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Časopis pro pěstování matematiky, roč. 100 (1975), Praha 

QUASIGROUPS WHICH SATISFY CERTAIN GENERALIZED FORMS 
OF THE ABELIAN IDENTITY 

TOMAS KEPKA, Praha 

(Received October 3, 1973) 

INTRODUCTION 

This paper is devoted to an investigation of quasigroups satisfying some weak 
forms of the basic identity 

(a) ab . cd = ac . bd , 

called Abelian identity (sometimes the medial law). If G is a groupoid then let 

s/(G) = {X J X e G, ax .be = ab . xc Va, b, c e G} , 

$r(G) = {x | x e G, ab . ex = ac . bx Va, ft, c e G} , 

@t(G) = {x | x e G, xa . be = xb . ac Va, b, c e G} . 

In the first section of this paper we shall study quasigroups and division groupoids 
which have non-empty s/(G). Some similar results for J^(G) and ^ r ( G ) are discussed 
in the second part. Another class of quasigroups satisfying a weak form of (a) is that 
of LWA-quasigroups (left weakly Abelian), i.e., of quasigroups in which the following 
law holds: 

(P) aa . be = ab . ac . 

Similarly, a quasigroup satisfying 

(y) be . aa = ba . ca 

will be called an RWA-quasjgroup. If a quasigroup Q is simultaneously an LWA-
and RWA-quasigroup, we shall say that Q is a WA-quasigroup. Some structure 
theorems on WA-quasigroups are proved in the fourth part. Finally, in the third 
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section we shall give some applications of the first one to F-quasigroups. Recall that 
F-quasigroups (introduced in [ l]) are characterized by the following two laws 

(d) a . be = ab . e(a) c , 

(e) be . a = bf(a) . ca 

where e(a) andf(a) are the right and the left local unit of a, respectively. 

Notation and basic definitions. If G is a groupoid and a e G then La will be the left 
and Ra the right translation by a (i.e. La(x) = ax, Ra(x) = xa for each x e G). The 
groupoid G will be called a division groupoid if the mappings La and Ra are mappings 
onto G for all a e G. As in [2], we shall say that G is a /t-groupoid if there are two 
mappings a, fl of the set G onto G and a groupoid G(o) possessing a unit such that 
ab = <x(a) o P(b) for all a, b e G. Finally, if Q is a loop (i.e., a quasigroup with 
a unit) then the unit element of Q will be denoted by j , the nucleus of Q by N(Q) and 
the center of Q by C(Q). 

1. DIVISION GROUPOIDS WITH NON-EMPTY s?(G) 

Let G be a division groupoid. A four-tuple (G(o), a, \//, g) is said to be a right linear 
form of G if G(o) is a group, a a mapping of G onto G, ^ an endomorphism of G(o) 
onto G(o), g e G an element, and if ab = a(a) o g o \j/(b) for all a,beG. Similarly 
a left linear form of G is defined. Finally, a four-tuple (G(o), cp, \j/, g) will be called 
a linear form of G if it is a right linear form of G and moreover <p is an endomorphism 
of G(o). 

1.1 Theorem. Let G be a groupoid. Then the following statements are equivalent: 

(i) G is a division ^-groupoid and s/(G) is non-empty. 

(ii) G has a linear form (G(o), cp, \j/, g) such that q> \j/(a) o g = g o \j/ <p(a)for every 
aeG. 

In this case, C(G(o)) and s/(G) coincide. 

Proof, (i) implies (ii). The assertion (ii) is an easy consequence of Theorem 15 
from [2]. By this theorem we get the existence of a linear form (G(o), (p, i/t, g) such 
that cp \l/(a) o h = h oi// cp(a) for all aeG, where h = <p \l/(x) 0 g for some x e s/(G). 
However, with respect to the proof of Theorem 15 and by Theorem 11 ([2]) we can 
suppose without loss of generality that the element x is the unit of G(o). In this case, 
h = cp \//(x) 0g = x0g = g. (ii) implies (i). Since G possesses a linear form, G is 
a division .u-groupoid. Furthermore, C(G(o)) c s/(G), as one may check easily. On 
the other hand, if y e s/(G) then cp \l/(a) o g 0 \j/ cp(y) == q> \p(y) Q g 0 \j/ cp(a) for all 
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a e G, and hence g 01/> cp(a) 0 ij/ cp(y) = g 0\\i q>(y) 0 \j/ cp(a). Therefore ty <p(y) e 

G C(G(o)) and consequently y e C(G(0)). Thus C(G(0)) = st(G). 

1.2 Proposition. Let G be a division fi-groupoid with non-empty stf(G). Then 
s/(G) = {a | Vb 6 G 3c, d e G such that ca . bd = cb . ad}. 

Proof. Let (G(0), cp, \j/, g) be a linear form of G from 1.1. We have, for all 
x, y,u,ve G, xy .uv = (p2(x) 0 cp(g) 0 (p ij/(y) 0 g 01// cp(u) 0 \j/(g) 0 \l/

2(v) and so the 
equality xy . uv = xu . yv holds iff cp ij/(y) 0 g 0 \j/ cp(u) = cp \j/(u) 0 g 0 xj/ (p(y). Then 
obviously my . un = mu . yn for all m,neG. 

1.3 Theorem. Let G be a division \i-groupoid with non-empty s#(G). Then the 
following statements are equivalent: 

(i) There are mappings <x, /? of G onto G such that ot(a) . p(b) = ot(b) . p(a) for 
all a,b e G. 

(ii) There is x e G such that for all a, b, c, d e G, ab . cd = x implies ab . cd = 
= ac . bd. 

(iii) The mapping a —> aa is an endomorphism of G. 

(iv) G is Abelian. 

(v) G has a linear form (G(-f-), cp, \j/, g) such that G( + ) is an Abelian group 
and cpij/ = ij/cp. 

Proof, (i) implies (v). This implication is an easy consequence of Theorem 8 ([2]) 
and of 1.1. 

(v) implies (iv). By 1.1, since s/(G) = C(G+)) = G. 

(iv) implies (ii) and (iii). Trivial. 

(iv) implies (i). Let c e G be arbitrary. Then Lc, Rc are onto and Lc(a). Rc(b) = 
= ca .be = cb .ac = Lc(b) . Rc(a) for all a, b eG. 

(ii) implies (iv). By 1.2, using the fact that G is a division groupoid. 

(iii) implies (iv). We have aa . bb = ab . ab for all a,b eG and therefore s4(G) = 

= G by 1.2. 

1.4 Corollary. Let G be a division \i-groupoid with non-empty stf(G). Then G is 

Abelian, provided at least one of the following conditions holds. 

(i) G is commutative. 

(ii) G is idempotent (i.e. aa = a Va e G). 

(iii) G is unipotent (i.e. aa = bb Va, b 6 G). 
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Proof, (i) If G is commutative, then we can use 1.3 (i) setting a = ft = 1G. 

(ii) Let G be idempotent. Then aa . bb = ab = ab . ab for all a, b e G and 1.3 
(iii) yields the result. 

(iii) Let G be unipotent. Then there is x e G such that aa = bb = x for all a, b eG. 
Hence xx = x and consequently ab . ab = x = xx = aa . bb. Thus the map a -* a2 

is an endomorphism of G and 1.3 (iii) may be applied. 

1.5 Proposition, (i) Any quasigroup is a division \i-groupoid. 

(ii) Let (Q(o), a, il>, g) be a right linear form of a quasigroup Q. Then a and i// 
are permutations of the set Q. 

(iii) Let (<2(o), cp, j8, g) be a left linear form of a quasigroup Q. Then (p and /? are 
permutations of Q. 

Proof. The statement (i) is a well known fact. 

(ii) We have a(a) = (a . j) 0 g"1 = R/a) o g~l and \j/(a) = Ly(a) with y = 
= a " 1 ^ " 1 ) . So a, ij/ are permutations of Q. 

(iii) Similarly. 

1.6 Corollary. Let Q be a quasigroup. Then the following conditions are equi* 
valent: 

(i) s/(Q) is non-empty. 

(ii) Q has a linear form (Q(o), (p, \j/, g) such that (p \l/(a) o g = g 0\j/ cp(a)for every 

aeQ. 

In this case, C(Q(o)) = #?(Q). 

1.7 Theorem. Let Qbe a quasigroup with non-empty s/(Q). Then s/(Q) is a sub-
quasigroup of Q if and only if there exists x e s/(Q) such that xx e s/(Q). In this 
case, s/(Q) is a normal subquasigroup. 

Proof. Let x e s/(Q) be such that xx e s/(Q) and let (Q(o), <p, \j/9 g) be the linear 
form of Q from 1.1. With respect to the proof of 1.1, we can assume that x is the 
unit in g(o). Then g = xxe $/((£). However, s/(Q) = C(Q(o)) is a characteristic 
subgroup of g(o), and hence q> | s/(Q) and \j/ \ s/(Q) are automorphisms of «s/(Q). 
Now it is obvious that #/(Q) is a subquasigroup of Q. Furthermore, the normal 
congruence relation of the group Q(o) corresponding to s/(Q) is also a normal 
congruence relation of the quasigroup Q and so s/(Q) is normal in Q. 

1.8 Example. Let M be a finite set with card M ^ 7 and let Q be the group of all 
permutations of the set M. Then ([3], p. 82) Q is a perfect group, i.e., C(Q) = {j} 
and every automorphism of Q is an inner automorphism. Hence Q is isomorphic 

49 



to Aut Q and since Q is not commutative, there are q>, \J/, a e Aut Q such that 
(p\[/ = aij/cp and a =t= 1Q. However, a is an inner automorphism of Q and so a(x) = 
= g*g~* f ° r all x e Q , where ge Q is convenient. Consider Q(*), the quasigroup 
which has the linear form (Q, (p ij/, g). Clearly s/(Q(*)) is non-empty (the unit of Q 
lies in s^(Q(*)), and by 1.6, it is st(Q(*)) = C(Q) =-• {j}. But j*j = g and a ?-f 
since a 4= 1Q. Thus J2/(Q(*)) is not a subquasigroup in Q(*). 

2. DIVISION GROUPOIDS WITH NON-EMPTY @X{G) 

2.1 Theorem. Let G be a groupoid. Then the following conditions are equivalent: 

(i) G is a division \x-groupoid and the set &t(G) is non-empty. 

(ii) G has a right linear form (G(+), a, i/t, a) such fhal G( + ) is an Abelian group, 

o*(i//(a) + g) = (r(g) + ^ a(a) for all a s G and o-(O) = 0. 
In this case, 

@{G) = {x | G(G(X) + a + i/̂ (a)) = <x(<7(x) + a) + ij/ a(a) VaeG} . 

Proof, (i) implies (ii). Since G is a u.-groupoid, there are a groupoid G(o) with 
a unitj and mappings a, /? of G onto G such that 

(1) ab = a(a) 0 j8(&) for all a, b e G . 

Let x e J*/(G) be an arbitrary but fixed element. Put y = aLx and Sc = /?Kc for each 
c e G. Then, with respect to (1), we obtain 

(2) y(a) o Sc(b) = a Lx(a) 0 j8 Kc(b) = a(xa) 0 )8(bc) = 

= xa . be = xb . ac = y(b) 0 5c(a) for all a,b, c e G . 

Since y is a mapping onto G, there is y e G such that y(y) = j . If we set a = j in (2), 
we get y(y) o <5c(b) = Sc(b) = 7(b) o Sc(y) for all b e G. Using this result we see from 
(2) that 

(3) y(a) o (y(b) o <5c(y)) = y(b) o (y(a) o 5c(j)) for all a, b G G . 

Now it is easy to show that G(o) is an Abelian group. Indeed, let u,v,zeG be 
arbitrary. Since G is a division groupoid and a, ft are onto G, there exist a, b, c e G 
such that y(a) = a(xa) =.M, 7(b) = v and i5c(>) = ^(yc) = z. Then the equality (3) 
yields u 0 (i; 0 z) = v 0 (w o z). However, G(o) possesses a unit and so G(o) must be 
a commutative semigroup. Hence it is enough to prove that G(o) is a division groupoid. 
Indeed, let a, b e G be arbitrary. There are s,t, p e G such that y(p) = a, y(f) = b 
and <5S(0 = j . So a = y(p) = y(p) oj = y(P) o 55(f) = y(t) o 5s(p) = fe 0 5f(p) and we 
have proved that G(o) is an Abelian group. 

Let us proceed to the proof of (ii). The mappings Re(X)> Lx are onto G, and hence 
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there exist mappings cp, { of G into G such that Re(X)<P = L£ = 1G and <p(x) = x, 
£(x) = e(x). We introduce a new binary operation + on the set G as follows: 

(4) a + b = <p(a) . {(b) for all a, b e G . 

The groupoid G(+) possesses a zero element (namely the element x) and by (l) 
and (4) we have 

(5) a + b = a cp(a) o j8 {(b) for all a, b e G . 

Therefore a = a + 0 = a <p(a) o jff {(0), b = a (p(0) o P {(b) and we see that there is 
an element k e G such that 

(6) a + b = a o b o k for all a, b e G . 

However, the equality (6) implies that G(+) is an Abelian group and consequently 
a + b - j = a o b. Hence ab = a(a) 0 jS(b) = a(a) ~~ a(0) + j8(b) + a(0) - j = 
= <r(a) + 0(b), where a(a) = a(a) - a(0), g(b) = /?(b) + a(0) - j . Now we can 
write 

xa . be = Oa . be = a q(d) + O(cr(b) + Q(C)) = 

= Ob . ac = <r o(b) + Q(G(O) + O(c)) 

for all a,b,ce G. 
From this we can deduce that there are mappings n, % of G into G with the 

property g(a + b) = n(a) + r(b) for all a,beG and hence we complete the proof 
of (ii) by applying Lemma 17 from [2].' 

(ii) implies (i). Obvious. 

2.2. Proposition. Let G be a division fi-groupoid with non-empty ^t(G). Then 
^i(G) = {a | a e G, Mb, c e G 3d e G such thai* ab . cd = ac . bd}. 

Proof. Similar to that of 1.2. 

2.3 Theorem. Le£ G be a division ^-groupoid. Then the following conditions are 
equivalent: 

(i) &i(G) is non-empty and the map a -* aa is an endomorphism of G. 

(ii) At least two of the sets stf(G), J^(G), &r(G) are non-empty. 

(iii) G is Abelian. 

Proof, (i) implies (iii). Consider (G( + ), a, \J/, g), the right linear form of G by 
2.L Since a -> aa is an endomorphism of G, we get a(a + b) = a(a + i/><r"1(a) + 
+ g) + xj/ail/'1^ - g) - \l/(a) = a(a) + J?(b) for all a,beG. Hence, by Lemma 17 
([2]), there are an endomorphism cp of G(+) and k e G such that cr(a) = <p(a) + fc 
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for every a e G. Since <r(0) = 0, it must be k = 0 and consequently the four-tuple 
(G('-r-), a, \\i, g) is a linear form of G. Further, <x^(a) 4- <r(g) =- <r(i>(a) + g) = 
= <Kg) + ^ c(fl)» so fa = ^ ar1d by 1.3 (v), G is an Abelian groupoid. 

(ii) implies (iii). By 1.2 and 2.2. 

(iii) implies (i) and (ii). Obvious. 

2.4. Corollary. Let G be a division ^i-groupoid with non-empty £8i(G). Then G is 
Abelian, provided at least one of the following conditions holds: 

(i) G is commutative. 

(ii) G is idempotent. 

(iii) G is unipotent. 

3. F-QUASIGROUPS ISOTOPIC TO A GROUP 

3.1 Proposition. Let a quasigroup Q have a linear form (Q(o), cp, ij/, g). Then Q 
is an F-quasigroup if and only if cp, \J/ are central automorphisms of Q(o) and 
(p\j/ = \j/<p. 

Proof, (i) Let Q be an F-quasigroup. Put il/x(x) = g 0 i^(x) 0 g
-1. Then we have 

e(x) = ^ I ^ O K * " 1 ) o x o g"1) for all x e Q, and hence the law (c5) may be written as 

cp(a) o <Ai (p(b) o \l/\(c) o i^(g) o g = cp2(a) 0 cp if/^b) 0 cp(g) 0 

o ̂ iW^OK*"" 1 ) o a o a"1) 0 \l/\(c) o ^ ( a ) 0 a 

for all a,b,ce Q. 
From this, 

(1) <p(a) o \l/t cp(b) = <p2(a) o cp ^ ( b ) 0 cp(g) 0 ^ ^ ( ^ ( a - 1 ) <> a <, g"1) 

for all a, i € Q. 
Now in (l) substitute a = b = j to obtain 

(2) I = ^ o ^ ! ^ - 1 ^ - 1 ) . 

From (1) and (2) we see (setting a = j) that ^ = i^^ , and consequently 

(3) a o ^i(fc) = <p(a) o ^ lvfc) 0 a 0 <p(a_1) 0 a 0 g""1 

for all a,bs Q. 

So ^(fl-1) o a o ^i(b) o a = il/t(b) 0 g «, ^(a""1) 0 a, i.e., ^(a""1) 0 a e C(G(O)) and 9 
is a central automorphism. Finally, <p \\fx(a) = <p(a 0 ^ ( a ) 0 a""1) = <p(g) o cp \j/(a) 0 

o ̂ (g"*1) = > i <Ka) = g o \ff (p(a) o g""1 and hence g"1
 0 ^ ) 0 <p ^,(a) = ^ 9(a) 0 
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o g i o (p(g). However, g l ° (p(g) e C(Q(0)) and therefore <p̂  = \j/(p. Similarly, 
using (e), we can prove that xj/ is a central automorphism. 

(ii) Let the linear form (6(0), (p, \j/, g) have the required properties. Then, for all 
a, b, c e Q we have 

ab . e(a) c = (p2(a) o </>(#) o <p ^(b) o g o <l>(g_1) o <p2(a_1) 0 (p(a) o 

o i/^g) o i/>2(c) = <p(a) o g o \jj (p(b) o ^(g) o \l/2(c) = a . be . 

Thus g satisfies (S). The law (e) may be proved in a similar way. 

3.2 Theorem. Let Q be a quasigroup. Then the following statements are equi­
valent: 

(i) Q is an F-quasigroup with non-empty jtf(Q). 

(ii) Q is an F-quasigroup isotopic to a group. 

(iii) Q has a linear form (Q(o), (p, \j/, g) such that (p\j/ = \j/(p, (p, \j/ are central 

automorphisms of Q(o) and g e C(Q(o)). 

In this case, rf(Q) = C(Q(o)). 

Proof, (i) implies (iii). By 1.6, Q has a linear form (2(o), q>, x//, g) such that 
(p \j/(a) o g = g © if (p(a) for every a e Q. According to 3.1, q> and x// are central and 
(pi)/ = ij/q). So (p \l/(a) o g = g 0 (p \l/(a) for all a e Q, and consequently g e C(Q(Q)). 

(iii). implies (ii). By 3.1. 

(ii) implies (i). Since Q is isotopic to a group, there are permutations a, p of the 
set Q and a group Q(o) such that ab = a(a) o P(b) for all a, b e Q. The law (d) yields 
the equality 

a(a) o j8(a(fc) 0 p(c)) = a(a(a) 0 p(b)) 0 j8(a e(a) 0 j8(c)) 

for all a,b,ce Q. 

Therefore fi(b o c) = -y(b) 0 5(c), where 7 and 5 are suitable permutations. By 
Lemma 17 [2], there is x e Q such that the mapping i/r, defined by if/(a) = x'1 o j8(a), 
is an automorphism of Q(0). Similarly, using (e), we can show that there is y e Q 
such that the mapping q> with (p(a) = a(a) o y"1 is an automorphism of Q(o). So 
(2(o), (p,\j/,y o x) is a linear form of Q and hence <pî  = \j/q> and <p, ̂  are central 
(by 3.L). Now it is easy to verify that (p~1\j/~1(g"1) e s/(Q), g = y 0 x. 

3.3 Proposition. Let Q be an F-quasigroup with non-empty s/(Q). Then e(a),f(a) e 
e s/(Q)for each a e Q.In particular, any idempotent element is contained in s/(Q). 

Proof. Let (Q(0), cp, $, g) be the linear form of Q from 3.2. Then s/(Q) = C(Q(o)) 
and g e C(Q(o)). Since <p is central, (p(a~x) 0 a e C(Q(o)) for every a e Q. Further 
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^-'(g-1) e C(Q(o)), and hence e(a) = ^^(a'1) „ a) „ • T ' f a - 1 ) 6 C(Q(c)) = 
• j/(G). Similarly, / (a) e J / ( Q ) . 

3.4 Theorem. Let Q ^ ^ n F-quasigroup with non-empty sf(Q). Then s/(Q) is 
a normal subquasigroup of Q. Moreover, s/(Q) is an Abelian quasigroup and the 
factor-quasigroup QJstf(Q) is a group. 

Proof. Consider (Q(o), cp, \\/, g), the linear form of Q from 3.2. Then stf(Q) = 
= C(Q(o)) and I e stf(Q),jj = g e s#(Q). Now 1.7 may be used. Finally, with respect 
to 3.3, Qjs/(Q) has a unit, and since it is an F-quasigroup, it is a group. 

3.5 Corollary. Let Q be an F-quasigroup and let the set stf(Q) have exactly one 
element'. Then Q is a group. 

3.6 Theorem. Let Q be an F-quasigroup and let &L(Q) (or &r(Q)) be non-empty-
Then Q is Abelian. 

Proof. By 2.1, 3.2 and 2.3. 

4. WA-QUASIGROUPS 

Let Q be a loop and a : Q -> Q a mapping. We shall say that the loop Q satisfies 
the Na-law (NMaw) if 

(cp) (a(a) . a) (be) = (a(a) . 6) (ac) ((be) (a(a) . a) = (b . a(a)) (ca)) 

for all a,b,ceQ. 

Further we shall say that a is a nuclear mapping if g(x) e N(6) for all x e Q, where 
x Q(X) = a(x). 

4.1 Proposition. Let Q be a loop satisfying the Na-law for a mapping a : Q -> Q. 
Then: 

(i) cc(a) a . b = oc(a) b . a = a(a) . ab for all a, b e Q . 

(ii) (oc(a) a) (be) = (a(a) b) (ac) = a(a) (a . be) = (a(a) . be) a 

for all a,b,ceQ. 

(iii) Q is a CI-loop (i.e., a . ba'1 = b with aa~x = j) . 

Proof, (i) Immediately by (cp) setting b = j or c = j . 

(ii) By (i) and (<p). 
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(iii) According to (ii) we can write 

a(a) b = (a(a) b) (aa'1) = oc(a) (a . ba'1) . 

Therefore b = a . ba'1. 

4.2 Proposition. Let Q be a commutative loop and a : Q -> Q a mapping. Then 
the following assertions are equivalent: 

(i) Q satisfies the Na-law. 

(ii) Q is a Moufang loop and a is a nuclear mapping. 

Proof, (i) implies (ii). Using 4.1 (ii) and the commutativity of Q, we get (ab). 
. (c . oc(a)) = (a . be) oc(a), i.e., the loop Q satisfies the Ma-law introduced in [4]. 
Now we may apply Theorem 1 from [4]. 

(ii) implies (i). By Theorem 2 [4], the loop Q satisfies the Ma-law, i.e., (ab) . 
. (c . oc(a)) = (a . be) a(a) for all a, b, c e Q. In particular we have (ab) (a . a(a)) = 
= (a . ba) a(a), which may be written as oc(a) . ac = oc(a) a . c for all a, c e Q. 
Thus (a(a) a) (be) = oc(a) (a . be) = (oc(a) b) (ac). 

4.3 Proposition. Let a WA-quasigroup Q be isotopic to a group. Then it is an 
Abelian quasigroup. 

Proof. We have ab = a(a) o /5(b) for all a, be Q, where Q(o) is a group and a, /? 
are some permutations of the set Q. Therefore, using the law (/?), we see that there 
are permutations y, 5 of Q such that fi(a ob) = y(a) o 5(b) for all a, b e Q. By 
Lemma 17 [2], there are ke Q and i/t e Aut Q(o) such that fi(a) = k 0 \j/(a) for all 
a e Q. For the same reason (considering the law (y)), there are Z e Q and cp e Aut Q(o) 
such that a(a) = cp(a) 0 I. Hence the four-tuple (Q(o), (p,\l/,l o k) is a linear form of Q. 
Now, if we set g = I o k, we may write the law (j?) as aa . be = <p2(a) o <p(g) o cp i/J(a) o 
og oil/ cp(b) o i//(g) o \j/2(c) = ab.ac = <p2(a) 0 cp(g) Q (p \l/(b) 0g 0\j/ cp(a) 0 ^(#) o \]/2(c), 

and consequently 

cp {//(a) o g o \]/ cp(b) = (p \p(b) 0 g 0 ij/ cp(a) 

for all a, b e Q. 
From this we can easily deduce that xa . by = xb . ay for all a, b,x, y e Q. 

Thus Q is an Abelian quasigroup. 

4.4 Lemma. Let Q be an LWA-quasigroup. Then: 

(i) LxxRy = RxyLx, LxxLy = LxyLx and LXXRX = RxxLxfor all x, y e Q. 

(ii) Lxx(ab) = Lx(a) . Lx(b) and L^(ab) = L"\a) . L~x\b) for all x, a, b e Q. 

Proof. Obvious from (/?). 
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4.5 Proposition. Let Q be an LWA-quasigroup and let there be an element x e Q 
such that ax = xafor all a e Q. Then Q is commutative. 

Proof. Let z € Q be arbitrary. There exists y e Q such that yx = z. By Lemma 4.4 
we have LyyRx = RyxLy = RzLr However, Rx = Lx and LyyLx = LyxLy = LzLr 

Thus LyyRx = RzLy = LyyLx = LzLy and consequently, Lz = Rz. 

4.6 Proposition. Let Q be an LWA-quasigroup and xeQan element. Put xx = y, 
yy = z and a * b = L^1(a) . L" 1 ^ ) for all a, b e Q. Then: 

(i) The quasigroup Q(*) possesses a left unit, namely the element y. 

(ii) For all a, b,c,de Q, (a*b)*(c*d) = L"y
1L~1(ab . cd). 

(iii) g(*) is an LWA-quasigroup. 

(iv) Q(*) is an RWA-quasigroup iff Q is. 

(v) Q(*) is a loop iffQ is commutative. 

Proof, (i) y * a = L~~x\xx) . L~x\a) = x . L~\a) = a. 

(ii) By 4.4 we have a * b = LTx
1(a) . L"x

x(b) = L~1(ab). Hence (a * b) * (c * d) = 
= L;\ab) * L^cd) = L^L^ab) . L^cd)) = L^L^ab . cd) = 
= Uy

1L"z
1(ab.cd). 

(iii) and (iv). Immediately by (ii). 

(v) If Q is commutative then obviously Q(*) is commutative, thus being a loop. 
On the other hand, if Q(*) is a loop then a * y = a for all a e Q, i.e. L~1Ry(a) = a. 
Hence Ly = i?y and Q is commutative by 4.5. 

4.7 Theorem. Let Q be a commutative quasigroup. Then the following assertions 
are equivalent: 

(i) Q is a WA-quasigroup. 

(ii) There are a commutative Moufang loop Q(*), oc e Aut Q(*) and g e Q such 
that ab = a(a * b) * g for all a, b e Q. 

Proof, (i) implies (ii). Let xe Qbe arbitrary, xx = y and a * b = L"x(a) . L ^ b ) 
for all a,beQ. Then, by 4.6 (i), (iii) and (v), Q(*) is a commutative Moufang loop 
with the unit j = y (all the properties of commutative Moufang loops used in this 
paper can be found in [5] or [6]). Therefore Ly(a * b) = Ly(L~1(a) . L ^ b ) ) = 
= ab = Lx(a) * Lx(b), and so Ly(a) = Lx(a) * L^j) = L^(a) * fc. Further, we have 

Lx(a * b) * fc-1 = (Ly(a * fc) * fc-1) * fc-1 = L„(a * b) * (fc-1 * fc"1) = 
= ( I ^ a ) * Lx(b)) * (fc-1 * fc"1) = (L-XII) * fc"1) * (Lx(b) * fc"1) 

and we see that the map a -* L^a) * fc"1 is an automorphism of Q(*). Now we can 
put a(a) = Lx(a) * k~x and # = fc * fc. 
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(ii) implies (i). We may write 

aa .be = a((a(a * a) * g) * (a(b * c) * g)) * g = 

= a((a(a * a) * a(b * c)) *(g * g)) * g = a((a(a * b) * a(a * c)) * (# * g)) * g = 

= a((a(a * b) * g) * (a(a * c) * a)) * g = ab . ac . 

4.8 Proposition. Let Q be a WA-quasigroup and xeQ an element. Put xx = y, 
yy = z and a ob = R~1(a) . L " 1 ^ ) . Then: 

(i) Q(o) z*5 a /O0p with the unit j = z. 

(ii) The mapping a = jRyL~ x is an automorphism of Q(0). 

(in) The loop Q(o) satisfies the N^-law. 

(iv) The loop Q(o) satisfies the Nx-law. 

(v) The Zoop Q(o) is commutative iff' ya . by = yb . ay for all a, b. 

Proof, (i). Obvious, 

(ii) We may write (using 4.4) 

a(a o b) = RyL;\R;\a) . L;\b)) = R,(^ V W • L~x%\b)) = 

= /?,(**" V ( « ) • --I V(-0) = - W V ( « ) • R^L^b)^ 
= L;\a) . RxLZ'L;1^) = R ^ R V W • I ^ V W = oc(a) 0 a(b) . 

(iii) We have 

(a(a) o a) o (b o c) = 

= R;\R;> a(a). L ; V ) ) • L;\R;\b). L;\C)) = 

= (R; v ( « ) • I*;1 IT(«)) • v * ; » • I^1I<; V)) = 
= (R;» L ; -(«). L - » R ; »(&)). (R;» L ; \a) .L^L; \C)) = 

= (R; >R;
 1 a(a) . R; ' L; \b)). (L~X ' R; \a). L ;

 1
 L ; -(C)) = 

= R; \ R ;
 l a(a) . L; \b)). L; \ R ; \a). L; \C)) = (a(a) 0 b) „ (a 0 c) . 

(iv) Similarly as for (iii). 

(v) Let the loop Q(0) be commutative. Then R'^a) . L" 1 ^) = Ry\b) . L^(a ) 
for all a,beQ. Therefore a . Ly

x Ry(b) = b . L"1 Ry(a) and consequently, 

L2(a . L ; 1 *,(/>)) = Ly(a) . Ry(b) = ya . by = 

= L2(b.L;1
JRy(a)) = j ; b . a j ; . 

If, on the contrary, ya . by = yb . ay for all a, b e Q, then we can reverse our 
argument. 

If Q is a quasigroup then let @(Q) = {a \ ab . ca = ac . ba for all b9ce Q}. 
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4.9 Theorem. Let Q be a quasigroup. Then the following statements are equiv­
alent: 

(i) Q is a WA-quasigroup and aa e @(Q)for every a e Q. 

(ii) Q is a WA-quasigroup and there is xeQ such that xx e @(Q). 

(iii) There are a commutative Moufang loop Q(o), (p, i// e Aut Q(o) and g e Q 
such that cpij/ = \j/(p9 cpij/"1 is a nuclear automorphism of Q(o) and ab = (q>(a) o 
o *A(b)) o g for all a, be Q. 

Proof, (i) implies (ii) trivially. 

(ii) implies (iii). Let y = xx, yy = z and a 0 b = R;1^) . L~ ^b) . Then, by 4.8, 
<2(o) is & loop with the unit I = z satisfying the Na and NMaws for a = RyL~l. 
Moreover, a e Aut Q(o) and Q(o) is commutative. Hence (by 4.2), Q(o) is a com­
mutative Moufang loop and a is a nucelar mapping of Q(o). Now, in view of 4.4, 
we can write 

Ry(a o b) = Ry(R;x(a) . L^b)) = y(a) 0 3(b) ; 

y(a) = RyRx R; \a) , 5(b) = LyRx L~ \b) . 

So Ry(a) = y(a) o S(j) = y(a) 0 m and Ry(b) = 7(7) o 5(b) = n o 5(b). From this we 
see 

(1) Ry(a o b) = y(a) o 5(b) = (*y(a) 0 m"1) 0 (*,(&) 0 n"1) . 

However, 

a(m) = RyL-y
x 5(j) = R^L^L^j) = R^L'/Q) = 

= . R ^ L ; 1 ^ ) = KyKx(y) = RyRxR;\yy) = y(I) = n 

and consequently, a(m - 1 ) = n"1 since a is an automorphism of Q(o). Applying the 
Na-law to (1) we get 

(2) Ry(a o b) = (Ry(a) 0 Ry(b)) ok'1, fc"1 = m" 1
 0 n " 1 . 

The equality (2) implies, as one may check easily, q> e Aut Q(0) where <p(a) = 
= Ry(a) o k" 1 for each ae Q. Furthermore, Ry(j) = (Ry(j) o Ry(j)) o fc"1, and hence 
fc = Ry(j) (here we use the fact that Q(o) is a loop with the inverse property). Similarly 
we can show that \// e Aut Q(o); \j/(a) = Ly(a) 0 Lj,(/) = Ly(a) o Z"1. Further, a(/) = 
= .RyL"1 Ly(I) = /^(j) = fc, hence a(/_ 1) = fc"1 and we have 

ab = Ry(a) o Ly(b) = (cp(a) o fc) 0 (i//(b) 0 /) = 

= (<p(<0 o a(/)) 0 ty(b) o /) = (<p(a) 0 </<*>)) o (a(/) 0 /) = (q>(a) 0 </>(&)) 0 g . 
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Now it remains to prove that (p\j/ = \j/(p and (p\j/ x is nuclear. However, 

q> ^-\a) = cpL-\a 0 I) = RyL-\a <, I) 0 a ( r x ) = 

= a(a o J) o a(/"1) = (a(a) 0 a(/)) 0 a(/_ 1) = a(a) 

for all a e Q. 

Finally 

(i/t cp(a) o cp(g)) o g = 

= (<P((<P(j) ° <KI)) ° 9) o lKfa(«) o ^ ^ ( g " 1 ) ) o g)) o g = 

= I7.#-1(^1)=^.I'A"1(^"1) = 

= (<?((<?(/) ° <K<0) ° #) ° ^(OK./) ° ^ ^"^d"1)) o g)) o g = (<p iA(a) o <p(g)) o g . 

Thus i/f <p(a) = <p ^(a) for all a e Q which completes the proof. 

(iii) implies (i). Since (pi]/'1 is a nuclear mapping, the loop Q(o) satisfies the N^-1~ 
law. Further <pi/t = tycp, and so we can write 

aa . be = 

= (((p2(a) o <p xl/(a)) o <p(g)) 0 ((tfr 9(b) 0 i/̂
2(c)) 0 \jf(g)) 0 g = 

= ((<p2(a) o <p i/r(a)) 0 pi//-1 <Kg)) o ((i/> <p(fe) o il/2(c)) 0 i/>(g)) 0 g = 

= ( ( ( ^ - > i/t(a) o <p i/̂ (a)) o fy cp(b) o il/2(c))) 0 (<p(g) 0 i/̂ (g))) 0 g = 

= (((<P2(a) ° <P <Kb)) ° (^ <Ka) ° *A2(C))) ° (<K#) ° <K#))) o g = a t . ac . 

Similarly we can show that Q is an RWA-quasigroup. Let now a e Q be arbitrary. 
Put b * c = K ~ *(b) • £ « ( c ) - T h e n 6 (* ) i s a l o o P satisfying the Nrlaw for p = RaJL'1 

(see 4.8). On the other hand, the quasigroup Q is isotopic to a Moufang loop and 
consequently Q(*) must be a Moufang loop. However, Q(*) is a CI-loop and therefore 
g(*) is commutative. Hence, by 4.8 (v), aa e <2)(Q). 

4.10 Proposition. Let a loop Q satisfy the Na- and Na-laws for some a e Aut Q. 
For every a, b e Q put a o b = a(a) . b. Then Q(o) is a WA-quasigroup and a left 
loop. 

Proof. We have 

(a o a) o (b o c) = (a2(a) . a(a)) (a(b) . c) = (a2(a) . a(b)) (a(a) . c) = (a 0 b) o (a 0 c) . 

Similarly (b o c) 0 (a 0 a) = (b 0 a) 0 (c 0 a). Finally, j o a = a(j) . a = a for every 
a e g . 
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Remark. The author does not know whether there exists a quasigroup Q with the 
following properties: 

(i) Q is a WA'-quasigroup, 

(ii) there is a e Q such that aa $ @>(Q). 

This problem is equivalent to the one whether any loop satisfying the Na- and 
JVMaws for some automorphism a need be Moufang. 
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