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ON ASYMPTOTIC BEHAVIOUR OF CENTRAL DISPERSIONS
OF LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

MIROSLAV BARTUSEK, Brno

(Received September 10, 1973)

1.1. Consider a differential equation
(@) vV =4q(t)y, qeC’a,b), b=

where C"[a, b) (n being a non-negative integer) is the set of all continuous functions
having continuous derivatives up to and including the order n on [a, b). In all the
paper we will deal only with oscillatory (t — b_) differential equations (i.e. every
non-trivial solution has infinitely many zeros on every interval of the form [t,, b),
to € [a, b)).

Let y be a non-trivial solution of (q) vanishing at t € [a, b). If ¢(¢) is the first zero
of y lying to the right from ¢, then ¢ is called the basic central dispersion of the 1-st
kind of (q) (briefly, dispersion of (q)). The function ¢ has the following properties

(see [2] § 13):

(1) 1) e C¥[a, b),
2) ¢'(t) > 0 on [a, b),
3) ¢(t) >t on [a, b),
4) tl_igl_ o(f) = b,

10" 3 ”\ 2 ,
5) —-2 42 ?—,)+q(¢)¢’=4(t),‘5[a’b)’
2¢9" 4\g

6) ¢'(t) = 323 1<ty <t <oft).

1.2. In our later considerations we will generalize some of the following results
which have been proved by the author of [3] (see also [1]):
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Theorem 1. Let g€ C"[a, ), peC"[a, ©) (n = 0 being an integer) and let
g€ C'[a, ) if n = 0. Let lim sup ¢(t) < 0, lim inf g(f) > — oo, lim (q(t) — p(t)) =
t—> o

t= t—
= 0,1im ¢'({) = O and if n > 0 let lim q®(t) = 0, lim p™(t) = 0 fork = 1,2,..., n.
t—=c0 “ t— o0 t—> o

If @, @ are the dispersions of (q) and y” = p() y, respectively, then

lim(o() = a()0® =0, k=1,2,..,n+ 3.

t— o0

Lemma 1. Let g € C°[a, b), lim sup q(t) < 0. Let ¢ be the dispersion of the dif-
t-b— :

ferential equation (q) Then there exists a number k > 0 such that
o) —t =k, telab).

2. Lemma 2. Let ¢ be the dispersion of an oscillatory (t - b_) differential
equation (q), g € C'[a, b), lim sup q(r) < 0. Let
t=b—

lim max |q'(x)| (¢(t) — 1) = 0.
tb— xe[t,0(1)]
Then
limo'(r)=1,

t=b—
lim ¢"(t) = lim ¢”(t) = 0.
t—ob— t-b—

Proof. It follows from the assumption lim sup q(f) = ¢ < 0 and from Lemma 1

t-b-

that there exist numbers ¢, € [a, b), K > 0 such that we have

o() —t <K, telab),
q(1)§§, te[ty, b).

Then according to (1) 6, we obtain for t 2 t, that

la(@) (1 = )] = la(o) 1—33—3 - j—g’% Ja(ts) - g(t)] =
I‘I(tz)l + Ml(t) ’ - < g max |g'(x -
< T Q) = 1) S (14 20 max o)l 00 - )

holds where t < t; < t; < (1), & €(ty, 12), 1 € (12, 9(2)),
Ml-(t) = IQ'('I)' ((p(t) - ‘2) 4 I{?a’(‘d]lq,(x)' (‘P - t) =50,
xe[t,@

Mz = ﬂlax Ml(t) .
tela,b)
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Hence it follows

) lim |g() (1 — ¢")] = 0

and thus lim ¢'(t) = 1. So the first part of the statement is proved.

t—b-

According to (2) and (1) 5, we have
lim |—10"¢" + 30" = lim la(t) — ale) ¢?| =
= lim [(q(r) - q(¢)) + a(0) (1 = ¢*)| = lim [q(t) - 4(o)| =

= hm [q ©@-9)|= hm max |q (x), (p—1)=0

-b- xe[t,
where ¢ € (¢, ¢). So
(3) lim |_%(p”l(pl + %(prﬂ.l =0.
t=b-
Suppose lim ¢"? = ¢ > 0. Then lim ¢’(f) = + co but this is in contradiction with the
t—b- t—b-
proved part of the lemma. Assume that lim ¢"? does not exist. Let M = {te[a, b)

t—=b-
"(1) = 0} Then the set M contains every local maximum of the function ¢”"?
and the point t = b is an accumulation point of M. According to (3),
lim ¢"%(r) = 0

t—b.
| teM

holds and hence we have lim ¢"*(f) = 0. But this is in contradiction with our

t—=b-
assumption.
Thus lim ¢"(f) = 0 and the rest of the statement follows from (3).
t=b-

Lemma 3. Let (q), (q) be oscillatory (t - b_) differential equations such that
qeC%a,b), geC'[a,b), hm 1 sup g(t) <0 and hm (q(t) — g(1)) =0. Let ¢(d)

be the dispersion of (q) ((q)) and Tet

lim max |g'(x)| (e() — 1) =0

t=>b- xel[t,p(1)]

where (t) = max (¢(t), $(t)). Then

limo'(f) =1,
t~b_

lim ¢"(f) = lim ¢”(t) = 0.
t-b- t—b-~
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Proof. By virtue of (1) 6, we have:

A#0) (0'0) - 7(0) = a(@(0)- C}I% ) Z'%) )

__a(@(®) a(1) — =
= #‘7(&) (q(ty) a(ts) — 4(13) a(2,)) =

) &?q?((‘f%) [0t (a(t0) = a(e2) + 3(15) (a(e2) = a(02)) +

+ g(t) (@(ta) ~ a(t2)) = (1) (a(ts) — a(t))]
where

t<ty<t,<o(t), t<ty<t,<ap().
It follows from the relations

limsup g(t) = ¢ <0, tlirbn— (g(r) —g() =0

t—b-

that there exists t, € [a, b) such that
1
la()l 25 a()| = b;i te[to, b).

Then the following inequalities are valid for t € [to, b) and ¢ € [¢, ¢(t)) (by the
Taylor Theorem):

2(@(1)) - a(ts)

< 2‘@(@(:)) ats)] <, 130t + Mu(9) 1a(ta)] + My(1) _

q(t2) - 4(ta) a(r2) a(ta)l = |a(t.)| ' |a(t4)| | -

§2.(1 +3-_lti[1(_‘))(1 +‘2—"¥|’—(1))§2.<1+%'|TM)2=M3< .

Here
M,(t) = :naz&)][cj’(x)l (e(t) = )53 0, M, = max M,(f).
xe[t,@(2

te[to,b)

Hence
3(8() (¢'(t) — F(O)] = M, . [la(t,) — a(ts)| + [a(t2) — ()] +
+ 7€) @ -0+ 7)) @ - 9] =0
for &; € (15, 1), &, € (14, t3) and thus

() lim |7(2(1)) (¢'(t) — #'(1))] = 0.
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This implies lim (¢’(f) — @(f)) = 0 and by virtue of Lemma 2 we can see that
t—b-

lim q)’(t) = 1 which proves the first part of the lemma.
t—b-

The dispersions ¢ and @ fulfil the non-linear differential equation (1) 5:

1 4 3 ”2 ,
- e+ a0),
1(-5”1 3 (‘—)"2 s, _
23 Z¢,z=—4(¢)¢2+q(t)-

Subtracting and modifying these equations we get (by (4) and the proved part

of Lemma 3):
HE-51-5)
= |a(9) — a(r) - a(e) @ + 3(?) 7| =
= |(a(r) - a(t)) — a(®) (¢ = &) (¢' + &) -
— ¢?[(a(e) - (0)) + (@(e) — aA@)]| =< |a(r) — a(1)] +
+1a(®) (0" = @) (¢" + @)| + ¢*|a(e) — alo)| +
+ ¢’ max |7'(x)| ((t) — 1) ==52 0.

xe[t,0(1)]

Taking into account Lemma 2 (for ¢ = ¢ we have lim @"(¢) = lim §"(f) = 0)
t-b- t—b-

we can see from this that

%) lim Ap* = lim | ~3¢" . ¢ + 3¢ = 0
t—b- )

t—b-

holds. The relation (5) is the same as the relation (3) and therefore we can prove in
the same way as in Lemma 1 that

lim ¢'() = lim 9"(1) = 0.
t—b-

t=b-
So the statement of the lemma is proved.
Theorem 2. Let (q), (q) be oscillatory (t — o) differential equations such that
g€ C%a, ©), g€ C'[a, o), limsup g(t) <0, lim (q(f) — 4(r)) = 0, lim g'(f) = 0.
t— o0 t— o t— o
Let ¢ be the dispersion of (q). Then

limo() =1, lime"(t) =lime"(t) =0.
t—> 00 t— o0

t—®
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Proof. Let @ be the dispersion of (). It follows from Lemma 1 that there exists
a constant M > O such that ¢(t) — t £ M, $(t) — t < M, te[a, ).
Thus

lim max |7'(x)| (@(f) — ) =0
t— o xe[r,¢=p(!)]

where ¢(t) = max (¢(t), @(1)). This together with Lemma 3 implies the statement of
the theorem. >

Theorem 3. Let (q), (q) be oscillatory (t — o) differential equations such that
g € C%[a, ), g € C'[a, ), Tim (g(t) — 3(t)) = 0, lim g(f) = — o0, |g'(t)| < const.
t— oo t— 0
for te[a, o). Let ¢ be the dispersion of (q). Then

lim(p(t) — 1) =0, lime'(f) =1, lime"(f) =lim¢"()=0.
t— o0 t— o0 t— o0 t— o0

Proof. Let C < O be an arbitrary number. As lim cj(t) = — o0, there exists
t— o0

a number t,, t, € [a, ) such that ¢(t) < C, t € [#;, ). From the Sturm Comparison
Theorem for the equations (q) and y” = C. y we obtain

0<ot)—t< "C, tet;, ).

\/_

Hence lim (o(t) — t) = 0. We can prove similarly that lim (3(f) — t) = 0 where
t— o t— o0

is the dispersion of (q). Thus

lim max |g'(x)| (o(t) — 1) = 0

t~ o xe[t,9(1)]

where ¢(t) = max (¢(t), #(t)) and the statement of the theorem follows from
Lemma 3.
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