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1. INTRODUCTION

Let X, Y be two topological spaces. The function f: X — Y is said to be quasi-
continuous at the point x, € X if for each neighbourhood U(x,) of the point x,
(in X) and each neighbourhood V(f(x,)) of the point f(x,) (in Y) there exists an open
set U < U(x,), U # 9 such that f(U) = V(f(x,)). The property of the quasi-conti-
nuity is equivalent to the property of the neighbourliness (cf. [1], [6], [8]).

The function f: X — Y is said to be somewhat continuous if for each set V = Y
open in Y such that f~'(V) # 0 there exists an open set U = X, U * @ so that
U < f~Y(V) (cf. [4]).

Let X be a topological and Y a metric space (with the metric ). The function
f:X - Yis said to be cliquish at the point x, € X if for each neighbourhood U(x,)
of the point x, and each ¢ > 0 there exists an open set U = U(x,), U + 0 such that
e(f(x'), f(x")) < & holds for each two points x', x" € U (cf. [6], [11]).

The function f defined on the topological space X is said to be quasi-continuous or
cliquish on X if it is quasi-continuous or cliquish, respectively, at each point x € X.

In the sequel, I, denotes an arbitrary interval (it may be I, = (— o, + o) = R).
The function f : I, —» R is said to have the Denjoy property 9, if for each a, b € R,
a < b,theset {x eIy;a < f(x) < b} iseither void or has a positive Lebesgue measure
(<f. [7]).

We introduce further the following notation: We shall say that f : I, > R has the
Denjoy property 9,(2,) if it has the property 9, for each interval I = I, which is
a closed (an open) set in I,, i.e., if for each such interval I and each a, be R, a < b,
the set {x €I; a < f(x) < b} is either void or has a positive Lebesgue measure.
Evidently the property 9, follows from any of the properties 2,, 2,. Further, if

a function has the property 9,, then it has @, as well. The converse is not true (see
Example II).
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Example L Let I, = <0, 1>. We put f(x) = 1 for 0 = x = 4, f(x) =1 for x
rational, 3 < x < 1and f(x) = O for x irrational, 3 £ x < 1. Then f has the proper-
ty 2, but not the property 2, (k = 1, 2).

Example I1. Let g(x) = x for 0 < x < 4 and g(x) = 0 for } < x < 1. Then g
has the property 2, but not the property 2, since for I = {4, 1) we have H =
={xel:0<g(x) <1} ={i} +0and [H| = 0 (|M| denotes the Lebesgue measure
of the set M).

2. QUASI-CONTINUITY, SOMEWHAT CONTINUITY,
CLIQUISHNESS AND DENJOY PROPERTY

Let X, Y be two topological spaces. Denote by Q(X,Y) and S(X, Y) the set of all
quasi-continuous and somewhat continuous functions f: X — Y, respectively. If Y
is a metric space, then Q*(X,Y) denotes the set of all cliquish functions f: X - Y.

It is easy to see that Q(X,Y) = S(X, Y) (see [4]) and if Y is a metric space, then
*) Q(X,Y) = Q%(X,Y)
(see [8]).

First we prove the following simple

Theorem 1. Let I be an interval. Then
S(I, R) — QX(I, R) + 0+ 0*(I, R) —~ S(I, R).

Proof. We shall give the prodf of Theorem for I = <0, 1). For an arbitrary interval
the proof is quite analogous.

Define h(x) = 0 for x€<{0,1) and h(1) = 1. Then obviously he Q*(I, R) —
— S(I, R).

Define f(x) = 1 for x rational, x €(4, 1), f(x) = 0 for x irrational, x e (4, [).
Further put f(x) = 0 for x e (4, 1> and f(x) = 1 for x € <0, ). Then fe S(I, R) —
— Q¥ R).

It is obvious that any continuous function f : I, — R has each of the properties
9, (k = 0, 1, 2). Further it is well-known that also any derivative has these properties
(cf. [2], [3])- There exist such quasi-continuous functions which are not derivatives.
Such a function is e.g. the function g from Example II. This function is evidently
quasi-continuous on <0, 1) but it is not a derivative since it has not the Darboux
property. In connection with these facts we prove the following theorem. In the
sequel we consider I, a metric space with the usual Euclidean metric.

Theorem 2. a) Let f:I, — R be a Lebesgue measurable somewhat continuous
function. Then f has the property 9,.
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b) There exists a function f:1, - R in the first Baire class which is quasi-
continuous on I, but has not the property 92,.

Proof. a) Let I < I, be an interval which is an open set in [,. Let
a,beR, a<b, Eff)={xel;a<f(x)<b}.

Let x, € E)(f), i.e. x; € f ~*((a, b)). Then f ~*((a, b)) * 0. In virtue of the somewhat
continuity of the function f there exists an interval I, = I such that I, = EXf).
This yields |E}(f)| > 0.

b) Such a function for I, = <0, 1) is e.g. the function g from Example II. For an
arbitrary I, it can be constructed in an analogous way as g in Example II.

Remark 1. a) Every function f : I, - R with the Denjoy property 2, is obviously
Lebesgue measurable. Since there exist non-measurable quasi-continuous functions
(cf. [6]), the assumption of the measurability of the function f in Theorem 2 is
necessary. '

b) Let us remark that Theorem 2a) cannot be extended to cliquish functions.
E.g., let f(x) = 0 for 0 < x < 1 and f(1) = 1. Then f is measurable and cliquish
on <0, 1), but it has not even the property 2, since

B={xe0,1); 0<f(x)<2}={1} +0
and |B| = 0.
The converse of Theorem 2a) is not true. This is shown by the following*)

Theorem 2'.*) There exists a function f : 1, — R in the first Baire class such that f
has the property 9, while it is not somewhat continuous on the interval I,.

Proof. Choose f as a derivative which is not identically equal to zero on I, and
vanishes at each point of a dense subset of the interval I, (see [9]). Then f has the
asserted properties.

3. QUASI-CONTINUOUS, SOMEWHAT CONTINUOUS
AND CLIQUISH FUNCTIONS IN THE SPACE M(X)

In ihe sequel X denotes a topological space and M(X) the linear normed space of
all functions f : X — R bounded on X with the sup-norm (i.e. | f] = sup |f(?)]).
teX

The properties of the quasi-continuity, somewhat continuity and qliquishness
introduced above lead us to the study of the space M(X) from the point of view of
these properties.

*) The author is thankful to the referee for his suggestion improving the original version of
Theorem 2°.
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In the sequel Q(X), S(X) and Q*(X) denote the sets of all f € M(X) which are quasi-
continuous, somewhat continuous and cliquish on X, respectively.

Theorem 3. Each of the sets Q(X), S(X), Q*(X) is a perfect set in M(X). If M(X) +
+ Q*(X), then each of the sets Q(X), Q*(X) is a nowhere dense set in M(X).
First we prove the following

Lemma 1. Q*(X) is a linear subspace of the space M(X).

Proof. Let f, € 0*(X) (k = 1, 2) and a € R. We shall prove that f; + f, € 0*(X),
af, € Q*(X). Putting f = f, + f, we see easily that fe M(X). Let x ¢ X, ¢ > 0.
Let U(x,) be a neighbourhood of the point x, (in X). Since f; is cliquish at x,, there
exists an open set U; < U(xo), U, # 0 such that

(1 1) = 1)l <

for each two points y, y, € U,;. We take a point x, € U,. In virtue of the cliquishness
of the function f, at the point x, there exists an open set U, < U, U, % 0 such that

@) muo—ﬁ@m<§

for each two points y,, y, € U,. From (1), (2) we obtain for y,, y,eU, < U, the
inequality |f(y;) — f(»,)| < & Hence f is cliquish on X. The proof for af, is easy.

Remark 2. In general Q(X).(S(X)) does not form a linear subspace of the space
M(X).Lete.g. X = R, fi(x) = 0for x < 0 and f,(x) = 1 for x > 0, further f,(x) =
= —1 for x £ 0 and f,(x) = 0 for x > 0. It is obvious that f, € Q(R) (f, € S(R))
(k = 1,2) but f, + f, is not quasi-continuous at 0 (somewhat continuous on R).

Proof of Theorem 3. It can be easily verified that the limit function of any
uniformly convergent sequence of functions from Q*(X) belongs again to Q*(X).
Thus according to Lemma 1 Q*(X) is a closed linear subspace of the space M(X).
Further, if fe Q%(X) and a € R, then f + a € Q*%(X). From this and from the
closedness of Q*(X) it follows that Q*(X) is a perfect set in M(X).

Now if W is a closed linear subspace of a linear normed space E and W = E,
then W is a nowhere dense set in E (cf. [5]). Therefore in the case 0*(X) + M(X)
the set Q*(X) is a nowhere dense set in M(X).

Let f,e S(X) (n = 1,2, ...). Let
(3) {fn :U=1

converge uniformly to the function f. We prove that f € S(X). Let G be an open set,
G < R and let f~!(G) # 0. Then there exists an x, € X such that y, = f(x,) € G.
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Choose an ¢ > O such that H = (y, — 2, yo + 2¢) < G. On account of the uniform
convergence of the sequence (3) to the function f there exists an m such that for each
x € X the inequality

4 [fu(x) = f¥)| < &
holds. Particularly, |f,(xo) — f(xo)| < e, therefore

fm(xo)e(J’o —& yo+e =L, X ef,;l(L).

Since f,, is a somewhat continuous function, there exists an open setV,, = X, V,, + 0
such that ¥,, < f,,'(L). For x € V,, we have

(5) fu(X)e(yo — & o + £).
On account of (4), (5) we get for x eV,

[£(x) = f(xo)] = |f(x) = ful¥)] + |fulx) = flx0)| < & + &= 2.
Hence V,, = f~}(H) < f~!(G).

Further, the function f + a (a € R) is somewhat continuous if f is somewhat
continuous. Hence S(X) is a perfect set in M(X).

The perfectness of the set Q(X) can be proved analogously as the perfectness of
S(X) and Q*(X). In virtue of the inclusion Q(X) = Q*(X) (see (*)) it follows from the
previous part of the proof that in the case Q*(X) # M(X) the set Q(X) is nowhere
dense in M(X). The proof is complete.

Remark 3. a) If I is any interval, then obviously Q*(I) # M(I). Theorem 3 implies
that each of the sets Q(I), Q*(I) is a perfect nowhere dense set in the space M(I).

b) In the paper [10] it is proved that the set of all functions fe M(I), I, =
= (0, 1) having the property 2, is a perfect nowhere dense set in M(I,). Analogous
statements can be obtained also for the classes of all functions f € M(I,) having the
property 9, or 9,, respectively.

Problem. In connection with Theorem 1 and Theorem 3 the question arises
whether an analogous statement is true for S(X) as for Q*(X), i.e., whether in the
case S(X) # M(X) the set S(X) is nowhere dense in M(X).

Addenda in proofs: The problem was already solved by the author of this
paper in an affirmative way.
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