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SOME GENERALIZATIONS OF THE NOTION OF CONTINUITY 
AND DENJOY PROPERTY OF FUNCTIONS 

TIBOR SALAT, Bratislava 

(Received May 31, 1973) 

1. INTRODUCTION 

Let X, y be two topological spaces. The function / : X -> Y is said to be quasi-
contjnuous at the point x0eX if for each neighbourhood U(x0) of the point x0 

(in X) and each neighbourhood V(/(x0)) of the point/(x0) (in Y) there exists an open 
set U c U(x0), U 4= 0 such that f(U) <= V(/(x0)). The property of the quasi-conti-
nuity is equivalent to the property of the neighbourliness (cf. [1], [6], [8]). 

The function / : X -* Y is said' to be somewhat continuous if for each set V c Y 
open in Y such that /_1(V) 4= 0 there exists an open set U <= K, U 4= 0 so that 
Uczf-\V){d. [4]). 

Let X be a topological and Y a metric space (with the metric g). The function 
/ : X -» y is said to be cliquish at the point x0 e X if for each neighbourhood U(x0) 
of the point x0 and each e > 0 there exists an open set U <= U(x0), U 4= 0 such that 
Q(f(x'\f(x")) < £ holds for each two points x', x" e U (cf. [6], [ll]). 

The function/defined on the topological space X is said to be quasi-continuous or 
cliquish on X if it is quasi-continuous or cliquish, respectively, at each point x e X. 

In the sequel, I0 denotes an arbitrary interval (it may be I0 = (— oo, -f oo) = R). 
The function / : I0 -• R is said to have the Denjoy property $)0 if for each a, b e R, 
a < b, the set {xel0;a < f(x) < b} is either void or has a positive Lebesgue measure 
(cf- W). 

We introduce further the following notation: We shall say tha t / : I0 -> R has the 
Denjoy property Q\(@2) if it has the property 90 for each interval I c I0 which is 
a closed (an open) set in J0, i.e., if for each such interval I and each a,beR,a<b, 
the set {xel; a < f(x) < b} is either void or has a positive Lebesgue measure. 
Evidently the property 90 follows from any of the properties Su 92. Further, if 
a function has the property @u then it has $)2 as well. The converse is not true (see 
Example II). 
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Example I. Let I0 = <0, 1>. We put f(x) =-* 1 for 0 £ x £ ±, f(x) = 1 for x 
rational, \ = x g 1 and/(x) = 0 for x irrational, 1 ^ x ^ 1. Then/has the proper­
ty $)0 but not the property 3fk (k = 1, 2). 

Example II. Let g(x) = x for 0 g x = i and g(x) = 0 for \ < x <; 1. Then g 
has the property 22 but not the property 0 , since for J = <±, 1> we have H = 
= {x eI; 0 < g(x) < 1} = {1} #= 0 and |H| = 0 (|M| denotes the Lebesgue measure 
of the set M). 

2. QUASI-CONTINUITY, SOMEWHAT CONTINUITY, 
CLIQUISHNESS AND DENJOY PROPERTY 

Let X, Y be two topological spaces. Denote by Q(X, Y) and S(X, Y) the set of all 
quasi-continuous and somewhat continuous functions / : X -> Y, respectively. If Y 
is a metric space, then Q*(X, Y) denotes the set of all cliquish functions / : X -> Y. 

It is easy to see that Q(X, Y) c S(X, Y) (see [4]) and if Y is a metric space, then 

(*) Q(X, Y) c Q*(X, Y) 

(see [8]). 

First we prove the following simple 

Theorem 1. Let I be an interval. Then 

S(I, R) - Q*(I, R) * 0 * Q*(I, R) - S(I, R). 

Proof. We shall give the proof of Theorem for I = <0, 1>. For an arbitrary interval 
the proof is quite analogous. 

Define h(x) = 0 for x e <0, 1) and h(\) = 1. Then obviously h e Q*(I, R) -
- S(I, R). 

Define f(x) = 1 for x rational, x e ( i , 1>, f(x) = 0 for x irrational, x e ( | , l>. 
Further put f(x) = 0 for x e (h i> and f(x) = 1 for x e <0, i>. Then / e S(I, K) -

- e*(I, -R). 
It is obvious that any continuous function / : I0 -> R has each of the properties 

3fk (k = 0, 1, 2). Further it is well-known that also any derivative has these properties 
(cf. [2], [3]). There exist such quasi-continuous functions which are not derivatives. 
Such a function is e.g. the function g from Example II. This function is evidently 
quasi-continuous on <0, 1> but it is not a derivative since it has not the Darboux 
property. In connection with these facts we prove the following theorem. In the 
sequel we consider I0 a metric space with the usual Euclidean metric. 

Theorem 2. a) Let f :I0 -> R be a Lebesgue measurable somewhat continuous 
function. Then f has the property ^2. 
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b) There exists a function f:I0-+R in the first Baire class which is quasi-
continuous on I0 but has not the property 2V. 

Proof, a) Let I c l0 be an interval which is an open set in I0. Let 

a,beR, a<b, £*(/) = {xe I ; a < f(x) < b} . 

Let xt eEa(f), i.e. Xj ef~\(a, b)). Then/ _ 1 ( (a , b)) 4= 0. In virtue of the somewhat 
continuity of the function / there exists an interval Ix cz I such that It c Ea(f). 
This yields \Eb

a(f)\ > 0. 

b) Such a function for I0 = <0, 1> is e.g. the function g from Example II. For an 
arbitrary I0 it can be constructed in an analogous way as g in Example II. 

Remark 1. a) Every function/ : I0 -> R with the Denjoy property 9)0 is obviously 
Lebesgue measurable. Since there exist non-measurable quasi-continuous functions 
(cf. [6]), the assumption of the measurability of the function / in Theorem 2 is 
necessary. 

b) Let us remark that Theorem 2a) cannot be extended to cliquish functions. 
E.g., let f(x) = 0 for 0 ^ x < 1 and / ( l ) = 1. Then / is measurable and cliquish 
on <0, 1>, but it has not even the property 9)0 since 

B = {x e <0, 1>; 0 < f(x) < 2} = {1} -# 0 

and \B\ = 0. 

The converse of Theorem 2a) is not true. This is shown by the following*) 

Theorem 2'.*) There exists a function f :I0 -* R in the first Baire class such that f 
has the property ^i while it is not somewhat continuous on the interval I0. 

Proof. Choose/as a derivative which is not identically equal to zero on I0 and 
vanishes at each point of a dense subset of the interval I0 (see [9]). Then / has the 
asserted properties. 

3. QUASI-CONTINUOUS, SOMEWHAT CONTINUOUS 
AND CLIQUISH FUNCTIONS IN THE SPACE M(X) 

In the sequel X denotes a topological space and M(X) the linear normed space of 
all functionsf: X -+ R bounded on X with the sup-norm (i.e. ||f|| = sup |f(*)|). 

teX 

The properties of the quasi-continuity, somewhat continuity and cliquishness 
introduced above lead us to the study of the space M(X) from the point of view of 
these properties. 

*) The author is thankful to the referee for his suggestion improving the original version of 
Theorem 2'. 
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In the sequel Q(X), S(X) and Q*(X) denote the sets of a l l / e M(X) which are quasi-
continuous, somewhat continuous and cliquish on X, respectively. 

Theorem 3. Each of the sets Q(X), S(X), Q*(X) is a perfect set in M(X). If M(X) 4= 
4= Q*(X), then each of the sets Q(X), Q*(X) is a nowhere dense set in M(X). 

First we prove the following 

Lemma 1. Q*(X) is a linear subspace of the space M(X). 

Proof. Let/* e Q*(X) (k = 1, 2) and a e R. We shall prove t h a t / t + f2 e Q*(X), 
af1 e Q*(X). Putting / = fx + f2 we see easily that fe M(X). Let x 0eX, e > 0. 
Let U(x0) be a neighbourhood of the point x0 (in X). Since fx is cliquish at x0, there 
exists an open set Ut c U(x0), Ux 4= 0 such that 

(i) \h{yd-fM\<\ 

for each two points y\, y2eUi. We take a point x t e Ul. In virtue of the cliquishness 
of the function f2 at the point xx there exists an open set U2 <= Uu U2 + 0 such that 

(2) \Myi)-My2)\<
s-

for each two points yt, y2 e U2. From (l), (2) we obtain for yu y2eU2 c Ut the 
inequality | /(y i) — f(yi)\ < £• Hence/ is cliquish on X. The proof for aft is easy. 

Remark 2. In general Q(X).(S(X)) does not form a linear subspace of the space 
M(X). Let e.g. X = K,/X(x) = 0 for x < 0 and/x(x) = 1 for x ^ 0, further/2(x) = 
= - 1 for x g 0 and /2(x) = 0 for x > 0. It is obvious that fk e Q(R) (fk e S(R)) 
(k = 1, 2) but /-. + f2 is not quasi-continuous at 0 (somewhat continuous on R). 

Proof of Theorem 3. It can be easily verified that the limit function of any 
uniformly convergent sequence of functions from Q*(X) belongs again to Q*(X). 
Thus according to Lemma 1 Q*(X) is a closed linear subspace of the space M(X). 
Further, if / e Q*(X) and a e R, then / + a e Q*(X). From this and from the 
closedness of Q*(X) it follows that Q*(X) is a perfect set in M(X). 

Now if W is a closed linear subspace of a linear normed space E and W 4= E, 
then W is a nowhere dense set in E (cf. [5]). Therefore in the case Q*(X) =# M(X) 
the set Q*(X) is a nowhere dense set in M(X). 

Let fneS(X)(n = 1,2,...). Let 

(3) { / . f t ! 

converge uniformly to the function / . We prove that / e S(X). Let G be an open set, 
G a R and let f~1(G) =(= 0. Then there exists an x0 e l such that y0 = / (x 0 ) e G. 
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Choose an e > 0 such that H = (y0 - 2e, y0 + 2e) c G. On account of the uniform 
convergence of the sequence (3) to the function / there exists an m such that for each 
x e X the inequality 

(4) * \fm(x) - f(x)\ < e 

holds. Particularly, |/m(x0) - / (x 0 ) | < e, therefore 

fm(x0) e (y0 - e, y0 + «) = I-, *o e /~ *(L) . 

Since /m is a somewhat continuous function, there exists an open set Vm c X, Vm 4= 0 
such that Vm c / " '(L). For x e Vm we have 

(5) /m(x) e (v0 - e, y0 + e) . 

On account of (4), (5) we get for x e Vm 

\f(x) - /(*o)| ^ \f(x) - fjx)\ + \fm(x) - f(x0)\ <e + e = 2e. 

H e n c e V m c : / - 1 ( H ) c z / - 1 ( G ) . 

Further, the function / + a (a e R) is somewhat continuous if / is somewhat 
continuous. Hence S(X) is a perfect set in M(X). 

The perfectness of the set Q(X) can be proved analogously as the perfectness of 
S(X) and Q*(X). In virtue of the inclusion Q(X) c= Q*(X) (see (*)) it follows from the 
previous part of the proof that in the case Q*(X) ^ M(X) the set Q(X) is nowhere 
dense in M(X). The proof is complete. 

Remark 3. a) If I is any interval, then obviously g*(I) ^ M(l). Theorem 3 implies 
that each of the sets Q(I), Q*(l) is a perfect nowhere dense set in the space M(l). 

b) In the paper [10] it is proved that the set of all functions / e M ( I 0 ) , I0 = 
-= <0, 1> having the property Q)x is a perfect nowhere dense set in M(I0). Analogous 
statements can be obtained also for the classes of all functions / e M(I0) having the 
property 9)0 or ®2, respectively. 

Prob lem. In connection with Theorem 1 and Theorem 3 the question arises 
whether an analogous statement is true for S(X) as for Q*(K), i.e., whether in the 
case S(X) # M(X) the set S(X) is nowhere dense in M(X). 

A d d e n d a in p roofs : The problem was already solved by the author of this 
paper in an affirmative way. 
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