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EXISTENCE OF SOLUTIONS
OF FUNCTIONAL-DIFFERENTIAL EQUATIONS

KRISTINA SMITALOVA, Bratislava

(Received November 28, 1973)

In the paper we shall consider the functional-differential equation

1) y(t) =1t y),

where f: R x C, - R, is a functional continuous with respect to the first variable,
R the set of real numbers and C, the class of continuous functions from R to the
n-dimensional Euclidean space R,. Assume that 7 and 3 are non-negative locally
bounded functions R — R. Let ||-| be the Euclidean norm in R,. The main result
of this paper is the following theorem which is more general then the results recently
obtained by Ju. A. RiaBov [3], [4] concerning the existence of solutions of linear or
weakly non-linear delayed differential equations with small delay; for complete refer-
ences see a survey paper of R. D. DRIVER [1].

Theorem 1. Assume that there is a non-negative locally integrable function
h : R — R such that for each x, y € C, and each te R,

@ 17, 9l < h(e) max {Jx(e + s —(9) < & < 5},
() 176 2) = £t )] S h() max {Jx(t + &) — 3¢ + )
() < £ < 909}

and

@ max (J ne) de, Jt+8(r)h(€)d§>§ ife.

t—=1(t) t

Then for each point (a, b)e R x R, there is a solution of (1) defined for all t which
passes through (a, b).

Remark. The equation
() (1) = A1) (¢ = (1) + B(t) »(t) + C(1) y(t + (1))
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where A, B, C are locally integrable square matrices R — R, ,,, is a particular

case of (1). Theorem I now asserts that if the function h(f) = n(||A(t)| + |B(?)| +

+ |C(7)]) satisfies (4) for t € R then a solution of (5) defined for all ¢ passes through

each point of R x R,. Here the norm |(a;;)| of a matrix is assumed to be max |a;|.
i

Proof of Theorem 1. Let Q be the set of those x € C,, for which x(a) = b and
Ix(®)] = A€(0,1]. For xeQ let F,(x)
be the function R — R, defined by F;(x) (t) = b + A [, f(&, x) d¢. Using (2) we get

IF) @) = o] + 2

J :f(é, %) dé” <

J 0o [ ).
en{on(ef o[ w0
< o] (1 + e ﬁh(é) exp (e th(n) dnl) dé) = |b]| exp (e J.:h(f) dé‘).

Thus F, : Q —» Q. Now define the following Picard iterations, assuming that 4 is
fixed, 0 < A < 1: x4(f) = b and x4,y = Fy(x;), for k = 1,2, .... Clearly for each t,
[%2(2) = x1(8)]] = ||B] |[2 h(&) d| < ||b]| exp (e]fs (£) d&|). Assume that, for all 1,
[x(t) = x-1(t)] < K|b]| exp (e|fs h(&) d€|). Then using (3) we obtain

< bl 1+

s s() = x(0)]] = K] b] 2

(e, o)
e Jth(é) exp (e )df = KAb|| exp (e J :h({) dél) :

Since 0 < A < 1, the sequence x, converges almost uniformly to some x € Q such
that F,;(x) = x.

Let {,} be a sequence of members of the open interval (0, 1) converging to,1.
For every n, let y, satisfy the equation y, = F, (y,). All y, € Q are almost uniformly
bounded (1e uniformly bounded on each compact) Let A =« R be a compact.

By (2) we have, for each t € 4,
1501 5 40 [o] e (max ( j e, j “H) dnl)) ,

J:h(é) exp .

< Kap|

J:h(n) dn
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where u = mf E—1(¢), o= SUp &+ 9(¢). Therefore |y (1) — yuls)| =

< const |} h(f) dé] for 1, se A. Consequently the functions {y,,}are equicontinuous
on each compact and hence there is a subsequence {yk(n)}of y. Which converges almost
uniformly to some y € Q. Clearly y(a) = b. It remains to show that y is a solution
of (1) or, which is the same, of the corresponding integral equation.

Let I be a compact subinterval of R. For t € I we have

) - b - f(f y) df” 1)) = ya(®)] +

|

where B = [inf & — (&), sup & + 3(&)]. Clearly the right-hand side of the inequality
gel &el

+ Ano| ] -

H(E) de] max L ©) = O + (1 = d)

tends to 0 whenever k — oo, q.e.d.

Remark. If the assumptions of Theorem 1 are satisfied with the constant 1/e
replaced by a positive constant ¢ < 1/e then for each point of R x R, there is exactly
one solution of (1) which belongs to Q and passes through the point.

The constant 1/e in Theorem 1 is the best possible. To see this we first prove the
following

Lemma. For every sufficiently small 6 > O there are real numbers a, b with
a <0,0 < b < rsuch that x(t) = € cos (bt) is a solution of the equation

(6) X(1)= = x(t - 1),
for all real t.

Proof. For ¢ <0 put ¢(¢) = €7'7% + & Then ¢ > 0. Indeed, if @(u) =0
for some u < 0 then we may assume that u is the least root of ¢, since lim (p(§) =

= —o0
= +o00. In this case we have ¢'(u) < 0, and consequently, ¢(u) + ¢'(u) < 0, i.e.
u < —1. On the other hand, ¢ is a decreasing function in (— o0, —1], and ¢(—1) >
> 0, a contradiction.

Let Y(&) = (&) (271 7% — &) = 27179 — ¢£2, Clearly (&) > 0 for all ¢ < 0.
Let w(¢) = Ee®e’ ™% + cos /¥/(£). We show that w has a root in (-2, 0). For suf-
ficiently small 6 we have Y(0) < n*/4. Since y(—2) > n’[4, there is ve (-2, 0)
such that y(v) = n2/4, i.e. w(v) < 0. Since (0) > 0, there is a € (—2, 0) such that

w(a) = 0.
The function x(t) = e cos (t \/¥(a)) is a solution of (6). Indeed, a simple cal-
culation shows that x is a solution of (6) if and only if ae'**~% = — cos \/y/(a),

and e'**7?/y(a) = sin \/Y(a). But the first equality is true since it is equivalent
to w(a) = 0. To see that the second equality is also true note that if ¢ is sufficiently
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small, then for each & € [ —2, 0] we have y(¢) < €*®*! < 7% hence 0 < \/y(a) < =,
and hence sin \/y(a) > 0. Now, easy verification that the sum of squares of the
left-hand sides of the two above equalities equals to 1 completes the proof of the
lemma. ‘

Theorem 2. Theorem 1 does not hold with 1/e replaced by any greater constant.

Proof. Let ¢ > 1/e. In virtue of Lemma there is d with 1/e < d < ¢ such that
x(f) = ke cos (bt), where @ < 0, n > b > 0, is a solution of the equation

x'(t) = —dx(t — 1), x(—=n2b+1)=1. '

The 0 < x(f) < 1 for te(—n/[2b, n[2b) = (u, v), and x(f) is maximal in (u, v) for
t =u + 1. Define a function g by g(tf) = —dx(t — 1) for te[u + 1, u + 2],
g(t) = —d for te[u + 2,v], g(t) = 0 for t e (v, 3n/2b + 1], and let g be periodic
with period 2n/b. For every integer n put u, = 2nn/b + u, v, = 2nn[b + v. If
yo(f) = constant for each ¢ € [u,, u, + 1], and if y is the solution of the equation

(7) () =9(t) ¥t - 1)

for t > u, + 1 with y, as initial function then y(f) = 0 for each ¢ 2 v,. However,
‘every solution of (7) defined for all t € R is constant on each interval [u,, u, + 1],
consequently (7) has no non-trivial solution defined for all t € R.
On the other hand, the equation (7) satisfies the assumptions of Theorem 1 with
the constant 1/e replaced by c, since sup |g(f)] < ¢, =1, and § = 0, g.e.d.
t
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