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Časopis pro pěstování matematiky, roč. 100 (1975), Praha 

A NOTE ON STC-GROUPOIDS 

PETR NEMEC, Praha 

(Received October 3, 1973) 

Let G be a groupoid. We shall denote by La the left translation by a e G and by Ra 

the right translation, i.e., La(x) = ax and Ra(x) = xa for all x e G. In his book [ l ] 
V. D. BELOUSOV introduced the class of quasigroups in which all mappings Sab = 
= Lb~

1L~iLab are automorphisms. Such quasigroups were called SA-quasigroups 
by T. KEPKA and studied in [2]. The latter also introduced TA-quasigroups, i.e., 
quasigroups in which all mappings Ta>b = R^R^R^ are automorphisms. SA-
quasigroups and TA-quasigroups having the property that there is an Abelian 
group Q(+), its automorphisms f g and xeQ such that ab — f(a) + g(b) + x 
for all a,b e Q were described by T. Kepka and P. NSmec in [3]. Here we make an 
attempt to generalize these ideas for groupoids. In the first part we give basic defini­
tions and some elementary assertions, in the second part we study the basic properties 
of STC-groupoids. In the third section we prove, following the ideas of [2], some 
theorems concerning the Cartesian decomposition of STC-groupoids, and in the last 
section we apply our results to some classes of groupoids. 

1. INTRODUCTION 

Let G be a groupoid. We shall say that G is 
- an LC-groupoid (LD-groupoid) if for all a e G the mapping La is one-to-one 

(onto), 
- an jRC-groupoid (jRZ)-groupoid) if for all a e G the mapping Ra is one-to-one 

(onto), 
- a C-groupoid if it is simultaneously an LC- and .RC-groupoid, 
- a D-groupoid if it is simultaneously an LD- and .RD-groupoid, 
- an S-groupoid if for all a9beG there is an endomorphism Satb such that Lab = 

= LaLbSab9 

- a T-groupoid if for all a9b eG there is an endomorphism Tab such that Rab = 
= RbRaTa,b> 
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— an SF-groupoid (SH-groupoid) if it is an S-groupoid and endomorphisms Sxy 

can be chosen so that SQtb = SatC (SM = SCt0) for all a,b,ce G, 
— a TF-groupoki (TH-groupoid) if it is a T-groupojd and endomorphisms Txy can 

be chosen so that ThtQ = TCt0 (T0fb = TQtC) for all a, b, c e G, 
— a Bi-groupoid if a . be = b . ac for all a, b, ce G, 
— a B2-groupoid if ab . c = ac . b for all a,b,ce G, 
— Abelian if ab . cd = ac . bd for all a, b, c, d e G, 
— left distributive if a . be = ab . ac for all a, b, c e G, 
— right distributive if ab . c = ac . be for all a, b, c e G, 
— distributive if it is both left and right distributive. 

An element e e G is idempotent if ee = e. The set of idempotent elements will 
be denoted by Id G, and we define further 

E(G) = {a e G | there is b e G such that ba = b} , 

F(G) = {a G G | there is b e G such that ab = b} , 

Ga = {b e G | ba = b} , flG = {b e G | ab = b} . 

An equivalence ^ on a. groupoid G is called a congruence (normal congruence) if for 
all a,b,ceG, a^b implies ac ̂  be and ca ̂  cb (moreover, ca ̂  cb implies a ^ b 
and ac r\ be implies a ^ b). If G is a C-groupoid and f a homomorphism of G into 
a groupoid H thenf(G) is a C-groupoid iff the relation ^ defined by a^ b of (a) = 
= f(b) is a normal congruence on G. 

Obviously, all semigroups and all distributive quasigroups are ST-groupoids (in 
gerieral, if G is simultaneously an X-groupoid and a Y-groupoid then we shall say 
that G is an XY-groupoid). If Q is a left distributive quasigroup which is not right 
distributive then Q is an S-groupoid which is not a T-groupoid. An example of such 
quasigroup can be found in [ l ] or [4]. 

1.1. Proposition. The Cartesian product of any system of S-groupoids is an 
S-groupoid. 

Proof. Obvious. 

1.2. Proposition. Let G be an S-groupoid, H an LC-groupoid and f a homomor­
phism of G into H. Thenf(G) is an SLC-groupoid. 

Proof. Let x, y, z ef(G) be arbitrary. We have x = f(a), y = f(b), z = f(c) 
for properly chosen a,b,ce G, so that xy . z = x . (y .f(Sab(c)). As f(G) is an LC-
groupoid, for all d G G such that f(d) = f(c) = z we get f(Satb(c)) = f(S0tb(d)). 
Hence we can define SXty(z) = f(Satb(c)). If further u ef(G) and e e G are such that 
f(e) = u then SXty(zu) ~f(Sa>b(ce)) = f(S0tb(c) . Satb(e)) = f(Satb(c)) .f(Satb(e)) = 
= SXjJ,(z) . SXjy(u). Thus the mapping Sxy is an endomorphism of the groupoid f(G). 
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1.3. Proposition. If G is an SLC-groupoid then all mappings Sab are uniquely 
determined and one-to-one. 

Proof. If ab . c = a . bd = a .be then d = e, all mappings Lx being one-to-one. 
Further, if Safb(c) = Satb(d) then Lab(c) = a . (b . Sa>b(c)) = a . (b . Sa>b(d)) =-= 
= ab . d = Lab(d) and hence c = d. 

1.4. Proposition. Let G be an SLC-groupoid and H its subgroupoid. Then H is 
an SLC-groupoid iffSab(c) e H for all a, b, c eH. 

Proof. The "if" part is obviously true whenever G is an 5-groupoid. The "only 
if" part follows easily from the fact that all mappings La are one-to-one. 

1.5. Proposition. Let G be an SLC-groupoid and H its subgroupoid having the 
following property: 

If a, b e H and x e G such that ax = b then x e H. 

Then H is an SLC-groupoid. 

Proof. Let a, b, c e H be arbitrary. Then ab . c = a . (b . Sab(c)) e H, hence 
Sa,b{c) E H and we can use Proposition 1.4. 

1.6. Proposition. Let G be an SLC-groupoid and a, b, c e G. Then Sab(c) e Id G 
iff c e l d G. 

Proof. If Sab(c) e Id G then Sab(cc) = Sab(c), so that, by Proposition 1.3, cc = c. 
The converse being obvious, the proof is completed. 

1.7. Proposition. Let G be an SLC-groupoid, Id G = {r} and let Rr be onto. 
Then ar = a for all a e G. 

Proof. For every aeG there is b e G such that a = br. By Proposition 1.6, 
ar = br . r = b . (r . Sb>r(r)) =.b . rr = br = a. 

1.8. Proposition. Let G be an SRD-groupoid, eeG such that ea = a for all 
aeG and let all mappings Sab be onto. Then G is an LC-groupoid. 

Proof. Let a e G be arbitrary and b e G such that ba = e. Then for every c e G, 
c = ba . c = b . (a . Sba(c)), and hence LbLaSb>a = 1G, where 1G is the identical 
mapping of G onto G. As Sba is onto, La is one-to-one. 

The dual assertions for T-groupoids can be proved analogously. 

1.9. Proposition. Let G be an STD-groupoid with unit. If for all a, b e G the map­
pings Sab, Tab are onto then G is a quasigroup. 

Proof. This is an immediate consequence of Proposition 1.8 and its dual. 
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2. BASIC PROPERTIES OF STC-GROUPOIDS 

2.1. Lemma. Let G be an SLC-groupoid. Then 

(i) Le is an automorphism of G for all e e E(G). 
(ii) If Id G # 0 then Id G is a left distributive LDLC-groupoid. 

(iii) If aeG andreUG then Sr>a = L; 1 . 
(iv) If, moreover, G is an RC-groupoid then 

UG = E(G) s F(G) . 

Proof, (i) If e e E(G) then there is a e G such that ae = a. Then La = Lae = 
= LaLeSae, hence LeSae = 1G, La being one-to-one, and so Le is a one-to-one map­
ping of G onto G. Thus Sae = LJ1 , and consequently Le is an automorphism of G. 

(ii) Obviously Id G £ E(G) n F(G). Let r, s e Id G be arbitrary. Since rs = Lr(s), 
we have rs e Id G by (i). Further, there is t e G such that Lr(t) = s. But r . tt = 
= rt. rt = ss = s = rt, and therefore teUG. 

(iii) For all c e G, ra . c = r . (a . L7x(c)) by (i). 

(iv) If G is a C-groupoid and e e E(G) then Le is an automorphism of G, e . ee = 
= ee. ee, and hence e = ee. 

2.2. Lemma. Let G be a TRC-groupoid. Then 

(i) Rf is an automorphism of G for all f e F(G). 
(ii) If Id G # 0 fhen Id G is a righf distributive RDRC-groupoid. 

(iii) If aeG andreUG then Tar = R;1. 
(iv) If, moreover, G is an LC-groupoid then 

Id G = F(G) £ F(G) . 

Proof. Dual to that of Lemma 2.1. 

2.3. Theorem. Let G be an STC-groupoid. Then 

(i) Id G = E(G) = F(G). 
(ii) If Id G + 0 fhen Id G is a distributive quasigroup. 

(iii) For a// r e Id G, Lr and # r are automorphisms. 
(iv) If r, s e Id G and Gr n SG =1= 0 ffeen r = s. 

Proof. With respect to Lemma 2.1 and Lemma 2.2, it remains only to prove the 
assertion (iv). We have xr = sx = x for some xe G. Hence xr = s . xr = sx . sr = 
= x . sr, so that sr = r. Thus r = s. 

2.4. Corollary. Let G be a groupoid. Then G is an idempotent STC-groupoid iff 
it is a distributive quasigroup. 
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Now we are in position to show that, in general, STC-groupoids are not closed 
under subgroupoids. Indeed, let Q be a distributive quasigroup and G its subgroupoid 
which is not a quasigroup. Then G is not an S7C-groupoid. 

2.5. Proposition. Let G be an STC-groupoid such that Id G = 0. Then there exists 
a groupoid H with the following properties: 

(i) H is an STC-groupoid with unit. 
(ii) G is a subgroupoid in H. 

(iii) c a rd (H \G) = 1. 

Proof. Let e $ G be arbitrary and define a binary operation -f on H = G u {e} 
by a + b = ab for a, b e G and c + e = e -F c = c for c e H. It is an easy exercise 
to show that H( + ) has the desired properties. 

2.6. Definition. Let G be an SLC-groupoid. We shall say that G satisfies the con­
dition (Ps) if Id G =1= 0 and for all a, b e G the mapping Sfl>b | Id G is a permutation 
of Id G. Let G be a FRC-groupoid. We shall say that G satisfies the condition (PT) 
if Id G 4= 0 and for all a, b e G the mapping Tatb | Id G is a permutation of the set 
Id G. Let G be an STC-groupoid. We shall say that G satisfies th*e condition (P) if it 
satisfies (Ps) and (PT). 

2.7. Proposition. Let G be an SLC-groupoid such that Id G 7-= 0 and at least one 
of the following two conditions holds: 

(i) For all a, b e G, Sab is an automorphism of G. 

(ii) Id G is finite. 

Then G satisfies (Ps). 

The assertion for (P r) and (P) are analogous. 

2.8. Theorem. Let G be an STC-groupoid. If G satisfies (Ps) then there is a uniquely 
determined mapping eG of G into Id G such that a . eG(a) = a for all a e G. If G 
satisfies (PT) then there is a uniquely determined mapping fG of G into Id G such 
that fG(a) . a = a for all a e G. Moreover, if G satisfies (P) then eG = fG. 

Proof. Let aeG and r e Id G be arbitrary. As in view of Theorem 2.3 the map­
pings jRr, Lr are onto, there are b, ceG such that br = a = re. If G satisfies (Ps) 
then a = b . rr = br. Sbt\r) = a . S^(r)9 where S^* is the inverse mapping to 
S d r J Id G. Similarly, if G satisfies (PT) then T~e\r) . a = a. Finally, if G satisfies (P) 
then T~c\r) = S;)(r) by Theorem 2.3 (iv). 

2.9. Proposition. Let G be an STC-groupoid. Then G is a groupoid with unit iff 
card (Id G) = 1. 
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Proof. It follows immediately from Theorem 2.3 and Proposition 1.7 (and its 
dual). 

2.10. Proposition. Let G be an STC-groupoid such that at least one of the following 
two conditions holds: 

(i) There is eeG such that ae = a for all a eG. 
(ii) There is feG such that fa = a for all aeG. 

Then G is a groupoid with unit. 

Proof. Let r e l d G be arbitrary. Then rr = r = re, so that r = e, and hence 
card (Id G) = 1. Application of Proposition 2.9 completes the proof (which is ana­
logous if the condition (ii) is assumed). 

2.11. Proposition. Let G be an STC-groupoid and r e Id G. Then 

(i) Gr is an STC-groupoid with unit, 
(ii) G, = TG, 
(iii) For every s e Id G, Gr ^ Gs. 

Proof. Let a,beGr be arbitrary. Then ab . r = ar. br = ab, so that ab e Gr. 
Let further x,yeG be such that ax = b = ya. Then ax = b = br = ax . r = 
= ar . xr = a . xr, ya = b = br = ya . r = yr . ar = yr. a, and therefore x, y e 
e Gr. By Proposition 1.5, its dual and Proposition 2.10, Gr is an STC-groupoid and r 
is its unit. Hence Gr c rG and similarly we can prove rG .= Gr. Further, let s e Id G 
be arbitrary. There is t e Id G with rt = s. For all c e Gr we have cf. s = c t . rt = 
= cr . t = ct, and hence ct e Gs. On the contrary, if d e Gs then R^1(d) ,t = d = 
= ds = (jR-T^d) . f) . rt = (R^(d) . r) . t. Thus K, is the isomorphism which we 
have sought. 

3. CARTESIAN DECOMPOSITION OF STC-GROUPOIDS 

3.1. Theorem. Let G be an STC-groupoid satisfying the condition (P). Then there 
exists a normal congruence n on G such that Id G is one of its classes. Moreover, 
G\ix £ Grfor all reldG. 

. Proof. Let aeG and r e l d G be arbitrary. By Theorem 2.8 and Theorem 2.3, 
there are e(a), s, u e Id G with a . e(a) = e(a) . a = a, e(a) . s = r = u . e(a). Hence 
as as (e(a) . a) . s = (e(a) . s) . (a . s) = r . as = ra . rs, ua = u . (a . e(a)) = (u . a) . 
. (u . e(a)) = ua . r = wr . ar. Further, there are t, v e Id G such that rs .t = r. e(a), 
v .ur = e(a) . r. Then ra = r .(a . e(a)) = ra . (r . e(a)) = ra . (rs . t) = (ra . rs) . 
• 5r«.U0» ar =* (Ka) • a ) • r =• (Kfl) • r ) . ar =- (t;. ur). ar = Tu;Jr(t;) . (wr . ar). There­
fore ra = as. S~*rs(t) = ax, ar = T~*ar(v) . ua = ya, where x, y e Id G by Propo-
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sition 1.3. Thus Id G . a = a . Id G. Now we shall construct a homomorphismf of G 
onto Gr. If a e G then there is (uniquely determined) g(a) e Id G such that e(a) . 
. g(a) = r. Putf(a) = a . g(a). By essentially the same argument as in [2], Theorem 
3, we can show (using the fact that Id G . a = a . Id G for all a e G) that f is a homo-
morphism of G onto Gr and Id G is one of the classes of the corresponding normal 
congruence //. 

If G is an STC-groupoid satisfying the condition (P) then, by Theorem 2.8, for 
every ae G there is (uniquely determined) eG(a) eld G with eG(a) . a = a . eG(a) = a. 

3.2. Theorem. Let G be an STC-groupoid. Then G s D x E, D being a distri­
butive quasigroup and E an STC-groupoid with unit, iffG satisfies the condition (P) 
and the mapping eG is an endomorphism of G. In this case, G ^ Id G x Grfor all 
reldG. 

Proof. Let E be an STC-groupoid with unit e, D a distributive quasigroup and 
h : G -» D x E an isomorphism. Then, obviously, G satisfies the condition (P). 
Let (a, b)e D x E. Then eDxE(a, b) = (a, e), and hence eDxE is an endomorphism 
of D x E. As eG = h~^eDxEh, eG is an endomorphism of G. On the other hand, let G 
satisfy the condition (P) and let the mapping eG be an endomorphism of G. Let further 
r e Id G be arbitrary. We shall define h : G -» Id G x Gr by h(a) = (eG(a), f(a)), 
where f is the homomorphism of G onto Gr defined in the proof of Theorem 3.L If 
h(a) = h(b), then eG(a) = eG(b) and a . g(a) = b . g(b). Since eG(a) . g(a) = r = 
= ^G(^) • d(b), we have g(a) = g(b) and a = b. Further, let s e Id G and a 6 Gr be 
arbitrary. There are f e Id G, b e G with st = r and bt = a. Hence fcf = a = ar = 
= bt. st = fes . t. Thus eG(b) = s, a(b) = f, f(b) = a, and therefore h(b) = (r, a). 
Since h is obviously a homomorphism, the proof is complete. 

3.3. Lemma. Let G be an STC-groupoid satisfying the condition (P). Define 
a relation ^ on G by a ^ b o eG(a) = eG(b). The relation ^ is a congruence on G 
iff^crl5 an endomorphism of G. In this case, ^ is a normal congruence. 

Proof. Let eG be an endomorphism and a ^ b, c^d. Then eG(ac) = eG(a) . 
• £G(C) = eo(b) • ^G(^) = eG(bd) so that ac ^ bd. If ac ^ be then we have eG(a) . 
. eG(c) = eG(b). eG(c), and hence a ^ b. Conversely, let ^ be a. congruence on G and 
let a, b e G be arbitrary. Obviously ab ^ eG(ab), a ^ eG(a), b ^ eG(b) so that 
eG(ab) ^ eG(a). eG(b), and therefore eG(eG(ab)) = eG(eG(a) . eG(b)). But eG(ab), eG(a), 
eG(b) e Id G, hence eG(ab) = eG(a) . eG(b). 

3.4. Theorem. Let G be an STC-groupoid. Then G £. D x E, E being an STC-
groupoid with unit and D a distributive quasigroup, iffG satisfies the condition (P) 
and there are a congruence v on G and reldG such that Gr is one of the classes 
of v. In this case, G ^ Id G x Gr. 
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Proof. Let G =" D x E. Then the statement follows immediately from Theorem 
3.2 and Lemma 3.3. On the contrary, let G satisfy the condition (P), let v be a con­
gruence on G and let r e Id G be such that Gr is one of its classes. Let a e G be arbi­
trary, s e Id G such that rs = eG(a) and ceG with cs = a. Then cs = a = a . eG(a) = 
= cs . rs = cr . s so that c v r. Since v is a congruence, we have a v eG(a). Thus if a, b 
are arbitrary elements of G such that a v b then eG(a) v eG(b). There is t e Id G 
with eG(a) . f = r. Hence we get eG(b) . t eGr so that eG(b) . t = r = eG(a) . t, 
since eG(b), t are idempotent, and therefore an b, where n is the relation defined 
in Lemma 3.3. Further, if an b then eG(a) = eG(b) and hence a v eG(a) v eG(b) v b. 
Thus n = v. Application of Lemma 3.3 and Theorem 3.2 completes the proof. 

4. STC-GROUPOIDS OF SOME CLASSES 

4.1. Theorem. The following two conditions for a groupoid G are equivalent: 

(i) G is an Abelian STC-groupoid such that for every a e G there are e(a),f(a) e G 
with a . e(a) = f(a) . a = a. 

(ii) G = D x 5, where S is a commutative C-semigroup with unit and D is an 
idempotent Abelian quasigroup. 

Proof. Let G satisfy (i) and let a, b e G and r e Id G be arbitrary. Then a . br = 
= (a . e(a)) . br = ab . (e(a) . r), ra . b = ra . (f(b) . b) = (r .f(b)) . ab, and hence 
r = Sab(e(a) . r) = Tah(r .f(b)). Thus G satisfies the condition (P). Further, ab = 
= (a . e(a)) . (b . e(b)) = ab . (e(a) . e(b)) so that e(ab) = e(a). e(b). Now, applica­
tion of Theorem 3.2 (and the simple facts that an Abelian groupoid with unit is 
a commutative semigroup and an Abelian quasigroup is distributive iff it is idem-
potent) completes the proof, since (i) follows from (ii) trivially. 

4.2. Proposition. The following conditions for a groupoid G are equivalent: 

(i) G is an SCBrgroupoid and there is r e Id G with Rr onto. 

(ii) G is a TCB2-groupoid and there is r eld G with Lr onto. 

(iii) G is a commutative C-semigroup with unit. 

Proof, (i) o (iii). Let G be an SCB rgroupoid and let s e Id G be arbitrary. Then 
r . sr = s . rr = sr and hence r = s. By Proposition 1.7, for all a, b, c e G, ab = 
= a . br = b . ar = ba said consequently, a . be = b . ac = b . ca = c . ba = ab. c. 
The converse is obvious. 

(ii) o (iii) can be proved similarly. 

4.3. Lemma. Let G be an SFLC-groupoid with unit e. Then G is a semigroup. 

Proof. For all a,beG, Satb = SatS = 1G. 
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4.4. Lemma. Every idempotent SLC-groupoid is an SF-groupoid. 

Proof. Let a, b, c e G be arbitrary. Then, by Lemma 2A, Sab = L"1 = SflfC. 

4.5. Lemma. Let G be an SFLC-groupoid such that for every s e G there is 
e(a) G G with a . e(a) = a. Then G satisfies the condition (Ps) and Sab = L~e(a) for 

all a, b E G. 

Proof. Let a, b e G be arbitrary. Then La = La e(a) = LaLe(a)Sa$e(a)9 so that 
Le(a)SaMa) = 1G and Sflfe = Sfl>e(fl) = L7(fl). Application of Lemma 2.1 completes the 
proof. 

Similarly we can prove the dual results for FF-groupoids. 

4.6. Theorem. The following two conditions for a groupoid G are equivalent: 

(i) G is an SFTFC-groupoid such that for every a e G there are e(a),f(a) e G 

with a . e(a) = f(a) . a = a. 

(ii) G = D x S, where D is a distributive quasigroup and S is a C-semigroup 

with unit. 

Proof, (i) => (ii). Lemma 4.5 and its dual guarantee that G satisfies the condition 
(P)and ab . (e(a) . e(b)) = a.(b. SaM") • <*>))) = *.(b. L ^ L ^ , ^ ) ) ) = ab. Now 
we can use Theorem 3.2 and Lemma 4.3. 

(ii) => (i). This is obvious with respect to Lemma 4.4 and its dual. 

4.7. Lemma. Let G be an SHLC-groupoid. If there is r e Id G with Rr being 
one-to-one then Id G= {r}. 

Proof. For every s e l d G , L^1 = Ssr = Srr — LTr
l by Lemma 2.1 (iii). Thus 

sr = rr and s = r. 

4.8. Proposition. Let G be an SHLC-groupoid. If there is r e Id G such that Rr 

is a permutation of G then ar = a for all a 6 G. 

Proof. By Lemma 4.7 and Proposition 1.7. 

4.9. Theorem. The following three conditions for a groupoid G are equivalent: 

(i) G is an SHTC-groupoid and Id G ^ 0. 

(ii) G is an STHC-groupoid and Id G ^ 0. 

(iii) G is a C-semigroup with unit. 

Proof, ( i )o( i i i ) . Let G be an SHTC-groupoid and e e l d G . By Lemma 4.7, 
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Proposition 2.9 and Lemma 2A, S0tb = Seb = 1G for all a, b e G. The converse is 
obvious, 

(ii) o (iii) The proof is quite similar, using the dual of Lemma 4.7. 
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