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Časopis pro pěstování matematiky, roč. 100 (1975), Praha 

EXISTENCE OF SOLUTIONS 
OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 

KRISTÍNA SMÍTALOVÁ, Bratislava 

(Received November 28, 1973) 

In the paper we shall consider the functional-differential equation 

(i) / ( t ) = / ( t , y ) , 

where / : R x Cn -> Rn is a functional continuous with respect to the first variable, 
R the set of real numbers and Cn the class of continuous functions from R to the 
n-dimensional Euclidean space Rn. Assume that T and # are non-negative locally 
bounded functions R -> JR. Let || • || be the Euclidean norm in Rn. The main result 
of this paper is the following theorem which is more general then the results recently 
obtained by Ju. A. RJABOV [3], [4] concerning the existence of solutions of linear or 
weakly non-linear delayed differential equations with small delay; for complete refer­
ences see a survey paper of R. D. DRIVER [1]. 

Theorem 1. Assume that there is a non-negative locally integrable function 
h : R -> R such that for each x, y e Cn and each t e R, 

(2) \\f(t, x)\\ <L h(t) max {||x(f + £)||; -r(t) g £ g 9(t)}, 

(3) \\f(t, x) - f(t, y)\\ g h(t) max {||x(. + «J) - y(t + {)|| ; 

- < o S H = 3(0}, 
and a t pt + Wt) \ 

Then for each point (a, b)e R x Rn there is a solution of{\) defined for all t which 
passes through (a, b). 

Remark. The equation 

(5) y'{i) = .4(0 y(t - t(0) + B(t) y(t) + C(t) y(t + 3(0) 
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where A, B, C are locally integrable square matrices R-+Rnxn, is a particular 
case of (1). Theorem 1 now asserts that if the function h(t) = n(||A(f)|| + ||.B(f)|| + 
+ ||C(f)||) satisfies (4) for t e R then a solution of (5) defined for all t passes through 
each point of R x Rn. Here the norm ||(fly)|| of a matrix is assumed to be max |a/y|. 

ІJ 

Proof of Theorem 1. Let Q be the set of those x e C„, for which x(a) = b and 
|x(f)|| < \\b\\e\p(e\j'ah(i)di\), for all teR. Let Ae(0, 1]. For xeQ let Fx(x) 
be the function R-* R„ denned by Fx(x) (t) = b + X j'af(Z, x) d£. Using (2) we get 

«F,(X) (on s H + A I [/«;, x)dd <. 
IIJ a I 

^ | fr|| ( l + 1 I fh(<0 exp (e 11*%) dr, ) . 

. exp (max (e h{rf) dtj, e\ h(ri) dr/ j) dq ] <. 

s ь (1 + ej>> exp e % ) dř? )dЛ = ||ft||exp^|ľл(€)d«)-

Thus FA : Q -> (2. Now define the following Picard iterations, assuming that k is 
fixed, 0 < X < 1: XJ(I) = i» and x*+1 = Fx(xk), for fc = 1, 2 Clearly for each t, 
IMO - *i.(t)| = I*B |f.*(«)«-f| = N exp(e|/X^)d^|). Assume that, for all t, 
lxk(t) - xk.t{t)l <. K\\b\\ exp (e|Jl fc({) d{|). Then using (3) we obtain 

\\xk+i(t) - xk(t)\\ <. K\\b\\ At'hii;) exp . 
\J a 

/ / | fS-t(i) | | /•« + *«) \ \ 

. fmax/e %)d/y, * % ) d i / j d { j £ 

= XA||6|| e I fft({) exp (e I f %) dJ) d{| = XA||6|| exp (e |"fe(£) d£ 

Since 0 < X < 1, the sequence xn converges almost uniformly to some xe Q such 
that FA(x) = x. 

Let {Xn} be a sequence of members of the open interval (0, 1) converging^tojl. 
For every n, let yn satisfy the equation yn = FXn(yn). All yn e Q are almost uniformly 
bounded (i.e. uniformly bounded on each compact). Let i c R be a compact. 
By (2) we have, for each teA, 

|| ri(0|| S h(t) \\b\\ exp (max (e I f % ) di? , e IJ %) Ar\ ) ) , 
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where u = inf £ - T(£), v = sup £ + 3(£). Therefore ||>;n(r) - y„(s)|| = 

= const |J* h(£) d£| for t, s e A. Consequently the functions {>>,.}are equicontinuous 
on each compact and hence there is a subsequence {yk(n)}of yn which converges almost 
uniformly to some y e Q. Clearly y(a) = b. It remains to show that y is a solution 
of (1) or, which is the same, of the corresponding integral equation. 

Let I be a compact subinterval of R. For t e I we have 

^ \\y(t) - W)B + 

+ Ли(*)IHI 

y(t) - b - f/(í, j/) d{ 
Je 

Гй({) díl max | | Л ( 4 ) ( « ) - y(í)\\ + (1 - AB(i)) II f / ( í , y) d{ 
Ja I «-B Ilja 

where B = [inf £ - T(£), sup c + #(£)]• Clearly the right-hand side of the inequality 

tends to 0 whenever k -> oo, q.e.d. 

Remark. If the assumptions of Theorem 1 are satisfied with the constant \\e 
replaced by a positive constant c < \\e then for each point of R xRn there is exactly 
one solution of (1) which belongs to Q and passes through the point. 

The constant \\e in Theorem 1 is the best possible. To see this we first prove the 
following 

Lemma. For every sufficiently small 5 > 0 there are real numbers a, b with 
a < 0, 0 < b < n such that x(t) = eat cos (bt) is a solution of the equation 

(6) x'(t)'= -V-ix(r-i), 

for all real t. 

Proof. For £ = 0 put <p(£) = e^"1"* + f. Then cp > 0. Indeed, if cp(u) = 0 
for some u < 0 then we may assume that u is the least root of <p, since lim cp(£) = 

{ - - 0 0 

= +oo. In this case we have cp'(u) = 0, and consequently, cp(u) + cp'(u) ̂  0, i.e. 
u ^ — 1. On the other hand, cp is a decreasing function in (— oo, — 1], and (p(— 1) > 
> 0, a contradiction. 

Let ^(£) = p ® ^ " 1 " * - £) = e 2 ^ " 1 - ^ - {2. Clearly </>(£) > 0 for all £ ^ 0. 
Let CD(£) = £eV~* + cos -y^(f). We show that c0 has a root in ( - 2 , 0). For suf­
ficiently small 5 we have ^(0) < n2\4. Since ^ ( - 2 ) > 7r2/4, there is ve(-2, 0) 
such that \j/(v) = 7r2/4, i.e. w(v) < 0. Since co(0) > 0, there is a e ( - 2 , 0) such that 
o>(a) = 0. 

The function x(t) = eat cos (f V*Ha)) is a solution of (6). Indeed, a simple cal­
culation shows that x is a solution of (6) if and only if ael+a~d = - cos yj\p(a), 
and e1+a~d yjil/(a) = sin *J\\*(a). But the first equality is true since it is equivalent 
to co(a) = 0. To see that the second equality is also true note that if 5 is sufficiently 
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small, then for each £ e [ -2 , 0] we have ^(£) < e2(d+i) < n2, hence 0 < W W < n> 
and hence sin ^\jj(a) > 0. Now, easy verification that the sum of squares of the 
left-hand sides of the two above equalities equals to 1 completes the proof of the 
lemma. 

Theorem 2. Theorem 1 does not hold with \\e replaced by any greater constant. 

Proof. Let c > l\e. In virtue of Lemma there is d with \\e < d < c such that 
x(t) = keat cos (bt), where a < 0, n > b > 0, is a solution of the equation 

x'(t) = -dx(t - 1), x(-n\2b + 1) = 1 . 

The 0 < x(t) _̂  1 for t e ( — n\2b, n\2b) = (u, v), and x(t) is maximal in (u, v) for 
t = u +; 1. Define a function g by g(t) = —dx(t — l) for f e [u + 1, u + 2], 
g(r) = — d for t G [u + 2, v], g(t) = 0 for t e (v, Zn\2b + 1], and let g be periodic 
with period 2n\b. For every integer n put urt = 2nn\b + u, v„ = 27in/fc + v. If 
yo(0 = constant for each t e [un, un + 1], and if y is the solution of the equation 

(7) yV) = 9(t) y(t - l) 

for t > un + 1 with y0 as initial function then y(t) = 0 for each t ^ vM. However, 
*every solution of (7) defined for all t e R is constant on each interval [un, un + 1], 
consequently (7) has no non-trivial solution defined for all t e R. 

On the other hand, the equation (7) satisfies the assumptions of Theorem 1 with 
the constant l\e replaced by c, since sup \g(t)\ < c, % = 1, and 9 = 0, q.e.d. 
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