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THE EQUIVALENCE OF SOME INTEGRAL EQUATIONS
AND BOUNDARY VALUE PROBLEMS

Jiki CErRHA, Praha
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1. PRELIMINARIES

1.1. Notation. For m, n = 1,2, ..., R"*"(K™*") will stand for the space of all real
(complex) m x n-matrices with the Euclidean norm (denoted by |-|). We shall
denote the identity matrices by I and the Zero matrices by 0 or, more detailed, I,,, 0,
The m-dimensional vectors will be identified with column matrices and we shall
write shortly R™(K™) in stead of R™*}(K™*"). x(A4) will be the range of a matrix
Ae K", AT its transpose. R™"(K™") will be the set of all regular n x n-matrices.
Let m; >0, n; > 0 be integers for i =1,2,...,p; j=1, 2,...,q; Y;;€ K™ ™.
We shall identify the matrix

Yll le PR qu
Y21 Yzz R Yzq
Y, Y, .. Yy

with the corresponding element of KM*N where M = m; + ... + m,, N = ny + ...

... + n,. The partial derivatives of a function f with the domain in R” will be denoted
by

i i i ‘ ail+."+ip U, - U |
Df(ulg"',up)= Dt pf(uta"" up)= - |f( 1 i p)
ouyl ...o0up

where i = (iy, ..., i,) denotes some multiindex, p = 1,2,... We define the O-th
derivative of a given function to be equal to the function itself. Let % be a subset of
the domain of a function f. Then f/# will denote the corresponding partial function.
7 will be the closure of a set %, #° the set of its inner points, & = <0, 1). Let
Y0, %, ..., %, be disjoint domains in R?, 4 =%,V ... VY, f: 9> K" f, =
=f|%, i=1,..,r, k =0 an integer. We shall denote by C},(%) the space of
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those f for which all derivatives of f; of all orders <k exist and may be continuously
extended on%,, i = 1,2,..., r. We shall suppose that f; are defined on &; by these
extensions, i = 1,2, ..., r. C® (%) will be the subset of those f € C*,(%) for which
J{1) are regular matrices for all te &, i = 1, ..., r. We shall sometimes omit k = 0
and n = 1 in the notation introduced.

L? . (2) will be the Lebesgue space of all m x n-matrix ,,functions* f for which
|f|? is integrable on Q.

Now, we shall introduce some simple lemmas concerning the so called adjoint and

complementary adjoint matrices — see mostly O. VEsvoba, M. TvRDY [2]. I, m, n
will denote positive integers, I + m = 2n.

1.2. Lemma. Let

@n Mo, M, € K™*"
(2,2) W([Mo, My]) = m.

Then there exist

(2,3) Py, P eK"*!

sb that it holds

o (7D

(2,5) M0P0+M1P1=0.
1.3. Remark. Let us denote

(3’1) »M= [MOaMl],

6 =17

We can express Lemma 2 in the following equivalent form: let
(3.3)  MeK™™, f(M)=m.
Then there exists

(3.4) Pe K**"
so that y(P) = I,

(3.5) MP=0.
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(The columns of the matrix P form a basis of all solutions of the equation Mx = 0.

It holds P = PQ, where Q € K™/, if both P and P fulfil (3,4-5).)

1.4. Lemma. Let (2,1—5) hold. Let us denote

M, M
(4.1) G= [ 0 ‘].

Py Pl
Then
(4’2) Ge KZnRZn s
(4,3) 66T =G0 © ,

0 G,

where
(4’4) GO e KmRm s Gl € KIRI .

1.5. Remark. G,, G, are the Gramm matrices formed by the rows of M and

columns of P, respectively (the notation (3.1—2) being used).

1.6. Lemma. Let
(6.1) Uy U eK™,
let (2,1—5) hold. Let us put
(6.2) S, =U['P,, S, =U;'P,.

Then it holds

(6.3) So, Sy e K™,
S
6,4 "1V=1,
(64 ! ([S])
(6,5) MOUOSl + M1U1So = 0.

Conversely, (2,1—2), (6,1—5) imply (2,3-5).

1.7. Lemma. Let (6,1), (2,1—2) hold. Then there- exist Sy, Sy so that (6,3—5)
hold. Conversely, the existence of My, M, satisfying (2,1—2), (6,5) follows from

(6,1, (6,3—4). |
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1.8. Lemma. Let m = | = n. Then the equivalence of
(8,1) . AMUy + M\U,)) = n,
(8,2) x(So — Sy) =n
follows from (2,1-2), (6,1), (6,3-5).

Proof. Let us define Py, P, by (6,2). Then using Lemma 1.4 with the corresponding
notation we obtain

My M,T[Uo 0 1[I S, _ [MoU, + MU, 0
P PT||l0 U, JLIS, PlU, + PTU, G, |
The first two matrices on the left hand side and G, are regular. Hence we conclude:

the regularity of S, — S;, left hand side, right hand side and MU, + MU, are
equivalent.

2. DIFFERENTIAL EQUATIONS

2.1. Theorem. Let P € C,,(#);f€ C(F); Mg, M, € K™*", d € K™, y([ Mo, M,]) =
= m. Then we obtain all solutions x € C{"(#) of the boundary value problem (D)

(1,1) x — P(t)yx = f(1),
(1,2) Mo x(0) + M, x(1) =d

from the formula

(1,3) «(t) = H(1) [xo ; .[ 'H—lf]

0
if x, ranges over all solutions of
(1.4) Nxo = fo

where H is the fundamental matrix of (1,1),

t
fo =d— M1H1J. H_lf,
0

(1,5) N = M,H, + M,H, ,
(1.6) Ho = H(0), H, = H(1).
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2.2. Corollary. The problem (D) has a unique solution for arbitrary f, d if and
only if x(N) = n = m. This solution is given by

t

(2.1) x(t) = H{f) N™* [d + MOHO'[ H™'f — M(H, JIH"f].

0 t

Proof. Theorem follows from variation of constants formula. Putting X, = N~ 'f,
in (1,3) we get (2,1) after simple calculation.

3. FREDHOLM EQUATIONS AND BOUNDARY VALUE PROBLEMS

3.1. Notation. In the following, n = 1 will be a fixed integer, # = <0, 1> < R!,
9, ={[t,s]eRP:1>t>5>0}, 4, ={[t.s]eR*:1>s>t>0}, =%, u
U %, c R BeC!Y(%) kernel and a e C{")(#) the right hand side of the integral
equation ’

1
1) (1) = a(t) = j B(t,5) x(s) ds. tes,
0
with the unknown function x € C,,(f), Using the notation introduced, we write

/ Byt,s), 1>t>s5>0

B(t, s) = .
(t.5) NByt,s), 1>5s>t>0

So we shall also write the equation (I) in the form

(1,1) x(1) = a(t) + J"Bo(t, s) x(s) ds + J‘lBl(t, s)x(s)ds, tes,

t

where B;e C$}(%); i =0, 1.
Finally, we de note

(1,2) B(t) = By(t, t) — By(t, 1), tes.

3.2. Problem. We shall study the convertibility of the equation (I) to the form of
the boundary value problem (D) and vice versa, the problem having been mentioned
to the author by J. NAGY. Equivalence of the following there assertions will be shown:

(i) the kernels By, B, are degenerate of a special type,

(ii) the function B(:,s) is a solution of (D) with f =0, d = 0 on .# = {s} for
setf, '

(iii) all solutions of (I) satisfy (D) with P, My, M, independent of a.
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* These results include those in [1] concerning Volterra equations and initial value
problems. First of all, we show that we may work with a special form of the kernels
By, B, in (I) without loss of generality, if By, B, are degenerate.

3.3. Theorem. Let
(3.1) By(t,s) = Uo() Vo(s), [t.s]€%,,
Bi(t,s) = U,() Vi(s), [1.s]e%,,

where Uy, U, € C,‘.’Qm(f); Vo, Vi € C-(nkl n(f)'

Then there exist an integer ¢ > n and degenerate kernels B, B, € C;'Q,,(J x £)
of the form

B, 0 _[Bi O
I FHACE Y
so that
(3.3) Bo(t, s) = U(t) So V(s), By, s) = U(1) S, V(s) ; t,seS,

where So, S1, So — S; € K™, Ue CR(F), Ve CR(F) and it holds: Let a %€
€ CM(#); a, x e CP(F), y e C2(#),
]
y

(3.4) i= [g] %

Then

(i) if % is a solution of
) (1) = a(t) + LE(:, ) %(s) ds ,

where

B(t,5) = <Eo(t,s), I1>t>s5>0,
Bi(t,s), 1>s>1t>0

x satisfies (1),

(ii) if x is a solution of (1), there exists (unique) y € C® (#) so that % defined
by (3,4) satisfies (I). (The assertion of the theorem or, more precisely, its easy
modification, is fulfilled with q = n for some kernels.)
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Proof. Let us put, for example, g = n + 3m,

I, Uy U, 0 0,, 2, 0 0 0
- o, o of _ v 0 01,0
U=loo 1, 0" "lo.,0..1" S0 o001
00 0 I, v, 0 —I,0 0
Vols) 0.
So=1,; Wo(t:5) =|0,., |, Wilt,s)=| Vi(s)|; t,ses;
Vi(s) —V(s)

and define By, B, using (3,2). Then both (3,3) and (3,2) hold. From (3,2) (i) follows
immediately. We shall prove (ii). Let x be a solution of (I). Let us put

W) = J‘;Wo(t, s) x(s) ds + <‘ﬂWl(t, s)x(s)ds, tes.

t

Then X defined by (3,4) satisfies (I). Finally, the regularity of matrices U(f), t € £,
Sy, Sy is evident.

3.4. Lemma. Let U € CR)(F); Vo, Vy € CR(F);

@41)  Bo(t,s) = UMY Vo(s) [t s]€Fo; By(ts) = U@ V(). [t.s]e?,.

Let I, m be nonnegative integers, | + m = 2n. Then the following assertions (i)
and (ii) are equivalent.

(i) There exist My, M, € K™*" so that it holds

(4.2) MyB(0,s) + M,By(1,5) =0, sef; x([Mo M,])=m.

(if) There exist So, S; € K"*!, Ve C{)(#) so that it holds

(4.3) Vols) = SoV(s), Vi(s) = S;V(s), ses; <[§I]> =1.
0
Moreover, it holds:
(iii) Let (4,2) be satisfied. Then we may choose the matrices Sy, Sy in (4,3) ar-
bitrarily so that they satisfy
(4.4) Mo U(0)S; + M, U(1) S, = 0

and have the required range. On the other hand, we may choose Mo, M, in (4,2)
arbitrarily so that they satisfy (4,4) and have the required range, supposing (4,3).
(We can find So, Sy (Mo, M,) in the following assertions (iv), (v) similarly.)
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(iv) Let there exist My, M € K™*" satisfying (4,2) with m = n and

(4.9) . x(M)=n
where
(4,6) M = M,U(0) + M, U(1) ..

Then there exist Sy, Sy € K"*" satisfying (4,3) with | = n and

(4’7) . X(S) =n,
where ’ '
(458) : S = So - Sl .

(v) Similarly, the existence of Mo, M, satisfying (4,2), (4,5) follows from the
existence of S,, S, satisfying (4,3), (4,8).

Proof. Let

. U, 0
U, =U0(0), U, =U0Q1), T=]|° .
o= 0, v =00, 0=["7 ]

(i) = (ii): Let (4,2) hold. Let us choose P,, P, from Lemma 1.2 and let us define
G, Gy, Gy, Sy, S, similarly as in Lemmas 1.4, 1.6. It follows

GO Vi _ 0
from (4,2) and Lemma 1.4, where
V=G (P3UoV, + P{U Vo).

It holds

-1
G™! = G(G")"' G~! = G(GGT)"! = GT [go 0 }
G;!

[V1]=ﬂ—IGT[G(;IO ][0 ]= U(;IO [M§ P,|10
2 o oiJlew) Lo urt)lmrp V]=

_[us'Mg s [0
UTMT S, [ |V
and (4,3) holds.
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(if) = (i): Let (4,3) hold. Let us choose My, M; from Lemma 1.7. Then (4,2)
follows from the identity

Mo By(0, 5) + M, Bo(1, s) = (MoUoS; + MU, So) V().

Now we easily obtain (iii) from the above and, using Lemma 1.8, (iv) and (v) as well.

3.5. Remark. We may write general degenerate kernels By, B, in the form (3,1).
(See [1].) It follows from Theorems 3.3 —3.4 that we may complement an arbitrary
equation (I) with degenerate B, B, to the equivalent form of the same type where

(4,1-5), (4,7) hold and S, S, are regular. Generally, (4,4) does not follow from
(4,1—3) but only a weaker assertion

(MyU(0) S, + M, U(1) S))V(s)x =0, seF, xeK".

(4,4) follows from here if {V(s)x:se#, xe K"} = K", which is satisfied if, for
example, V(s) is regular for some s € S.

3.6. Theorem. The following assertions (i), (ii), (iii) are equivalent.

(i) There exist P € C,,,(f), integer m = 0 and My, M, € K™*" so that

(6,1) H([Mo, M\]) = m;
(6,2) D' B(t,s) — P(t) B(t,s) =0; t,sef; t=*s;
(6,3) M, By(0,s) + M, By(1,5) =0; se.f.

(i) There exist integer 1 2 0, U € CRAF), Ve CiY(F); So, S; €K™ so that

)

(6,5) By(t, s) = U(t) So V(s), [t.s]€%,,
(6,6) By(t,5) = U(t) S, V(s), [t.s]€%,.

(iii) There exist P e C,x,(F), integer m = 0 and My, M; € K™*" so that (6,1)
holds and all solutions x of (I) satisfy the boundary value problem (where B is given
by (1,2))

(6,7) - x(1) — [P(1) + B(1)] x(t) = a(t) — P(t)a(t), tes,
(6,8) M, x(0) + M, x(1) = M, a(0) + M, a(1)
for arbitrary a e C{(5).
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Remark. Let (i) or (iii) hold with some m, My, M,, P. Then both (i) and (iii)
hold with the same m, My, M, P. Moreover, (ii) holds with I, U, S, S, satisfying
MOUOSI + M1U1S0 = 0, m + l= 2".

Proof. (i) = (ii): Let us suppose (6,2). Let U be the fundamental matrix of (6,2).
Then (4,1) holds and (ii) follows from Lemma 3,4.

(i) = (i): (6,2) and P = UU ! follow from (6,5—6). Then we apply Lemma 3.4.
(i) = (iii): Let x be a solution of (I). Then

(6.9) x(1) — [P(1) + B()] x(t) = a(t) — P(r) a(r) +
o :[D”’ B(t.5) ~ P(9) B(t, )] x(5) ds.,

(6,10) Mo x(0) + M, x(1) = M, a(0) + M, a(1) +
+ J:[MO B(0, s) + M, B(1, 5)] x(s) ds .

This together with (6,2 — 3) implies (6,7 —8) with the same P.

(iii) = (i): Let us choose x € C{"(#) and find a so that (I) holds. (6.9 — 10) follows
from (I). The integrals in (6,9 —10) equal zero if (6,7—38) also hold. Since x is arbi-
trary, we obtain (6,2—3).

3.7. Theorem. Let U e CR)(F), P = UU™'; My, My, So, S, € K", Uy = U(0),
U, = U(1), Z = MU, + MU,

(7.1) ([Mo, MJ]) = 1 ([?D —n,

1
(7,2) MOUOSI + Mlulso = 0 .
Then the following four assertions are equivalent:

(i) It holds

(7,3) D' B(t,s) — P(t)B(t,s) =0; t,sef, t*s,
(7.4) My By(0,5) + M, By(1,5)=0, sesf,
(7.9) uzZ) =n.
(i) There exists Ve C,x,(F) so that
(7,6) By(t,s) = U(t) So V(s), [t.s]e€%,.
(7,7) By(t,5) = U(t) S, V(s), [t.s]e%,.
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and
(7.8) xS —S))=n.

(iii) The equation (I) is equivalent to the boundary value problem (with the
unknown function x)

(7.9) x(1) — [P(t) + B(1)] x(¢t) = a(t) — P(t) a(t), tes,
(7.10) M, x(0) + M, x(1) = M, a(0) + M, a(1)

for all a e CV().

(iv) For all fe C(#), d € K", there exists an a € C\'X(F) so that the boundary
value problem

(7,13) x() — [P(r) + B(0)] x(1) = f(1), tes,
(7.14) Mg x(0) + M, x(1) = d

is equivalent to the equation (1) and

(7,15) a(t) — P(t)a(t) = f(t), tesf,
(7.16) Mo a(0) + M, a(1) = d

hold. (This a is unique and is given by

t

1
(7.]7) a(t) = U(t) Z—l[d '+ MOuOJ U—lf - M1U1 j U_lf] .
0o t
Proof. We conclude the equivalence (i) <> (i) from Lemma 3.4 (iv), (v) and (iii)
following the arguments proving Theorem 3.6.

(i) = (iii): Let us suppose (i). Let x satisfy (I). Then (6,9—10) hold and (i) yields
(7,9—10). On the other hand, let (7,9—10) hold and let us put

A1) = x(1) — a(t) - J"B(t, s) x(s) ds .

We get A(f) = P(t) A(t), te # using (7,9) and M, A(0) + M, A(1) = 0 using (7,4),
(7,10). So we obtain A(t) = U(t) A(0), M, A(0) + M, A(1) = Z A(0) = 0. It follows
#(0) = 0 from (7,5) so that A(t) = 0, t € # and (I) holds.

(i) = (i): Let (iii) hold. We prove (7,3—4) following the arguments proving
(iii) in Theorem 3.6. Now, let us choose x und let us find a so that (I) holds. (iii)
follows from (7,9—10). If Z were not regular, we obtain by Theorem 2.1 that the
boundary value problem (7,9—10) (with the unknown a) has a solution @ + a. We
get (1) with a substituted by @ from here and (iii), which is a contradiction and
hence (7,5) holds.
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(iii) = (iv): Let us suppose (iii). Then we get (7,5). Let us define a using (7,17).
We obtain (7,15—16) from Theorem 2.2. Let x satisfy (7,13—14). Then (7,9—10)
hold and, using (iii), (I) holds as well. Conversely, we get (7,9 —10) from (1) using (ii)
and (7,13 —14) follows from here and (7,15—16). .

(iv) = (iii): The unique solution a of (7,15—16) is given by (7,17). Let us define f, d
using (7,15—16). Then (I) is equivalent to (7,13~ 14), that is with (7,9—10) so that
(iii) holds.

3.8. Remark. We may see the interesting symmetry of a and x in the boundary
value problem (7,9 —10). We have proved: (7,9 —10) follow from (1) if (7,6 —7) hold.
Using the mentioned symmetry we may expect similarly that (7,9—10) will follow
from some integral equation of the type (I) with the unknown a. We shall prove that
this equation is identical with the formula expressing the solution x of (I) by means
of the resolvent kernel R of the kernel B, provided that R exists.

This theorem follows from the known theory of integral equations.

3.9. Theorem. Let the equation (I) with the kernel B e L}, (F x #) have for all
a e LY(#) a unique solution x € L}(F). Then there exists the so called resolvent
kernel R e L2, (# x ) such that we may write the solution x in the form

(.1) x(t) = a(t) + J:R(t, s)a(s)ds, aeLl(f).

It holds

(9,2) R(t,s) — B(t,s) = J.:B(t, u) R(u, s) du ,

0.3) R(t, s) — B(t, ) = f "R(t,u) Blu, ) du,

0
for the kernel R on 5 x £. Moreover, if Be CX) (%) then also R e C* (%) and
(9.4) Ro(t, 1) — Ry(t, 1) = By(t, 1) — By(t,1), tef.

3.10. Theorem. Let I, m, n be nonnegative integers, I + m = 2n; M,, M, € K™*";

So, S1 €K™ U,He CRAF), Ve C{(F), Uy = U(0), U, = U(1), Hy, = H(0),
Hy=H(1),S=S,-S,P=UU"% Q=HH" Let

W01 - (Mo M])=m, x<[§])=z

0

(10,2) MOUOSI + M1U1S0 = O s
(10,3) HH ™' = UU™! + USV.
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(P) Let there exist a solution x € C{"(F) of the integral equation

(10.4) %(t) = alt) + U(s) [so J' Vx4 S, f le], tes

V] t

for all a e C{V(#).
Then there exist T,, T € K"*'; We C{X)(#) such that it holds: (i)

-

(10,6) MOHOTI + MIHITO = 0 )
(10,7) UU™' = HH™' + UTW,
where T = T, — Tj.
(i) (10,4) and the equation
t 1 ’
(10,8) a(t) = x(1) + H(i) [To j Wa + T, f Wa], tes
0 t

are equivalent (for arbitrary a, x).

(iii) It follows
(10,9) (1) — Q(1) x(t) = a(t) — P() a(t), tes,
(10,10) Mo x(0) + M, x(1) = M, a(0) + M, a(l)
from (10,4) or (10,8).

(iv)Ifl=m = n,
(10,11) #(S) = n

and (10,9—10) hold then (10,4), (10,8) also hold and the boundary value problem
(10,9—10) has a unique solution (for the unknown a) for all x.

M Ifl=m=n,
(10,12) (T)=n

and (10,9~ 10) hold then (10,4), (10,8) also hold and the boundary value problem
(10,9—10) (with the unknown x) has a unique solution for all a.

Remark. The solution of (10,4) is given by (10,8) and vice versa. If (10,11) holds,
the solution of the boundary value problem (10,9—10) (with the corresponding
unknown) is given by (10,4). If (10,12) holds, the solution is given by (10,8). The
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equations (10,4), (10,8) are completely symmetric as well as their relations to (10,9 to
10). The corresponding couples are

xea, UeH, VoW, ST, ST, ST, Po(Q.

Proof. We may write (10,4) in the operator form (I — B) x = a where I is the
identity mapping and B is a totally continuous mapping of LZ(#) into itself. For
C{V(#) is dense in L}(#) there exists a solution of (10,4) for all a € L2(#). The
number 1 is a regular point both of the operator B and its adjoint. Consequently,
the solution is unique and we may write

(10,13) x(t) = a(r) + J]R(t, s) a(s)ds,

where R-e L%, (F x *#). We obtain R e CV,(%) from Theorem 9. The equation
(10,4) has the form (I) where the kernel B satisfies (6,4 —6). Using Theorem 3.6 we
obtain (6,7—8) (that is (10,9—10)) from (10,4) since, using (10,3), we may write
P=UUY, P+f=UU"'+USV=HH ' = Qin (67). (10,13) and (10,7) are
equivalent. Therefore (10,9 —10) follow from (10,13). We shall apply Theorem 3.6
to the equation (10,13) (with the unknown g). Since (by Theorem 3.9 and (10,3)) it
holds

(10,14)  Q(t) + R(t +,1) — R(t —, 1) = Q1) — B(t) = Q(r) — U(r) SV(t) = P(1)
we get the assertion (iii) of Theorem 3.6. (The equation which we obtain, using (6,7),
from (10,13) is identical with the equation (10,9), which is satisfied by the solution of
(10,13).) So both the assertions (i), (ii) of Theorem 3.6 and the remark following this
theorem hold. From here it follows that we may put the function U in Theorem 3.6
equal to H and choose Ty, Ty, W so that (10,5—6) hold and
(10,15) Ry(t,s) = H(t) T, W(s), [t,s]e%,,

Ry(t,s) = H(t) T, W(s), [t.s]e¥%,.
Substituting this into (10,14) and-using the definitions of P, Q we obtain (10,7).

Substituting again from (10,15) to (10,13) we get (ii). (iii) has been already proved
and (iv), (v) follow immediately from Theorem 3.7.

3.11. Remark. The resolvent equation of (10,4) is

(11,1) Ry(t, s) = U(t) S V(s) +
+ U(r) [sorvx,(-,s) + sof'VRo(-,s) + SIJ.IVRO(-, 9], t>s,
Ry(t,s) = U(t) S, V(s) +
+ U(r) [SOJ“VRl(-,s) + 5, J.SVRI(-,S) + slfvxo(-, 9], t<s.
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The resolvent kernel is given by (if it exists)
(11,2) R4u9=ymyﬂ%[1_Q?w)mgﬂU@s]wg,:>L
Rﬁﬁ):H@Y”&[[+<FWOH@Y‘WQ{P@% t<s,

s

where

1 1
Y = U 'H, —s,J‘ VH = U 'H, —SOJ‘VH.

] 0

From (10,3) we obtain (U~ 'H)" = SVH. Using this and substituting (11,2) into (11,1)
we prove the relations (11,2). It follows

Ro(t, 1) — Ry(t, £) = Bo(t, 1) — By(t, 1),
Mg R,(0,5) + M, R(1,5) = 0,

from (11,1). We obtain (10,15) from here, using Lemma 3.4 and (11,2). It also holds
MOHO + MlHl = (M()UO + MIUI)Y.

Provided that the left hand side is a regular matrix, the unique solution of (10,9 —10)
is given by (10,8).

3.12. Example. We shall study the equation (10,4) if Sy = S;. Then we may put
So = S; = I without loss of generality. So we get the Fredholm integral equation

1
(12,1) 40=40+U@jV®ﬂgm,teJ,
0
with degenerate kernel. The corresponding boundary value problem (10,9—10) is
(12,2) x(t) — P(f) x(1) = a(t) — P(t) a(t), tesf,
(12,3) M, x(0) + M, x(1) = Mg a(0) + M, a(1),

where P = UU ™! and where we assume
(12,4) MoUp + MU, = 0.
(T) has a unique solution
1 -1 1
x(t) = a(t) + U(1) [I - j V(s) U(s) ds:| J V(s)a(s)ds, tes,
0 0
if

'[lV(s) U(s)ds & #.

0
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On the other hand, it follows from (12,4) that the boundary value problem (12,2 —3)
has not a unique solution.

3.13. Examplé. Let (10,4) be of the form

t -M 1
(13,1) x(t) = a(t) + —1 | x 4 Me x, tes,
1—e™], 1—e

where 1 — exp (—M) # 0. Using the notation of Theorem 3.10 we obtain

M Me™M
So = , S, = , S=M, U=V=1,
O T M P e ™

H(t)y=¢e", tes, P=0, Q=M.

We put M, = exp(—M), M; = —1 so that (10,1 —3) hold with ! = m = 1. The
boundary value problem (10,9 — 10) has the form

(13,2) () — Mx(t) =ad(l), tes,

(13,3) e M x(0) — x(1) = e™™ a(0) — a(1) .

So the solution of (13,1) is

(13,4) x(t) = eM [xo + J“e_MS a(s) ds:l , tesf.

Substituting into (13,1) we obtain that (13,1) is not uniquely solvable for all a. We
shall prove that there does not exist an equation of the form (10.8) such that all its

solutions a for arbitrary x satisfy (13,2—3). Indeed, if the opposite were true, the
relations

(13,5) P=Q+ HTW,
(13,6) (MoHoT, + M,H,T,) W =0
would hold. Substituting into (13,6) we should obtain

(e_MTl il e—MTo) W= 0
so that
TW = (To - Tl) W=0.

Substituting into (13,5) we should obtain M = 0, which is a contradiction.

3.14. Remark. Let (6,5—6) hold for the kernel of the equation (1), that is, let (I)
be an equation of the form (10,4). Let the propositions of Theorem 3.10 hold with
the exception of (P). Then (10,4) follows from (10,9 — 10) (Theorem 3.6). The reverse
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assertion is not generally true. (Example 3.12) (10,4) follows from (10,9—10)
(Theorem 3.7) if the boundary value problem (10,9—10) is uniquely solvable for
the unknown a. The solution of (10,9) is given by the completely analogous formula
(10,8) if also (P) holds and then (10,9 —10) also follows from (10,8) analogously as
from (10,4). If (P) does not hold such an equation need not exist. (Example 3.13.)
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