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Časopis pro p stování matematiky, roč. 100 (1975), Praha 

MEASURABILITY OF FUNCTIONS WITH VALUES 
IN PARTIALLY ORDERED SPACES 

JPZEF DRAVECKY and BELOSLAV RIECAN, Bratislava 

(Received July 9, 1973) 

INTRODUCTION 

There are many ways in which the measurability of real-valued functions can be 
defined. Some of them can be adopted for functions with values in a partially ordered 
set but then cease to be equivalent. In the present paper we discuss several types of 
measurability of such functions, study their interrelations and also the mathematical 
structure of some of such classes of functions under certain additional conditions on 
the image space Y, e.g. if Yis a linear space or a lattice. 

1. NOTATION AND NOTIONS 

Throughout the paper, £f will denote a cr-algebra of subsets of an abstract set 
l e ^ and Ywill be a set partially ordered by = which is a binary relation satisfying 

(u-.) (VaeY)a = a 

(u2) (Va, b, c e Y) ((a = b A b = c) => a = c) 

(u3) (Va, b e Y) ((a g b A b = a) => a = b). 

We shall use the notation a < b iff a g b and a =t= b. Given aeY , symbols 
[y g a] , [y ^ a] , [y < a] and [>> > a] will denote the sets (y e Y; >> ^ a}, {.y e Y; 
y = a}, {y e Y; y < a} and {̂  e Y; y > a}, respectively. 

In some results, Y will be assumed to be a partially ordered linear space, that is, 
a real linear space with a partial ordering ^ satisfying, besides (ux), (u2) and (u3), also 

(v4) (Va, b, c e Y) (a = b => a + c = b + c) 

(v2) (Va, beY)(VteR)((t > 0 A a = b) => ra = tb) 

where # denotes the field of reals. 
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We shall also consider the order topology ^ on Y whose subbasis consists of all 
sets [y < a] and [y > a]9 for a e Y. The topology ^ enables us to define dense 
subsets of y and to declare Y separable iff there is a countable dense subset of Y. 

We say that a partially ordered set yis conditionally <r-complete iff every countable 
set Z c: y bounded from above by some b e Y(i.e. (Vy e Z) y ^ b) has a supremum. 

If/is a function defined on X with values in yand M is a subset of Y, then by f~~ lM 
we shall denote the set {x e X; f(x) e M}. 

Generalizing the concepts introduced in [l] and [2]*) we define the classes of 
upper, lower and weakly measurable functions respectively as 

Jt< = { / : X ^ y ; ( V a e y ) / " 1 [ j ; < a ] 6 ^ } 

Jt> = { / : X ^ y ; (VaeY)f-1[y>a]e<?} 

Jtw = Jt < n M > . 

Analogously we define classes M=, M< and Jt^, of which the last two in the 
case of a linearly ordered Y coincide with J(> and Jt < respectively. We put M = 
= = *A€ <; C\ %fl€ ^ . 

Interpreting the family of Borel sets in Y as the ex-algebra a(&) generated by the 
order topology <& we may introduce Borel measurable functions as those in 38 = 
= { / :X ->y ; (VGG^) / - 1 GG^}. 

In order to define yet some other types of measurability we need the notion of 
simple function. A function/ : X -> yis called simple iff its range is a finite set F c Y 
and for every y e ywe have/ -1{j} e ¥. The collection of all simple functions/ : X -» 
-> y will be denoted by #. 

If / and /„ (n = 1, 2,...) are functions from X into Y, we write /„ s f (fn \ f) 
iff for every xeX we have fn(x) ^fn+1(x) (fn(x) ^fn+1(x)), n = 1,2,... and 
f(x) = supnfn(x) (f(x) = infnfn(x)). Now define 

Af, = {f:X - y; (3/„ simple, n = 1, 2, ...)/„ ^ / } , 

MN = {f:X -> y; (3/„ simple, n = 1, 2, ...)/„ \ / } . 

The functions in Jts = ^ ^ n v#^ will be called strongly measurable. 
It is easy to observe that any class of Y-valued functions is partially ordered, if we 

putf^g iff (Vx 6 X) f(x) = g(x). 

2. GENERAL RESULTS 

Theorem 2.1. For any partially ordered set Ywe have 

*A€ =s- .lfw i . «/W — . 

*) See also [3], part 1, example 2. 
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Proof. Let / e ^ T = Jt^ r\Jt^. Then S'\y < a] = / _ 1 [ y g a] \ / ~ 1 [ y ^ 
= a]eSf, h e n c e / e ^ < . Since analogously/e^>, we i n f e r / e ^ w . To prove 

SeJt= we realize that/"x{a} = / - 1 [ y = a] n / - 1 [ y = a]. 
For the converse inclusion, l e t / e ^ w n Jt=. T h e n / " 1 ^ _ a] = /~*[y < a] u 

u / " 1 ^ } eSf and analogously / _ 1 [ y = a] eSf, therefore / e ^ ^ n Jt^ = ^ . 

Theorem 2.2. For any partially ordered set Ywe have 

& c Jtw . 

Proof. Since all the sets [y < a] and [y > a] are open, they are also Borel sets 
and hence for any Borel measurable function we haveSx[y < a]eSf andSX[y > 
> a] e Sf. 

As shown by Example 3.1 of [l] , 28 = Jtw does not hold in general. Nevertheless, 
the following theorem states a sufficient condition for the two classes to coincide. 

Theorem 2.3. Let Y be such a partially ordered set that the order topology <& 
has a countable basis. Then 

Proof. In view of Theorem 2.2 it is sufficient to prove that for every / e Jtw and 
any U e <& we have/_1U e Sf. Since ^ has a countable basis, the open set U can be 

00 

written in the form U = (J Un where Un are finite intersections of sets of the type 

[y < a] or [y > a]. Therefore U e o({[y < a], [y > a]; a eY}) and hence 
S~xUeSe. 

The converse of the last theorem is not true as can be shown by the following 
example in which ^ has no countable basis and yet <?(&) = v({[y < a], [y > a]; 
a eY}). 

Example 2.1. Let Ybe the space of all real-valued functions on/ = <0, 1> and put 

/ < g o ((Vx 61)f(x) < g(x)) v ((Vx E I)f(x) = g(x) . 

There is no difficulty in verifying that Yis a partially ordered real linear space. We 
show, nevertheless, that the order topology <$ on Y has no countable basis. Let N 
denote the set of all integers, N1 the collection of all integer-valued functions on /. 
Then for every p e Nl, the set Dp = {/e Y; p < / < p -F 1} is an open set in Y. The 
family {Dp; p e N1} is disjoint and uncountable which proves that ^ has no countable 
basis. 

If we denote by ST the cr-algebra generated by the class {[y < a], [y > a]; aeY}, 
it is sufficient to prove now that every open subset of Yis in ^". Every basis element 
of ^ is a finite intersection of sets of the form [/ < a] or [/ > a]. Owing to well 
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known properties of real numbers every basis element C of ^ is a collection of fe Y 
characterized by exactly one of the following statements 

( i ) ( 3 a e y ) / < a 

(ii) ( 3 a e y ) / > a 

(iii) (3a, b eY) a <f< b. 

Now every set G in ^ is a union of such sets and, since on the real line every union 
of intervals can be expressed as a countable union of intervals, G can be written as 
a countable union of some basis elements and hence G e F as claimed. 

Lemma 2.1. Let fneJt^ (fneJt^) for n = 1,2, .... Let there be a function 
f: X -> y such that for each x e X we have f(x) = y{fn(x); n = 1,2,...} (f(x) = 
= A{L(x); n = 1,2, ...}). ThenfeJt^ (feJt^). 

Proof. fn e Jt^ means that / " ^ y ^ a] e Sf for each n and every y eY. Then 
/-*[> = a] = {x~eX;f(x) = a} = {* e l ; V/„(*) ^ *} = f.{* e l ; /„(*) = a} = 

n n 

= fl/n^Cy ^ f l ] e ^ . The dual assertion is obtained analogously. 
n 

Theorem 2.4. Jt ^ c Jt^, . 4 ^ c ^#^, ^ s cz .#. 

Proof. For the first statement, suppose that / i s a function in Jt ^. Hence there 
are simple /„, n = 1, 2, ... with /„ /*/. Evidently every simple function is in Jt^ 
and by Lemma 2.1 it follows from/, S f that fe Jt^. The second statement is anal­
ogous and the last one follows from the first two. 

After we have shown that every strongly measurable function is measurable, the 
question arises whether the converse is true. We are going to prove a sufficient con­
dition for a measurable function to be strongly measurable. 

Lemma 2.2. Suppose Y is a lattice. Let there exist a countable set Q c Ysuch that 
every y eY is equal to V{q e Q\ q = y}- Then every f e Jt ^ bounded from below 
by some be Qis in Jt^. 

Proof. LttfeJt^f(x) = b for each xeX. Enumerate Q = {qn; n = 1, 2,. . .}, 
and define simple functions gn(x) = qn iff f(x) ^ qn9 and gn(x) = b otherwise. Put 
fn(x) = \Z{gi(x); i ^ n}. Since yis a lattice, the supremum defining fn(x) exists and 
each /„ is a simple function. Evidently /„ ^ fn+1 for each n and (Vx)f(x) = \/{qn; 
qn^f(x)}=Vgn(x) = Vfn(x). 

n n 

Lemma 2.3. Let Y be a lattice and Q <= Y countable and such that (\/y eY) y = 
= A{q e Q; q = y}. LetfeJt^ and (3b e Q) (VxeX)f(x) = b. ThenfeM^. 

Proof. Dual to that of Lemma 2.2. 
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Definition 2.1. We shall say that a partially ordered set y i s quasi-separable iff 
there is a countable set Q c Y such that for every y e Y we have y = V{<? e Q; 
q ^ y} = A{q e Q; q ^ y). Such a set Q will be called quasi-dense in Y. 

Lemma 2.4. Let Y be a conditionally a-complete partially ordered set and let & 
denote the order topology. Then every set Q dense in the topological space (Y, &) 
is quasi-dense in Y. Hence every separable conditionally a-complete partially 
ordered set is quasi-separable. 

Proof. Take y eY. Since A = {q e Q; q ^ y] is bounded from above by y and 
countable, there exists a = V^- If -t w e r e a < y> there would exist q e Q with a < 
< q < y. But then q e A, hence q ^ a, a contradiction which proves that y = 
— V{g e Q; g ^ y}- The proof of y = A{g e g ; g ^ y} is analogous and the 
second part of the theorem follows immediately. 

Remark. In case yis a partially ordered linear space, any one of the conditions 
(3Q countable) (VyeY)y = V{qeQ; q ^ y} and (3Q countable) (Vj;ey).y = 
— A{q e Ql q §. y} implies the other one and hence the quasi-separability of Y. 

Theorem 2.5. Let Y be a quasi-separable (or separable and conditionally a-
complete) lattice. Then every bounded function in M is in Ms. 

Proof. A direct application of the last three Lemmas. 

Theorem 2.6. Suppose that Y is a lattice. Let fn e M^, n = 1,2, ... and fnSf: 
:X-+Y. Then f e M^. Dually, M^Bfn \ f implies f e M\^. 

Proof. There are simple gn /* fn(m -> oo). Put gn = V{g"> * = n}- Then gn are 
simple and g„ / / . 

Theorem 2.7. Under the hypotheses of Lemma 2.2 (2.3) every function in MsJ^M^) 
bounded from below (from above) is in M/(M^j. 

Proof. To prove that part of the theorem which is not in brackets, let fe M^. 
By Theorem 2.4 we h a v e / e M^ and under the hypotheses of Lemma 2.2 it follows 
from / being bounded that / e M^ as claimed. The dual part of the theorem is 
obtained by a dual proof. 

Corollary. If $4 denotes the family of bounded functions from X into Y, where Y 
is a partially ordered space which is quasi-separable, or separable and condition­
ally a-complete, then s& n M^ n M\^ = sf n M^ = $0 n Ms^. 
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3. WEAҚLY MEASURABLE FUNCTЮNS INTO A LINEAR SPACE 

Throughout this section У will be a partially ordered real linear space. 

Lemma 3.1. Let S£ denote any of the classes Jt^, Jt^, Jt, Jt<, Jt>9 Jtwђ Jt=, 
Jt/, Jt\^9 Jts and @. For aeYand f :X -• Уlet f + aЪe the function attaining 
the value f(x) + a in each xeX. Then for every aeY and every feS£ we have 
f + aeSЄ. 

Proof. For S£ = Jt<, Jt^, Jtк, Jt>, Jt= the assertion is trivial, hence also 
for S£ = Jtw and Jt. In the case S£ = Jt^ it is sufficient to observe that whenever/п 

is a simple function then so is fn + a and that W(fn(
x) + a) = (VЛ(X)) + a- The 

n л 

proof for ,S£ = Jts^ is analogous and the last two cases yield the assertion for 
mtf ^ 5 *Уft S' 

In the case S£ = á?, since every partially ordered linear space with the order topo-
logy is a topological group, we have 

{xeX; f(x) + a e G} = {x eX; f(x) eG - a}eSЃ 

for any open set G due to G — a being also an open set. 

Lemma 3.2. Let S£ denote any of the classes Jtw9 Jt and Jts. If f eS£ and t e R, 
then tfeS£< (R is thefield of reals) 

Proof. Let feJtw, that is, {x;f(x) < a} eSŕэ{x;f(x) > a} for each aeY. 
If t > 0 we have {x; tf(x) < a} = {x;f(x) < a\t) eSЃ and {x; tf(x) > a} = 
= {x;f(x) > a\t}eSЃ. If t < 0 we get {x; tf(x) < a} = {x;f(x) > a\t}eSЃ and 
similarly {x; tf(x) > a}eSЃ. Finally, if t = 0, then tfis the constant function equal 
to the zero element 0 of У and hence tf e Jtw. 

The proof for S£ = Jt is obtained by rewriting the last one, replacing < and > 
by _ and ^ respectively. 

In the case S£ = Jts it is sufficient to realize that if/„ is simple, then so is tfn and, 
for t > 0,fn S f implies tfn S tf9 fn \f implies tfn \ tf, whereas for ř < 0 we have 
tfn N tfoľ tfn * tf whenever/n S forfn \ /, respectively. For t = 0 and any/є Jts 

we have tf = O e Jts. 

Theorem 3.1. If Y is separable, then Jtw is a real linear space. The partial 
ordering g of Jtw satisfiés (v^) and (v2). 

Proof. By Lemma 3.2, iîfeJtw and t e R9 then tfeJtw. To prove that for/, g e 
e Jtw we have f + ge Jtw we first show that for any /, g e Jtw the set {xeX; 
f(x) < g(x)} is in Sŕ. In fact, if Q is a countable dense subset of У, then {x; f(x) < 
< д(x)} = U{{x'>f(x) < Q < 9(x)}\ ҙєß} is a countable union of sets in Sŕђ 

and hence is itself in SЃ. Now if / and g are in Jtw, then so is -g + a for a n y a є ľ 
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and hence {x;f(x) + g(x) < a} = {x;f(x) < —g(x) + a\eSf and {x;f(x) + 
g(x) > a} = {x;/(x) > — g(x) + a} e ^ . We have thus proved that Jtw is a real 
linear space. The properties (vr) and (v2) are immediate consequences of the definition 
of ^ in Jtw (see Section 1). 

4. STRONGLY MEASURABLE FUNCTIONS INTO A LATTICE 

Theorem 4.1. Let Y be a quasi-separable and conditionally G-complete lattice. 
Then the family of all bounded functions in Jts is a lattice. 

Proof. Le t / , g e Jts. Then there are simple/, /*/ , Fn \f,gns g, Gn \g. To 
prove / v g e Jts we show that fn v gn /* f v g and Fn A Gn \ f A g. Evidently 
/ = fn and g = a„ imply/ v g = /rt v an for each w. Thus , / v # is an upper bound 
for the non-decreasing sequence of /„ v gn. To prove that it is the supremum, sup­
pose h = fn v gn for every n. Then (Vn) h = /„ and hence h = f. Similarly, h ^ gn 

for each w and hence h = g. Since h = / and h = # we infer h ^ f v g and s o / v # 
is the supremum of {/„ v gn; n = 1, 2, . . . } . Now since we have proved/ v g e Jt^, 
owing to the boundedness of both / and g and quasi-separability of Y we infer by 
Theorem 2.7 that / v g e Jt^. Thus / v g e Jts and is bounded. The proof that 
/ A g belongs to Jts and is bounded is analogous. 

Theorem 4.2. Let Y be a quasi-separable real linear lattice. Then the family 
Jts ns/ of all bounded and strongly measurable functions into Y is a partially 
ordered linear space (f _̂  g means f(x) ^ g(x)for each x). 

Proof. Take f,geJtsc\s4. There are simple /„ / / , gm ? g, Fn \f, Gm \ g. 
For any m we have fn + gm / " / + gm, Fn + Gm \ f + Gm with n -» oo. Thus 
/ + gm e Jt^ ns/, f + Gme Jt^ n stf and hence by Corollary to Theorem 2.7 
functions / + gm and / + Gm are in Jts n srf for each m = 1,2,... Since evidently 
/ + Gm * f + 9 a n d / + Gm \f + g with increasing m, we deduce from Theorem 
2.6 that / + g e Jt^ n Jts^. Due to / and g being bounded we obtain / + g e 
e Ms n stf. Applying now Lemma 3.2 with $£ = Jts to a function / e Jts and t e R 
we have tfe Jts, and realizing that tf is also bounded we complete the proof that 
Jts n stf is a linear space. Conditions (vx) and (v2) are verified without difficulty. 

Example 4.1. As an example of a quasi-separable linear lattice we may take any 
finitely dimensional real linear space Y with the ordering defined by a ^ b iff for all 
coordinates an ^ bn. Then Yis evidently a linear lattice. It is conditionally <x-complete 
since for any countable set {am; m == 1, 2, ...} of vectors which is bounded from 
above by b we have in each coordinate am = bn and it follows from well-known 
properties of real numbers that there is an = supm am. Then a defined by coor­
dinates an is the supremum of {am; m = 1, 2 , . . . } . Indeed, we have 

M(Vm)an
m£an 
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and if for some c with c = am (m = 1, 2, ...) the inequality c = a were not true, then 
there would exist n such that cn < an and then, since an = supm am, we would have 
d* < am for som§ m, which contradicts (Vm) c = am. In a similar way we may prove 
that the countable set Q of all vectors with rational coordinates only is quasi-dense 
in 7, actually, (Vy 6 Y) y = V{q e Q\ q = y} = A{q € Q; q = y}. 

It is worth noticing that if the dimension of Y is greater than one, than Y is not 
separable in the topological sense, since the order topology in Y is discrete. Indeed, 
for every y e Y we have {y} = Yi n 72 where 

Yt = {z e Y; y* - 1 < z1 < / + 1, zj = ^ for j -# i} (i = 1, 2) 

are open sets. 

5. AN INTEGRATION THEORY FOR BOUNDED STRONGLY 
MEASURABLE FUNCTIONS 

As an application of general results we construct in outline an integration theory 
of Daniell type. In this section Y denotes a conditionally (7-complete quasi-separable 
linear lattice. 

Denote by X the family of all bounded strongly measurable functions, i.e., X = 
= s4 n Jts = ja/ n Ji^ = stf n . ^ (see Corollary of Theorem 2.7). Let X0 be 
the family of all simple functions/ : X -» 7(see Section 1). We start with a function 
J0 : X0 -» Y satisfying the following conditions: 

(1) J^ (uf +vg) = u S0(f) + v J0(g) for u, v e R, f, g e X0. 

(2) Uf^g,f,geX0 then J^0(/) = ^ ) . 

(3) If /„ e Jf0 (n = 1, 2,...) and /„ \ 0, then •„(/.,) \ So(0) = 0. 

Lemma 5.1. / / /„, gH9 F„, G„ e Jf0 (n = 1,2,...), / e J f and /„ /•/ , gn s f, 
Fn ^f>Gn \f,then 

VA(/n) = V^o(gn) = AS0(Fn) = AM^n) -

Proof. For fixed m we have /„ A gm ? f A gm = <?m (n -> oo), hence gm -
— fn A gm \ 0 and therefore 

0 = A^0(gm - fn A gm) = A(j^0(gm) - Mfn A gm)) = 
n n 

= ^oGO - V(A>(/„ A flm)) £ Jf0(gm) - V^0(/„) • 
" m 

Now we have y0(am) ^ V^o(/„) (m - 1, 2,...) and hence also V-*o(t7») ^ VA>(f„)-
» n n 

The converse inequality and the equality 

A^o(G„) = A^O^n) 
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can be proved similarly. Finally take {Fn — fn}n=v Evidently Fn — fn \ 0, hence 

o = A 0̂(r„ - /,) = A(/0W - s0(fn)) = ASM - VS0(fn) 
n n n 

and the Lemma is proved. 

Definition 5.1. Denote by Af) the common value in Lemma 5.1. 

Theorem 5.1. X is a linear lattice and J is a linear and non-decreasing function 
on X. 

Proof. The first part of the Theorem follows directly from Theorems 4.1 and 4.2, 
and the other part can be obtained by simple computation from the definition of J 
and the properties of J0. 

Theorem 5.2. I/ fne X (n = 1, 2, . . . ) , / „ / / (/„ \ / ) and f is bounded, then 
feX and J(fn) S Af) (U(fn) \ . / ( / ) ) . 

Proof. According to Theorem 2 . 6 / e J i ^ , hence fes/ n Jl^ — X. Now use 
Theorem 2.6. If gn (n = 1, 2, ...) are the functions constructed in its proof, then 
gn g /„, gn e X0, gn = gn+i (n = 1, 2, . . .) and gn /» / , hence 

Af) = V ô(gn) = V^o(/n) = Af) • 

Theorem 5.3. Let geX,fneX, \fn\ = g (n = 1, 2,. . .) and fn-+f (i.e., fn(x) -* 
-* g(x) in the order topology ofYat each x eX). Thenfe X and Afn) ~* Af)-

00 00 

Proof. Put gn = Vfi, K = Afi- Then -g = h„ = / . = 0„ ^ 9, Q^KeX 
i=n i=n 

(n = 1,2,...). Moreover, hn / f, gn \f, hence feX and 

Af) = V AK) = V A Af) = l i m i n f AL) = lim sup Afn) = 
n = l n = l i = n n-+oo n-* oo 

= A VS{f.)^AS(gn) = f{f). 
n= 1 i = n n = 1 

References 

[1] Dravecky J., Neubrunn T: Measurability of functions of two variables, Mat. casop. SAV, 
23(1973), 147-157. 

[2] Sikorski R.: Funkcje rzeczywiste, Warszawa 1958. 
[3] Riedan B.: A note on measurable functions, Cas. pest. mat. 96 (1971), 67—72. 

Authors* address: 816 31 Bratislava, Mlynskd dolina (Prirodovedecka fakulta UK). 

35 


		webmaster@dml.cz
	2012-05-12T06:33:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




