
extend to the interior I° of I and are unbounded in neighbourhoods of the points a
and d;

3. functions h, : D — R are continuous for n = 1,2,...;
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4. on every compact set K < D the sequence (h, | K)Y uniformly convergesto h | K; .
5. y, are solutions of the equations y* = h(x, y,y', y", y") on I;

6. sequences (y,)7, (vn)7, (¥2)Y are uniformly bounded on 1. Then there exists
a solution y :1 > R of the equation (1) such that there exists a subsequence
(Vm)i=1 of the sequence (y,)T with y{? —» y®, i = 0,1, 2,3 and the convergence
is uniform on I.

Proof. There exists a number M such that for all positive integers n and all
x el it is |y;(x)| £ M (assumption 6). Therefore there exist x, € I° such that

Iy (x I — i.}’n(d) y (a)

a “d-a

The sequences (x,), (Vu(xa)) (Va(%2)s (¥oxa))s (¥i'(x,)) are bounded. Hence there

exist subsequences (X,,.), (Va(*m))> (Vr(Xmd)s (Vi(Xn)) and (ym(x,,)) which are all
convergent. Let us denote the limits of these subsequences respectively by xo, Yo, Yo,

” n

yo, vo. For the sake of simplicity we denote tht subsequences by (x,), (¥a(*n)),
(a(xa))s (v2(x,))s (v (x,))- By applying the standard convergence theorem (see [2],
page 15) to the vector differential equation

m

Yy YY) =0y Y h(x, 3, ¥, ¥, Y")

we get that there exists a subsequence ((Vn. Voo Vs Va))T Of ((Fus Yoo Voo Vo )T
and a solution (y, y’, y", y") of this equation satisfying the initial condition
s ¥ 5", ¥") (x0) = (¥os Yo, ¥55 ¥5)

and for every compact part of I°

n

(Ve Vs Yms V) = (01, ¥, Vs y

m

) for k— o

and this convergence is uniform. Since the sequence (y,,k) is uniformly bounded,
the function y is not unbounded, and thus extends to all I and the convergence is
uniform on 1.

Theorem 1. Assume that 1. h is continuous and nonincreasing in the second and
the third argument;

2. solutions of (1) extend to I or to I° and are unbounded in neighbourhoods of the
points a and d,

3. there exists a function u : I — R satisfying the inequality
(7 : u® = h(x,u,u',u", u");
4. there exists a function v : I — R satisfying the inequality

ty v® < h(x, 0, v, 0", ") ;
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S5.usv, v SV, u £
6. u(a) < ao < v(a), u'(a) < a; £ v'(a), u'(a) < a, < V"(a), w'(d) < d, < v"(d).

Then there exists a function y : I - R which satisfies the boundary value problem
(1), (2) and the inequalities

u® < yd <y i =0,1,2.
Proof. For every positive integer n = N,, where
N, = max {max {|u"(x)| : x e I}, max {|v"(x)| : xeI}},
we define functions h,, :1 x R*— R as follows:

h(x5 Y, y’9 ,V”, n) for y”l >n
(9) hln(x’ Y .V', Y”, y”,) = ’?(x’ Y, ,V', y”; y”l) for |y/”| S n

"

h(x, y,y',y", —n) for y" < —n

hln(x, Y y’a U”’ y”’) + ——y—:-“—— for y” >0
14 y" =
(10) th(x, y’ y’a J’”, y”l) = hln(xa ,V, ,V', Y”, ym) fOI' u” é y” é U”
hy(x, y, ¥y, u", y") — Y=Y for Y <
1 + u” — y”
' hy(x, y, v, y", y") for y > v
(11)  hg(x 3, ¥, ¥ ¥") = {haux, 3, ¥ ¥ ¥") for w Ly S0
. th(x’ y, u y y ) for y' <
h3n(x’ v,y y y ) for y>v
(12)  hal(® 9,5 9") = {hax, 3, ¥, ¥ y") for u <y <o
hy(x,u, y', y", y") for y<u

The functions h,, are continuous and bounded. According to Lemma 1 there
exist solutions of BVP (2) and

"

(1") y$|4) = h4n(x’ Vs .V.., ym y,.) xel.

Now we shall show that u” < y” < v" for any solution y, of (1,), (2). Suppose that
there exists x €I such that y;(x) > v"(x). Since y;(a) < v"(a), y,(d) < v"(d), there
must exist x, € I at which the function y, — p” has a positive relative maximum.

Thus
a = o) (x0) > 0, (7 = 0") (%) =0, (1® = v¥)(x0) £ 0.
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However, according to the assumptions 1 and 4 and the definition of functions hy,,
i=1,2,3,4 we have

Yi(x0) = v(x0) Z han(Xos Yu(X0)s ¥a(Xo), ¥a(Xo0): ¥u(¥0)) —
— h(xq, v(xo), v'(x0), v"(x0), v"(X0)) 2
2 hyy(%o, 0(Xo), Y(Xo), ¥a(¥o), ¥u'(%o)) — h(xo, (o), v'(xo), v"(x0) »
"(x0)) = han(Xo v(x0)s V'(x0)s ¥a(%0)s ¥ (%0)) = h(xo, v(x0), v'(x0) »
v"(xa)s 2" (X)) Z h1a(Xo» 0(X0)> v"(x0)s 0" (X0), ¥i'(x0)) —

= h(xo0, t(xo), v'(x0), v"(xo), v"(xo)) + 1 -(Fyi}; i”)vs;zz‘o) =
> H(xer (sl ¥ (50), ¥(x0), " (x2) ~

b o) o) o7 ). o (J’: - v”) (Xo)
(s o) 0o (). (o) + 2 > 0.

This contradiction says that our assumption that there exists x el such that
¥a(x) > v"(x) is false. By a similar argument, y,(x) = u”(x) on I can be shown.
From u®(a) < y¥(a) < v?(a), i = 0,1 and u” <y, < v" we obtain 4’ < y, < v'
and u < y, < v onl. Thus the function y, is a solution of the equation

(13) Y = h(x, p, ¥, ¥, ¥").

Taking into account that h,,|K,, =3 h| K,,, where

Kn=1{(x,5y,y", :v”’) eD:xel, u(x)<y=o(x),
wx) Sy 2v(x), w(x)sy o), PY'E)|sm}, m=12..,

we see that all conditions of Lemma 2 are satisfied and thus there exists a sub-
sequence (y,,) and a function y : I - R such that y, — y uniformly on I and

YO(x) = h(x, (x), y'(), y'(x), y"(x) , xel.

For all k we have y,(a) = a, and therefore y, — y yields y(a) = a,. In a similar
way y'(a) = a,, y"(a) = a,, y"(d) = d, can be shown.

Theorem 2. Assume that 1. h is continuous and nonincreasing in the second and
nondecreasing in the third argument;

2. the solutions of (1) extend to I or to I° and are unbounded in neighbourhoods
of the points a and d, .

3. there exists a function u : I — R satisfying (7);

4. there exists a function v : I — R satisfying (8);
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S usv,u v, u v

6. u"(a) < a, < v'(a), u(d) < dp < v(d), u'(d) 2 d; 2 v'(d), u"(d) < d, < v'(d).
Then there exists a function y : I — R which satisfies the boundary value problem

(1), (3) and the inequalities

’

usysv, wzy2v, vy 0.

Proof. Similarly as in the proof of Theorem 1, let us define the function h,,
by (9), h,, by (10), hy, by (12), and h;, as follows:

"

hy(x, y,u’, y", y") for y >u',
han(%, ¥, ¥, Y7, ") = Sha(x, 3, ¥, ¥, y") for v Sy <,
hy(x, y, v/, y", ") for y <.
Then the functions h,, are continuous and bounded. According to Lemma 1 there
exist solutions y, of BVB (3) and (1,).
By the method used in the proof of the preceding theorem, u” < y, < v” for any
solution y, can be shown. From these inequalities as well as from the inequalities

w'(d) z y,(d) 2 v'(d)
we obtain
w2y, 2v
Now the last inequality and the inequality
u(d) £ y,(d) < v(d)

yields the inequality
Uusy,sv.

Thus y, is a solution of the equation (13).
Taking into account that h,, | K,, =3 h | K,,, where
Kp={(xyy,y,y)eD:xel, u(x)<y<=<uvx),
wx)2y 2zv(x), vy Sv(x), p'E)|sm}, m=12...,

we see that all conditions of Lemma 2 are satisfied and thus there exists a sub-
sequence (y,,) and a function y : I - R such that y, — y uniformly on I and

YO(x) = h(x, y(x), y'(x): y"(x), y"(x)), x€el.
For all k we have y, (d) = d, and therefore y, — y yields y(d) = d,. In a similar
way y'(d) = d,, y"(d) = d,, y"(a) = a, can be shown.

Theorem 3. Suppose that 1. the function h is continuous, nonincreasing in the
second argument and nondecreasing in the third argument for each x € [a, b] as
well as nonincreasing for each x € [b, d];
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2. the solutions of initial value problems for (1) extend to I or to its interior I°
and are unbounded in neighbourhoods of the points a and d;

3. there exist functions u € C¥(I), v e C¥(I) satisfying (7) and (8), respectively.

4. u v xela,b]l=0(x) < u(x), xe[b,d]=u(x) < v'(x), u" <V

5. u'(a) £ a, < v'(a), u(b) = by = v(b), u'(b) =b, =0'(b), u'(d) <d, <v(d).
Then there exists a function y : I — R which satisfies (1), (4) and

u<y=svxelab]l=>v(x)=y(k) s u(x),xelb d]=u(x)<y(x) s v(x),

u” § yn é v,

Proof. Let us denote N, = max {max {|u"(x)| : x e I}, max {[v"(x)| : x e I}} and
for alln > N, define the functions h, by (9), h,, by (10) and h,, hy, as follows:

ho(%, y, v/, ¥, y") for a<x<b, y <v and
b=sx=zd, y >,
ha(x, ¥, ¥'s V"5 ¥") = { hau(%, ¥, ¥/, V7, ¥")  elsewhere,
hol(x, y,u', ", ") for a<x<b, y >u and
bsx=d, y <u

hy(x, 0, ¥, y", y") for y>v,
han%, 3, ¥, V", ¥") = Yha(x, y, ¥, ¥, y") for usy=v,
hy (X, u, y', ¥, y") for y <u.

Every function h,, is continuous and bounded and therefore (see Lemma 1) there
exists a y, which satisfies (1,), (4).

We will now show that u”(b) < y;(b) < v"(b). Suppose that y,(b) < u”(b). Since
vi(a) = u"(a), yi(d) = u"(d), there exists a subinterval containing b on which
yn(x) — u”(x) < 0 and in that subinterval there exists an x, at which y, — u” has
negative relative minimum (and either x, < b and y;(x,) > u'(x,) or xo = b and
Yi(xo) < 4'(x0)). And thus we have

ya(x0) = u"(x0), ¥i7(x0) Z u®(xo).
However,

¥$(x0) = uN(x0) = han(Xo, YalX0)s ¥r(*0)s ¥r(X0)s ¥'(X0)) —
— h(xo, u(xo), t'(xo), u"(x0), u"(x0)) <
< hsn(%0, u(x0), ¥a(X0)s Yu(¥o)s ¥a'(%0)) — h(x0, u(xo0), u'(xo), u"(xo), u"(%o)) =
S (X0, u(xo), 4'(xo), Yi(%o), ¥i'(X0)) — B(%a, u(xo), u'(xo), u"(xo), #"(xo)) <
< hua(xo, u(xo), w(Xo), u'(¥o), ¥i(%o)) — h(xo, u(¥o), u'(xe), u'(Xo) ,
u(xo)) - 1 -l:- E,x”gc; f”(}’J;(zco) = h(xo, u(x,), u'(xo), u"(xo), u"(xo)) —

- bl ) (e () — 008 <
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which contradicts the previous inequality and thus our assumption that y;(b) <
< u"(b) is not true. The invalidity of the assumption y,(b) > v"(b) can be shown in
the same way.

We will now show that u” < y” < v". The validity of these inequalities and con-
sequently of the inequalities 4 < y{? < v, i = 0, 1 on the interval [b, d] follows
from the proof of Theorem 1 in virtue of the inequalities

u(b) < b < v(b), w'(b) < b, v(b), uw(b) = yyb) < v'(b),

w(d) £ d; < v'(d).

The validity of the inequalities u” < y, S v", v S y, < u', and u < y, < v on the
interval [a, b] follows in a similar way from the proof of Theorem 2.

The stated inequalities show that each y, satisfies the equation (1,).

The standard convergence theorem applied to the vector differential equation
YY" =0y, y", h(x, y, ¥, ¥", ¥")) vields the existence of a subsequence
(¥ ©of (ys) and the existence of a function y : I — R such that (y,., Ya. Yoo V)
converges to (y, y', ", y”) uniformly on every compact subinterval of the interior
of I and y satisfies (1).

Since (y,), (v,), (v;) are uniformly bounded, the function y is bounded and thus y
is defined on all I and the convergénce is uniform on I.

Because y, satisfy the boundary conditions (3), the same is true about y.

From the analogous inequalities for y, we obtain by the limit process

u<ysv, xel[a,b]=v(x)<y(x) <u(x),

xe[bd]=uv(x) S y(x)sv(x), "y 0.
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