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A NOTE ON STC-GROUPOIDS

PeTR NEMEC, Praha

~ (Received October 3, 1973)

Let G be a groupoid. We shall denote by L, the left translation by a € G and by R,
the right translation, i.e., L,(x) = ax and R,(x) = xa for all x € G. In his book [1]
V. D. BeLousov introduced the class of quasigroups in which all mappings S, , =
= L;'L;'L,, are automorphisms. Such quasigroups were called SA-quasigroups
by T. KeEpPkA and studied in [2] The latter also introduced TA-quasigroups, i.e.,
quasigroups in which all mappings T,, = R; 'R, 'R,, are automorphisms. SA-
quasigroups and TA-quasigroups having the property that there is an Abelian
group Q(+), its automorphisms f, g and x € Q such that ab = f(a) + g(b) + x
for all a, b € Q were described by T. Kepka and P. N&mec in [3]. Here we make an
attempt to generalize these ideas for groupoids. In the first part we give basic defini-
tions and some elementary assertions, in the second part we study the basic properties
of STC-groupoids. In the third section we prove, following the ideas of [2], some
theorems concerning the Cartesian decomposition of STC-groupoids, and in the last
section we apply our results to some classes of groupoids.

1. INTRODUCTION

Let G be a groupoid. We shall say that G is

— an LC-groupoid (LD-groupoid) if for all a € G the mapping L, is one-to-one
(onto),

~ an RC-groupoid (RD-groupoid) if for all a € G the mapping R, is one-to-one
(onto), '

— a C-groupoid if it is simultaneously an LC- and RC-groupoid,

— a D-groupoid if it is simultaneously an LD- and RD-groupoid,

— an S-groupoid if for all a, b € G there is an endomorphism S, , such that L,, =
= L,LyS, b ’

— a T-groupoid if for all a, b € G there is an endomorphism T, , such that R,, =
= RbRan,b’
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— an SF-groupoid (SH-groupoid) if it is an S-groupoid and endomorphisms Sey
can be chosen so that S, , = S, . (Sy, = S, ) for all a, b, c € G,

— a TF-groupoid (TH-groupoid) if it is a T-groupoid and endomorphisms T, can
be chosen so that T, , = T, , (T, , = T, ) for all a, b, c € G,

— a B;-groupoid if a. bc = b . ac for all a, b, c € G,

— a B,-groupoid if ab. ¢ = ac. b for all a, b, c € G,

— Abelian if ab.cd = ac. bd for all a, b, ¢, d € G,

— left distributive if a . bc = ab . ac for all a, b, c € G,

— right distributive if ab . ¢ = ac . bc for all a, b, ¢ € G,

— distributive if it is both left and right distributive.
An element e € G is idempotent if ee = e. The set of idempotent elements will

be denoted by Id G, and we define further

E(G) = {a € G | there is b e G such that ba = b},
F(G) = {a € G| there is be G such that ab = b},
G,={beG|ba=b}, ,G={beG|ab=bh}.

An equivalence 1 on a groupoid G is called a congruence (normal congruence) if for
all a,b,ceG, anb implies acn bc and can cb (moreover, ca n cb implies an b
and ac n bc implies a n b). If G is a C-groupoid and f a homomorphism of G into
a groupoid H then f(G) is a C-groupoid iff the relation 7 defined by a n b <> f(a) =
= f(b) is a normal congruence on G.

Obviously, all semigroups and all disttibutive quasigroups are ST-groupoids (in
general, if G is simultaneously an X-groupoid and a Y-groupoid then we shall say
that G is an XY-groupoid). If Q is a left distributive quasigroup which is not right
distributive then Q is an S-groupoid which is not a T-groupoid. An example of such
quasigroup can be found in [1] or [4].

1.1. Proposition. The Cartesian product of any system of S-groupoids is an
S-groupoid.

Proof. Obvious.

1.2. Proposition. Let G be an S-groupoid, H an LC-groupoid and f a homomor-
phism of G into H. Then f(G) is an SLC-groupoid.

Proof. Let x, y, z € f(G) be arbitrary. We have x = f(a), y = f(b), z = f(c)
for properly chosen a, b, c € G, so that xy . z = x . (¥ . f(S,,(c)). As f(G) is an LC-
groupoid, for all d e G such that f(d) = f(c) = z we get f(S,:(c)) = £(S,(d)).
Hence we can define S, ,(z) = f(S,,5(c)). If further u € f(G) and e € G are such that
f(e) = u then S, (zu) = f(S,4(ce)) = f(Sas(c) . San(€)) = f(Sas(c)) - F(Sas(e)) =
= S, ,(2) . S,,(u). Thus the mapping S, , is an endomorphism of the groupoid f(G).
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1.3. Proposition. If G is an SLC-groupoid then all mappings S,, are uniquely
determined and one-to-one.

Proof. If ab.c = a. bd = a. be then d = e, all mappings L, being one-to-one.
Further, if S,,(c) = S,,(d) then Ly(c) =a.(b.S,(c)) =a.(b.S,,d)) =
= ab.d = Lu(d) and hence ¢ = d.

1.4. Proposition. Let G be an SLC-groupoid and H its subgroupoid. Then H is
an SLC-groupoid iff S, ,(c) € H for all a, b, c € H.

Proof. The “if”’ part is obviously true whenever G is an S-groupoid. The “only
if” part follows easily from the fact that all mappings L, are one-to-one.

1.5. Proposition. Let G be an SLC-groupoid and H its subgroupoid having the
following property:

If a, be H and x € G such that ax = b then x € H.
Then H is an SLC-groupoid.

Proof. Let a, b, c € H be arbitrary. Then ab.c = a. (b . S,,(c)) € H, hence
S,.(c) € H and we can use Proposition 1.4.

1.6. Proposition. Let G be an SLC-groupoid and a, b, c€ G. Then S,,(c)eld G
iff celd G.

Proof. If S, ,(c) € Id G then S, ;(cc) = S, 4(c), so that, by Proposition 1.3, cc = c.
The converse being obvious, the proof is completed.

1.7. Proposition. Let G be an SLC-groupoid, 1d G = {r} and let R, be onto.
Then ar = a for all aeG.

Proof. For every a € G there is b e G such that a = br. By Proposition 1.6,
ar=br.r=>b.(r.S,(r)) =b.rr=br=a.

1.8. Proposition. Let G be an SRD-groupoid, e€ G such that ea = a for all
a € G and let all mappings S, , be onto. Then G is an LC-groupoid.

Proof. Let a € G be arbitrary and b € G such that ba = e. Then for every c € G,
¢c=ba.c="b.(a.S,,c), and hence L,L,S,, = 15, where 1; is the identical
mapping of G onto G. As S, , is onto, L, is one-to-one.

The dual assertions for T-groupoids can be proved analogously.

1.9. Proposition. Let G be an STD-groupoid with unit. If for all a, b € G the map-
pings S, 4, T, , are onto then G is a quasigroup.

Proof. This is an immediate consequence of Proposition 1.8 and its dual.
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2. BASIC PROPERTIES OF STC-GROUPOIDS

2.1. Lemma. Let G be an SLC-groupOtd Then

() L, is an automorphlsm of G for all e € E(G).

(ii) If Id G # 0 then 1d G is a left distributive LDLC-groupoid.
(ii) Ifae Gand reld G then S, , = L, .
(iv) If, moreover, G is an RC-groupoid then

1d G = E(G) < F(G).

Proof. (i) If e e E(G) then there is a € G such that ae = a. Then L, = L,, =
= L,L,S, . hence L,S,. = 15, L, being one-to-one, and so L, is a one-to-one map-
ping of G onto G. Thus S, , = L;', and consequently L, is an automorphism of G.

(ii) Obviously Id G = E(G) n F(G). Let r, se Id G be arbitrary. Since rs = L(s),
we have rseld G by (i). Further, there is t€ G such that L(f) = s. But r.1t =
=rt.rt = ss = s = rt, and therefore t e Id G.

(iii) Forallce G, ra.c = r.(a.L;'(c)) by (i).

(iv) If G is a C-groupoid and e € E(G) then L, is an automorphism of G, e . ee =
= ee . ee, and hence e = ee.

2.2. Lemma. Let G be a TRC-groupoid. Then

(i) R, is an automorphism of G for all f € F(G).

(i) If Id G # O then 1d G is a right distributive RDRC-groupoid.
(ii) IfaeGand reld G then T,, = R .
(iv) If, moreover, G is an LC-groupoid then

IdG = F(G) c E(G)
Proof. Dual to that of Lemma 2.1.

2.3. Theorem. Let G be an STC-groupoid. Then
(i) I1d G = E(G) = F(G).
(ii) If Id G =+ O then Id G is a distributive quasigroup.

(iii) For all r€1d G, L, and R, are automorphisms.
(iv) If r,seldGand G, G + Q then r = s.

Proof. With respect to Lemma 2.1 and Lemma 2.2, it remains only to prove the
assertion (iv). We have xr = sx = x for some x € G Hence xr = s. xr = sx .sr =
= x.sr,sothat sr = r. Thus r = s.

2.4. Corollary. Let G be a groupoid. Then G is an idempotent STC-groupoid iff
it is a distributive quasigroup.
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Now we are in position to show that, in general, STC-groupoids are not closed
under subgroupoids. Indeed, let Q be a distributive quasigroup and G its subgroupoid
which is not a quasigroup. Then G is not an STC-groupoid.

2.5. Proposition. Let G be an STC-groupoid such that Id G = (. Then there exists
a groupoid H with the following properties:

(i) H is an STC-groupoid with unit.
(ii) G is a subgroupoid in H.
(iii) card (H\ G) = 1.

Proof. Let e ¢ G be arbitrary and define a binary operation + on H = G U {e}
bya+ b=abfora,beGandc + e=e+ c=cfor ceH.Itis an easy exercise
to show that H(+) has the desired properties.

2.6. Definition. Let G be an SLC-groupoid. We shall say that G satisfies the con-
dition (Pg) if Id G = 0 and for all a, b € G the mapping S, | Id G is a permutation
of Id G. Let G be a TRC-groupoid. We shall say that G satisfies the condition (Pr)
if Id G % 0 and for all a, b € G the mapping T,, | Id G is a permutation of the set
Id G. Let G be an STC-groupoid. We shall say that G satisfies the condition (P)ifit
satisfies (Ps) and (Pr).

2.7. Proposition. Let G be an SLC-groupoid such that Id G # 0 and at least one
of the following two conditions holds:

(i) For all a,b€eG, S, is an autoimorphism of G.
(i) Id G is finite.
Then G satisfies (Ps).

The assertion for (Py) and (P) are analogous.

2.8. Theorem. Let G be an STC-groupoid. If G satisfies (Ps) then there is a uniquely
determined mapping eg of G into 1d G such that a . eg(a) = a for all ae G. If G
satisfies (Py) then there is a uniquely determined mapping fg of G into 1d G such
that fo(a) . a = a for all a € G. Moreover, if G satisfies (P) then e; = f.

Proof. Let a € G and r € Id G be arbitrary. As in view of Theorem 2.3 the map-
pings R,, L, are onto, there are b, c € G such that br = a = re. If G satisfies (Py)
then a = b.rr = br.S; }(r) = a.S; }r), where S;} is the inverse mapping to
Sy, | Id G. Similarly, if G satisfies (Py) then T,'(r) . a = a. Finally, if G satisfies (P)
then T, (r) = S;,}(r) by Theorem 2.3 (iv).

2.9. Proposition. Let G be an STC-groupoid. Then G is a groupoid with unit iff
card (Id G) = 1.
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Proof. It follows immediately from Theorem 2.3 and Proposition 1.7 (and its
dual).

2.10. Propositi;m. Let G be an STC-groupoid such that at least one of the following
two conditions holds:

(i) There is e € G such that ae = a for alla € G.
(ii) There is f € G such that fa = a for all a € G.

Then G is a groupoid with unit.

Proof. Let reId G be arbitrary. Then rr = r = re, so that r = e, and hence
card (Id G) = 1. Application of Proposition 2.9 completes the proof (which is ana-
logous if the condition (ii) is assumed).

2.11. Proposition. Let G be an STC-groupoid and r € Id G. Then
(i) G, is an STC-groupoid with unit,

(") Gr =,G,

(iii) For every seld G, G, = G,.

Proof. Let a, b € G, be arbitrary. Then ab . r = ar. br = ab, so that ab €G,.
Let further x, ye G be such that ax = b = ya. Then ax =b=br=ax.r =
=ar.xr=a.xr, ya=b=>br=ya.r = yr.ar = yr.a, and therefore x, y €
€ G,. By Proposition 1.5, its dual and Proposition 2.10, G, is an STC-groupoid and r
is its unit. Hence G, < ,G and similarly we can prove ,G < G,. Further, let seld G
be arbitrary. There is t € Id G with rt = 5. For all ce G, we have ct.s =ct.rt =
= cr.t = ct, and hence ct € G,. On the contrary, if d € G, then R;'(d).t = d =
=ds = (R;'(d).7).rt = (R;'(d).r).t. Thus R, is the isomorphism which we
have sought. .

3. CARTESIAN DECOMPOSITION OF STC-GROUPOIDS

3.1. Theorem. Let G be an STC-groupoid satisfying the condition (P). Then there
exists a normal congruence p on G such that Id G is one of its classes. Moreover,
Glu = G, for all reld G.

. Proof. Let a € G and r.eId G be arbitrary. By Theorem 2.8 and Theorem 2.3,
there are e(a), s, u € Id G with a . e(a) = e(a) . a = a, e(a) .s = r = u . ¢(a). Hence
as = (e(a).a).s =(ela).s).(a.s)=r.as=ra.rs,ua =u.(a.e(a)) = (u.a).
.(u.e(a)) = ua.r = ur. ar. Further, there are t, v € Id G such that rs.t = r. ¢(a),
v.ur =¢a).r. Then ra=r.(a.ela)) =ra.(r.e(a)) =ra.(rs.t) = (ra.rs).
- Srars(t), ar = (e(a).a).r = (e(a).7) .ar = (v.ur).ar = T, 1(v). (ur. ar). There-
fore ra = as. S} (f) = ax, ar = T, !(v) . ua = ya, where x, y eId G by Propo-
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sition 1.3. Thus Id G . a = a . Id G. Now we shall construct a homomorphism f of G
onto G,. If a € G then there is (uniquely determined) g(a) € Id G such that-e(a) .
.g(a) = r. Put f(a) = a . g(a). By essentially the same argument as in [2], Theorem
3, we can show (using the fact that Id G . a = a . Id G for all a € G) that f is a homo-
morphism of G onto G, and Id G is one of the classes of the corresponding normal
congruence J.

If G is an STC-groupoid satisfying the condition (P) then, by Theorem 2.8, for
every a € G there is (uniquely determined) eg(a) € Id G with eg(a) . a = a . eg(a) = a.

3.2. Theorem. Let G be an STC-groupoid. Then G =~ D x E, D being a distri-
butive quasigroup and E an STC-groupoid with unit, iff G satisfies the condition (P)
and the mapping eg is an endomorphism of G. In this case, G = 1d G x G, for all
reld G.

Proof. Let E be an STC-groupoid with unit e, D a distributive quasigroup and
h:G - D x E an isomorphism. Then, obviously, G satisfies the condition (P).
Let (a, b)e D x E. Then epxg(a, b) = (a, €), and hence ey is an endomorphism
of D x E. Aseg = h™'epch, e; is an endomorphism of G. On the other hand, let G
satisfy the condition (P) and let the mapping e be an endomorphism of G. Let further
reld G be arbitrary. We shall define h : G » Id G x G, by h(a) = (eg(a), f(a)),
where f is the homomorphism of G onto G, defined in the proof of Theorem 3.1. If
h(a) = h(b), then eg(a) = eg(b) and a.g(a) = b.g(b). Since eg(a).g(a) =r =
= eg(b) . g(b), we have g(a) = g(b) and a = b. Further, let seId G and a € G, be
arbitrary. There are t € Id G, b € G with st = r and bt = a. Hence bt = a = ar =
= bt.st = bs.t. Thus e4(b) = s, g(b) = t, f(b) = a, and therefore h(b) = (r, a).
Since h is obviously a homomorphism, the proof is complete.

3.3. Lemma. Let G be an STC-groupoid satisfying the condition (P). Define
a relation n on G by anb <> eg(a) = eg(b). The relation n is a congruence on G
iff e is an endomorphism of G. In this case, n is a normal congruence.

Proof. Let eg be an endomorphism and anb, cnd. Then eglac) = eg(a).
-egc) = eg(b) . eg(d) = eg(bd) so that acnbd. If acnbc then we have eg(a).
. eg(c) = eg(b) . eg(c), and hence a 7 b. Conversely, let 1 be a congruence on G and
let a,be G be arbitrary. Obviously ab n eg(ab), aneg(a), bnes(b) so that
eg(ab) n eg(a) . eg(b), and therefore eg(eg(ab)) = egeq(a) - eg(b)). But eg(ab), eg(a),
eq(b) €1d G, hence eg(ab) = eg(a) . eg(b).

3.4. Theorem. Let G be an STC-groupoid. Then G =~ D x E, E being an STC-
groupoid with unit and D a distributive quasigroup, iff G satisfies the condition (P)
and there are a congruence v on G and r € Id G such that G, is one of the classes
of v. In this case, G =~ 1d G x G,.
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Proof. Let G = D x E. Then the statement follows immediately from Theorem
3.2 and Lemma 3.3. On the contrary, let G satisfy the condition (P), let v be a con-
gruence on G and let r € Id G be such that G, is one of its classes. Let a € G be arbi-
trary, s € Id G such that rs = eg(a) and c € G withes = a. Thenes = a = a . eg(a) =
= ¢s.rs = cr.ssothat cvr. Since vis a congruence, we have a v eG(a). Thusifa, b
are arbitrary elements of G such that av b then eg(a) v eq(b). There is teId G
with eg(a).t =r. Hence we get eq(b).1e€G, so that eg(b).t =r = eg(a).t,
since eg(b), t are idempotent, and therefore a n b, where 7 is the relation defined
in Lemma 3.3. Further, if a n b then eg(a) = eg(b) and hence a v eg(a) v eg(b) v b.
Thus n = v. Application of Lemma 3.3 and Theorem 3.2 completes the proof.

4. STC-GROUPOIDS OF SOME CLASSES

4.1. Theorem. The following two conditions for a groupoid G are equivalent:

(i) Gisan Abelian STC-groupoid such that for every a € G there are e(a), f(a) € G
with a . e(a) = f(a) . a = a.

(i) G = D x S, where S is a commutative C-semigroup with unit and D is an
idempotent Abelian quasigroup.

Proof. Let G satisfy (i) and let a, b € G and r € Id G be arbitrary. Then a . br =
= (a.e(a)).br =ab.(e(a).r), ra.b =ra.(f(b).b) = (r.f(b)).ab, and hence
r = S,u(e(a) . r) = T,4(r . f(b)). Thus G satisfies the condition (P). Further, ab =
= (a.e(a)).(b.e(b)) = ab . (e(a). e(b)) so that e(ab) = e(a) . e(b). Now, applica-
tion of Theorem 3.2 (and the simple facts that an Abelian groupoid with unit is
a commutative semigroup and an Abelian quasigroup is distributive iff it is idem-
potent) completes the proof, since (i) follows from (ii) trivially.

4.2. Proposition. The following conditions for a groupoid G are equivalent:
(i) G is an SCB,-groupoid and there is r € Id G with R, onto.

(ii) G is a TCB,-groupoid and there is r € Id G with L, onto.

(iii) G is a commutative C-semigroup with unit.

Proof. (i) <> (iii). Let G be an SCB;-groupoid and let s € Id G be arbitrary. Then
r.sr=s.rr = sr and hence r = s. By Proposition 1.7, for all a, b, c€G, ab =
=a.br = b.ar = baand consequently,a.bc=b.ac=b.ca=c.ba=ab.c.
The converse is obvious.

(ii) <> (iii) can be proved similarly.

4.3. Lemma. Let G be an SFLC-groupoid with unit e. Then G is a semigroup.
Proof. Foralla,beG, S,, = S, = 1.
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4.4, Lemma. Every idempotent S LC-groupoid is an SF-groupoid.

Proof. Let a, b, c € G be arbitrary. Then, by Lemma 2.1, S, , = L;' = S, ..

4.5. Lemma. Let G be an SFLC-groupoid such that for every se€ G there is
e(a) € G with a . e(a) = a. Then G satisfies the condition (Ps) and S,, = Ly, for
all a,beG.

Proof. Let a,be G be arbitrary. Then L, = L, . = L,L.4)Sa,eay 50 that
Le@Sae@ = 1g and S,, = S, .y = L., Application of Lemma 2.1 completes the
proof.

Similarly we can prove the dual results for TF-groupoids.

4.6. Theorem. The following two conditions for a groupoid G are equivalent:
(i) G is an SFTFC-groupoid such that for every a € G there are e(a), f(a)e G
with a . e(a) = f(a).a = a.

(i) G = D x S, where D is a distributive quasigroup and S is a C-semigroup
with unit.

Proof. (i) = (ii). Lemma 4.5 and its dual guarantee that G satisfies the condition
(P)and ab . (e(a) . e(b)) = a.(b.S,,(e(a) . ¢(b))) = a.(b. L L. e(b))) = ab.Now
we can use Theorem 3.2 and Lemma 4.3.

(if) = (i). This is obvious with respect to Lemma 4.4 and its dual.

4.7. Lemma. Let G be an SHLC-groupoid. If there is r€e1d G with R, being
one-to-one then I1d G= {r}.

Proof. For every seldG, L;' = S,,=S,, = L;' by Lemma 2.1 (iii). Thus

sr=rrands =r.

4.8. Proposition. Let G be an SHLC-groupoid. If there is r € 1d G such that R,
is a permutation of G then ar = a for all a e G.

Proof. By Lemma 4.7 and Proposition 1.7.

4.9. Theorem. The following three conditions for a groupoid G are equivalent:

() G is an SHTC-groupoid and 1d G # 0.
(ii) G is an STHC-groupoid and 1d G # 0.
(il) G is a C-semigroup with unit.

Proof. (i) <> (iii). Let G be an SHTC-groupoid and eeId G. By Lemma 4.7,
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Proposition 2.9 and Lemma 2.1, S,, = S, , = 1; for all a, b€ G. The converse is
obvious.

(ii) <> (iii) The proof is quite similar, using the dual of Lemma 4.7.
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