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Časopis pro pěstování matematiky, rol. 99 (1974), Praha 

THE EQUIVALENCE OF SOME INTEGRAL EQUATIONS 
AND BOUNDARY VALUE PROBLEMS 

JIRI CERHA, Praha 

(Received April 5, 1973) 

1. PRELIMINARIES 

1.1. Notation. For m, n = 1, 2, ..., / r X n(Km X") will stand for the space of all real 
(complex) m x n-matrices with the Euclidean norm (denoted by | - | ) . We shall 
denote the identity matrices by I and the zero matrices by 0 or, more detailed, /„, 0mn. 
The m-dimensional vectors will be identified with column matrices and we shall 
write shortly Rm(Km) in stead of * w X l ( K w X l ) . x(A) will be the range of a matrix 
A e KmXn

9 AT its transpose. RnKn(KnKn) will be the set of all regular n x n-matrices. 
Let mt > 0, nj > 0 be integers for i = 1, 2, ..., p; j = 1, 2, ..., q; YijeKmiXftJ. 
We shall identify the matrix 

ï - , Y22 
Yч 
'2q 

^Р1 ?р2 ' ' • УрЧт 

with the corresponding element of KMxN

9 where M = ml + ... + mp9N = nt + ... 
... + nq. The partial derivatives of a function/ with the domain in Rp will be denoted 
by 

DíДMl,...,up) = Ðíl '*/(«.,...,!.,) 
Э.1+.. .+ 

' " / ( « . , . . . , И P ) 

őи'.1 . . . ôu1/ 

where / = (ii9 ..., ip) denotes some multiindex, p — 1,2,... We define the 0-th 
derivative of a given function to be equal to the function itself. Let % be a subset of 
the domain of a function/. T h e n / / ^ will denote the corresponding partial function. 
W will be the closure of a set ^ , ^ r ° the set of its inner points, J = <0, 1>. Let 
# 0 , ^ , , ..., # r be disjoint domains in RP9 <8 = <g0 u . . . u ^ r , / : ^ -> KmXn, / , = 
= / / ^ . , i = 1, ..., r, fc ^ 0 an integer. We shall denote by CJ*lH(9) the space of 
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those/for which all derivatives of/, of all orders gfc exist and may be continuously 
extended on#,., i = 1, 2,..., r. We shall suppose that/, are defined on ,̂- by these 
extensions, i =*1, 2, ..., r. C f t ^ ) will be the subset of those / e C{k^0) for which 
fi(t) are regular matrices for all t e§h i = 1, ..., r. We shall sometimes omit fc = 0 
and n = 1 in the notation introduced. 

LJ,Xn(iQ) will be the Lebesgue space of all m x n-matrix functions" f for which 
\f\p is integrable on Q. 

Now, we shall introduce some simple lemmas concerning the so called adjoint and 
complementary adjoint matrices — see mostly O. VEJVODA, M. TVRDY [2]. /, m, n 
will denote positive integers, / 4- m = In. 

1.2. Lemma. Let 

(2Д) M0,MíєKmXn, 

(2,2) X([M0, M,]) = m . 

Then there exist 

(2,3) P 0 , P , єJSГ"x' 

so that it holds 

(2,4) '(EЬ 
(2,5) MoPo + M^P. = 0 . 

1.3. Remark. Let us denote 

(3.1) M^=\M0,MX\, 

(3.2) ,.p.]. 

We can express Lemma 2 in the following equivalent form: let 

(3.3) MeKmx2n, X(M) = m. 

Then there exists 

(3.4) PeK2nxl 

so that x(P) = I, 

(3.5) MP = 0 . 
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(The columns of the matrix P form a basis of all solutions of the equation Mx -= 0. 

It holds P = PQ, where Q e KlRl, if both P and P fulfil (3,4-5).) 

1.4. Lemma. Let (2,1 —5) hold. Let us denote 

Then 

(4,2) G e A-2"R2n, 

<«> C ° T = [ o 0 0 c , ] -
where 

(4,4) G 0 e K m R m , G j e ^ ' . 

1.5. Remark. G0, G, are the Gramm matrices formed by the rows of M and 

columns of P, respectively (the notation (3.1 —2) being used). 

1.6. Lemma. Let 

(6,0 U0, U, є K"R» , 

let (2,1-5) hol \d. Let us put 

(6,2) So = Uг'Л , s, = i 

Then it holds 

(6,3) S0, Sj є K" , 

(6,4) € : ] ) -
(6,5) M0U0S, + MjUjSo = 0 . 

Conversely, (2,1 - 2 ) , (6,1-5) imply (2,3-5). 

1.7. Lemma. Let (6,1), (2,1-2) hold. Then there exist S0,Si so that (6,3-5) 
hold. Conversely, the existence of M^Mi satisfying (2,1 — 2), (6,5) follows from 
(6,1), (6,3-4) . 
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1.8. Lemma. Let m = / = n. Then the equivalence of 

(8.1) m l(M0U0 + MXU,) = n , 

(8.2) x(S0 ~Sl) = n 

follows from (2,1-2), (6,1), (6,3-5). 

Proof. Let us define P0, Pi by (6,2). Then using Lemma 1.4 with the corresponding 
notation we obtain 

[M 0 M,-| rUo o I r/ sq = rM0U0 + M1U1O i 
iPl P] \ Lo U J LI S0\ lPT

0U0 + P\Ui G J ' 

The first two matrices on the left hand side and G\ are regular. Hence we conclude: 
the regularity of S0 — Sl9 left hand side, right hand side and M0U0 + MXUX are 
equivalent. 

2. DIFFERENTIAL EQUATIONS 

2.1. Theorem. Let P e CH*J(S);fe Cn(J); M 0 , M t e KmX", d e Km, Z ([M 0 , M j ) = 
-= m. 77iew we obtain all solutions x e C^X)(J) of the boundary value problem (D) 

(1.1) x-P(t)x=f(t), 

(1.2) M 0 x(0) + Mj x(l) = d 

from the formula 

(1.3) x(f) = tf(f) |"x0 + p I " 1 / ] 

if x0 ranges over all solutions of 

(1.4) Nx0 = f0 

where H is the fundamental matrix 0/(1,1), 

/ 0 = d - M 1 H 1 r í ř - , / ) 

(1.5) iV = M0H0 + MiHx , 

(1.6) Ho = H(0), H ^ H O ) . 
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2.2. Corollary. The problem (D) has a unique solution for arbitrary / , d if and 
only if x(N) = n = m. This solution is given by 

(2,1) x(t) = H(t)N~lld + M0H0 P H " 1 / - M ^ f IT1/! 

Proof. Theorem follows from variation of constants formula. Putting x0 = N~lf0 

in (1,3) we get (2,1) after simple calculation. 

3. FREDHOLM EQUATIONS AND BOUNDARY VALUE PROBLEMS 

3.1. Notation. In the following, n ^ 1 will be a fixed integer, J = <0, 1> c J?1, 
^ 0 -= {[t, s]eR2 :l > t > s > 0}, 9t = {[f, s] €/?2 : 1 > s > f > 0}, ^ = #0 u 
u ^j cz R2, Be C^ffi kernel and a e C[l)(J) the right hand side of the integral 
equation 

(I) x(t) = a(t) = B(r, s) x(s) ds , r e i , 
J o 

with the unknown function x e Cn(J). Using the notation introduced, we write 

* , , , ) - / * o M , ! > ; > s > 0 

\ Bt(t, s), 1 > s > t > 0 

So we shall also write the equation (I) in the form 

(1.1) x(t) = a(t) + B0(t, s) x(s) ds + Bt(t9 s) x(s) ds , t e J , 

where B- e C j 1 ^ , ) ; i = 0, 1. 
Finally, we de note 

(1.2) J8(r) = B0(r, r) - B,(r, 0 , * 6 * . 

3.2. Problem. We shall study the convertibility of the equation (I) to the form of 
the boundary value problem (D) and vice versa, the problem having been mentioned 
to the author by J. NAGY. Equivalence of the following there assertions will be shown: 

(i) the kernels B0, Bt are degenerate of a special type, 

(ii) the function #(•, s) is a solution of (D) with / = 0, d = 0 on J — {s} for 
seJ9 

(iii) all solutions of (I) satisfy (D) with P, M0, Mt independent of a. 
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These results include those in [l] concerning Volterra equations and initial value 
problems. First of all, we show that we may work with a special form of the kernels 
B0, Bt in (I) without loss of generality, if B0, Bt are degenerate. 

3.3. Theorem. Let 

(3.1) B0(t, s) = U0(t) V0(s) , [t, s]e%, 

B,(t,s) = U,(t)Vl(s), [ u ] e f , , 

where U0, Ux e C^m(J); V0, Vx e C«\n(f). 

Then there exist an integer q > n and degenerate kernels B0, Bx e C^q(J x J) 
of the form 

(3.2) S0 = P°°] , B^l^0] 
Lw0 oj [w, °J 

so that 

(3.3) B0(t, s) = 0(t) S0 9(s) , Bt(t, s) x- 0(t) S, V(s); t,sef, 

where S0, S„ S0- Ste K"*9, 0 e C$q(f), Pe C$q(J) and it holds: Let a, x e 
€ C(

q
k\J); a, x _ C«\J), y e C«ln(S), 

(3,4) 

Then 

(i) if x is a solution of 

a = •CI 

(ï) Jč(í) = ã(t) + ï B(t, s) x(s) ás , 

where 

x satisfies (I), 

S(t,s) = /Bo(t,s), ^>t>s>o, 
\ Bt(t, s), i > s > t > 0 

(ii) if x is a solution of (I), there exists (unique) y e C^kJn(j) so that x defined 
by (3,4) satisfies (I). (The assertion of the theorem or, more precisely, its easy 
modification, is fulfilled with q = n for some kernels) 
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Proof. Let us put, for example, q = n -f 3m, 

U = 

/„ U0 u_ 0 " 'o„.п 
0 /m 0 0 

0 0 Im 0 
, v = v0 , s_ = 

o o 0 /„ v, 

So = /4; »ЬM=- W o m я 
łЯ.И 

o m „ 
W,И 

, W,(í,s) = ľ i t ø 

W- _-Vo(s) 

2/„ 0 0 0 
0 0 Im 0 
0 0 0 /m 

o - / „ 0 0 

; t, sєJ ; 

and define B0, 2?! using (3,2). Then both (3,3) and (3,2) hold. From (3,2) (i) follows 
immediately. We shall prove (ii). Let x be a solution of (I). Let us put 

y(0 = I W0(t, s) x(s) ds + I W,(t, s) x(s) ds , tef . 

Then x defined by (3,4) satisfies (I). Finally, the regularity of matrices U(t), t e J, 
S0, 5j is evident. 

3.4. Lemma. Let Ue C<R>(.y); V0, Vt e C< £ ( - / ) ; 

(4.1) B0(t,s) = U(t)V0(s),[t,s]e§0; Bt(t9 s) = U(t) Vx(s) , [ f , s ] e ^ . 

Lef /, m be nonnegative integers, I + m = In, Then the following assertions (i) 
and (ii) are equivalent. 

(i) There exist M0, Mt £ KmXn so that it holds 

(4.2) MoB1(0,s) + MlBo(l,s) = 0, seS; X([M0, M j ) == m . 

(ii) There exist S0, Si £ KnM, V£ C j i ^ ) so fhaf it holds 

(4.3) V0(5) = S0V(S), V^S^s), 5 6 / ; ^ P H U / . 

Moreover, it holds: 

(iii) Let (4,2) be satisfied. Then we may choose the matrices S0, St I/I (4,3) ar­
bitrarily so that they satisfy 

(4,4) M0 U(0) Ѕ І + M, U(l) Ѕ 0 = 0 

and have the required range. On the other hand, we may choose M0, M_ in (4,2) 
arbitrarily so that they satisfy (4,4) and have the required range, supposing (4,3). 
(We can find S0, St (M0, M_) in the following assertions (iv), (v) similarly.) 
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(iv) Let there exist M0, M1eKn*n satisfying (4,2) with m = n and 

(4.5) ^ l{M) = n 

where 

(4.6) M = M0 U(0) + Mj 17(1) . 

Then there exist S0, S1eK"x" satisfying (4,3) with I = n and 

(4.7) X(S) = n , 

where 

(4.8) ' S = S0 - Sx . 

(v) Similarly, the existence of M0, Mx satisfying (4,2), (4,5) follows from the 
existence of S0, Sx satisfying (4,3), (4,8). 

Proof. Let 

Uo-=U(0), U^V(1)9 0 - [ " ° ° J . 

(i) => (ii): Let (4,2) hold. Let us choose P0, Pt from Lemma 1.2 and let us define 
G, G0, Gx, S0, Sx similarly as in Lemmas 1.4, 1.6. It follows 

GÜ UJ UKJ 
from (4,2) and Lemma 1.4, where 

V=G-x\PlU0Vx +Pj ,t/1F0). 

It holds 

G' 

so that 

1 = G^G7)-1 G-1 = G^GGt)'1 - GT["G<>1 ° _ "1 

Гu^мlsą гol 
Ltlг^мľSoJLVJ 

and (4,3) holds. 
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(ii) => (i): Let (4,3) hold. Let us choose M0,Ml from Lemma 1.7. Then (4,2) 
follows from the identity 

M0 B,(0, s) + M, B0(U s) = (M0U0Sl + M ^ S o ) V(s). 

Now we easily obtain (iii) from the above and, using Lemma 1.8, (iv) and (v) as well. 

3.5. Remark. We may write general degenerate kernels B0, Bi in the form (3,1). 
(See [1].) It follows from Theorems 3.3-3.4 that we may complement an arbitrary 
equation (I) with degenerate 2*0, Bt to the equivalent form of the same type where 
(4,1—5), (4,7) hold and S0, St are regular. Generally, (4,4) does not follow from 
(4,1 — 3) but only a weaker assertion 

(M0 U(0) Sx + Mx U(l) S0) V(s) x = 0 , seJ, x e Kn. 

(4.4) follows from here if (V(s) x : seJ, xe Kn} = Kn, which is satisfied if, for 
example, V(s) is regular for some seJ. 

3.6. Theorem. The following assertions (i), (ii), (iii) are equivalent. 

(i) There exist P e CnXn(J), integer m H and M0, MleKmXn so that 

(6.1) x([M0,Ml]) = m; 

(6.2) Dl0B(t, s) - P(t)B(t, s) = 0 ; t, seJ; r + s ; 

(6.3) M0 Bj(0, s) + M t JB0(1, S) = 0 ; seJf . 

(ii) There exist integer / > 0, U e C ^ / ) , Ve Cj i^- / ) ; S0,S1 eKnXl so that 

(6.5) B0(t, s) = U(() S0 V(s), [ t , s ] e f 0 , 

(6.6) Bt(t, s) = U(f) S t V(s) , [ t , s ] e f 1 . 

(iii) There exist PeCn%n(J), integer m = 0 and M0, M. etf"""' so that (6,1) 
ho/ds and a// solutions x of (I) satisfy the boundary value problem (where /? is given 
by(U2)) 

(6.7) x(t)-[P(t) +p(t)-]x(t) = d(t)-P(t)a(t), teJ, 

(6.8) M 0 x(0) + M t x(l) = M 0 a(0) + M. a(l) 

/o r arbitrary a e C*1^./). 
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Remark. Let (i) or (iii) hold with some m, M0, Mu P. Then both (i) and (iii) 
hold with the same m, M0, M-, P. Moreover, (ii) holds with /, U, S0, Sx satisfying 
M0U0Sl + M-.C/-S0 = 0, m + / = 2/i. 

Proof, (i) => (ii): Let us suppose (6,2). Let U be the fundamental matrix of (6,2). 
Then (4,1) holds and (ii) follows from Lemma 3,4. 

(ii) => (i): (6,2) and P = UU~l follow from (6,5 — 6). Then we apply Lemma 3.4. 

(i) => (iii): Let x be a solution of (I). Then 

(6.9) x(t) - [P(t) + P(t)l * 0 = «(') - Pit) a(t) + 

+ I [D 1 0 B(t, s) - P(t) B(t, s)] x(s) ds , 

(6.10) M0 x(0) + M, x(l) = M0 a(0) + M, a(\) + 

+ J [M0 B(0, s) + M, B(\, s)] x(s) ds . 

This together with (6,2 — 3) implies (6,7-8) with the same P. 

(iii) => (i): Let us choose x e C^\J) and find a so that (I) holds. (6,9-10) follows 
from (I). The integrals in (6,9—10) equal zero if (6,7 — 8) also hold. Since x is arbi­
trary, we obtain (6,2 — 3). 

3.7. Theorem. Let U e C$n(J), P = UU_1; M0, M„ S0, S, e K"*n, U0 = 1/(0), 
U, = 1/(1), Z = M0U0 + MiU! 

(7.1) x([M0,M,]) = x ( P ° l ) = n, 

(7.2) MoUoS! + M , U 1 S o = 0 . 

Then the following four assertions are equivalent: 

(i) Jf holds 

(7.3) D10B(f,s) -P(f)B(f,s) = 0 ; t,seJ, . + s, 

(7.4) M0 Bi(0,s)+M t Bo(l,s) = 0, s e i , 

(7.5) X(Z) = n . 

(ii) There exists Ve Cnxn(j) so that 

(7.6) B0(t, s) = U(t) S0 V(s) , [t,s]e$0, 

(7.7) B.(*. s) = l/(t) Sj V(s) , [f, s] e ^ , 
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and 

(7.8) /(S0 - S.) = « • 

(iii) The equation (I) is equivalent to the boundary value problem (with the 
unknown function x) 

(7.9) *(*) - [P(r) + jB(f)] *(*) = d(t) - P(t) a(t), teJ , 

(7.10) M0 x(0) + M t x(l) = M0 a(0) + M t a(l) 

for all a e C(l)(J). 

(iv) For all f e Cn(J), d e K", there exists an a e C(
n
l)(J) so that the boundary 

value problem 

(7.13) x(t) - [P(t) + /?(/)] x(r) = f(t), r e / , 

(7.14) M0x(0) + Mx x(\) = d 

is equivalent to the equation (I) and 

(7.15) d(t) - P(t) a(t) = f(t), teJ, 

(7.16) Moa(0) + Mia ( l ) = d 

hold. (This a is unique and is given by 

(7.17) a(t) = U(t)Z-x\d.+ M0U0 P U ^ f - M-l/- f U~lf\. 

Proof. We conclude the equivalence (i)<i=>(ii) from Lemma 3.4 (iv), (v) and (iii) 
following the arguments proving Theorem 3.6. 

(i) => (iii): Let us suppose (i). Let x satisfy (I). Then (6,9—10) hold and (i) yields 
(7,9-10). On the other hand, let (7,9-10) hold and let us put 

X(t) = x(t) - a(t) - B(t, s) x(s) ds . 

We get X(t) = P(t) X(t), t e J using (7,9) and M0 A(0) + Mx l(\) = 0 using (7,4), 
(7,10). So we obtain k(i) = U(t) l(0\ M0 A(0) + Ml k(\) = Z 1(0) = 0. It follows 
A(0) = 0 from (7,5) so that X(t) = 0, t e J and (I) holds. 

(iii) => (i): Let (iii) hold. We prove (7,3 — 4) following the arguments proving 
(iii) in Theorem 3.6. Now, let us choose x und let us find a so that (I) holds, (iii) 
follows from (7,9 — 10). If Z were not regular, we obtain by Theorem 2.1 that the 
boundary value problem (7,9 — 10) (with the unknown a) has a solution a 4= a. We 
get (I) with a substituted by a from here and (in), which is a contradiction and 
hence (7,5) holds. 
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(iii) => (iv): Let us suppose (iii). Then we get (7,5). Let us define a using (7,17). 
We obtain (7,15-16) from Theorem 2.2. Let x satisfy (7,13-14). Then (7,9-10) 
hold and, using (iii), (I) holds as well. Conversely, we get (7,9 — 10) from (I) using (ii) 
and (7,13-14) follows from here and (7,15-16). 

(iv) => (iii): The unique solution a of (7,15 —16) is given by (7,17). Let us definef d 
using (7,15-16). Then (I) is equivalent to (7,13-14), that is with (7,9-10) so that 
(iii) holds. 

3.8. Remark. We may see the interesting symmetry of a and x in the boundary 
value problem (7,9-10). We have proved: (7,9-10) follow from (I) if (7,6-7) hold. 
Using the mentioned symmetry we may expect similarly that (7,9 — 10) will follow 
from some integral equation of the type (I) with the unknown a. We shall prove that 
this equation is identical with the formula expressing the solution x of (I) by means 
of the resolvent kernel R of the kernel B, provided that R exists. 

This theorem follows from the known theory of integral equations. 

3.9. Theorem. Let the equation (I) with the kernel B e LnXn(J x J) have for all 
a eL2

n(J) a unique solution xel}n(J). Then there exists the so called resolvent 
kernel R e Lnxn(J x J) such that we may write the solution x in the form 

(9.1) x(t) = a(t) + f R(t, s) a(s) ds , ae L2
n(J). 

It holds 

(9.2) R(t, s) - B(t, s) = J B(t, u) R(u, s) <\u , 

(9.3) R(t, s) - B(t, s) = R(t, u) B(u, s) Au , 

for the kernel R on J x J. Moreover, if B e C$0) then also Re C$0) and 

(9.4) R0(t, t) - R,(t, t) = B0(t, t) - Bx(t, t), t e J . 

3.10. Theorem. Let I, m, n be nonnegative integers, I + m = 2n; M0, Mx e KmXn; 
S0, S. e JT""; V,HeC$n{f), VeC\»n{S), U0 = U(0), U, = U(l), H0 = tf(0), 
Hy = H(l), S = S0- Su P = UU"\ Q = HH~X. Let 

(10.1) • X([M0,M1ll) = m, J S
s
l~\) = l> 

(10.2) MoUoS! + MtUiSo = 0 , 

(10.3) HH-1 = UU-1 + USV. 
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(P) Let there exist a solution x e C^\J) of the integral equation 

(10,4) x(t) = a(t) + U(t) ["So Cvx + St ! V x l , teJ 

for all a e C^\J). 
Then there exist T0, Ty eK"*'; We C\i\(J) such that it holds: (i) 

(10,5) €])-
(10.6) M0H07i + MiHiTo = 0 , 

(10.7) UU"1 = HH"1 + UTW, 

where T = T0 - 7\. 

(ii) (10,4) and the equation 

(10.8) a(t) = x(t) + H(t) \T0 (wa + rAwal, t e / 

are equivalent (for arbitrary a, x). 

(iii) It follows 

(10.9) x(t) - Q(t) x(t) = d(t) - P(t) a(t) , r e / , 

(10.10) M0 x(0) + Mx x(l) = M0 a(0) + Mt a(l) 

from (10,4) or (10,8). 

(iv) If I = m = n, 

(10.11) x(S) = n 

and (10,9 — 10) hold then (10,4), (10,8) also hold and the boundary value problem 
(10,9 — 10) has a unique solution (for the unknown a) for all x. 

(v) If I = m = n, 

(10.12) X(T) = n 

and (10,9-10) hold then (10,4), (10,8) also hold and the boundary value problem 
(10,9 — 10) (with the unknown x) has a unique solution for all a. 

Remark. The solution of (10,4) is given by (10,8) and vice versa. If (10,11) holds, 
the solution of the boundary value problem (10,9 -10) (with the corresponding 
unknown) is given by (10,4). If (10,12) holds, the solution is given by (10,8). The 
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equations (10,4), (10*8) are completely symmetric as well as their relations to (10,9 to 
10). The corresponding couples are 

x n a , U+-+H, V+-+W, S0<r+T0, S{^Tt, S+-+T, P <-> Q. 

Proof. We may write (10,4) in the operator form (/ — B) x = a where / is the 
identity mapping and B is a totally continuous mapping of L2(J) into itself. For 
C{

n
l\J) is dense in L2

n(J) there exists a solution of (10,4) for all aeL2
n(j). The 

number 1 is a regular point both of the operator B and its adjoint. Consequently, 
the solution is unique and we may write 

(10.13) x(t) = a(t) + J R(t, s) a(s) ds , 

where R-eLnXn(J x'J). We obtain ReCJ^Jg) from Theorem 9. The equation 
(10,4) has the form (I) where the kernel B satisfies (6,4 — 6). Using Theorem 3.6 we 
obtain (6,7 — 8) (that is (10,9 — 10)) from (10,4) since, using (10,3), we may write 
P = UU"1, P + P = IIU'1 + USV = HH~l = Q in (6,7). (10,13) and (10,7) are 
equivalent. Therefore (10,9 — 10) follow from (10,13). We shall apply Theorem 3.6 
to the equation (10,13) (with the unknown a). Since (by Theorem 3.9 and (10,3)) it 
holds 

(10.14) Q(t) + R(t +, t) - R(t - , t) = Q(t) - p(t) = Q(t) - U(t) S V(t) = P(t) 

we get the assertion (iii) of Theorem 3.6. (The equation which we obtain, using (6,7), 
from (10,13) is identical with the equation (10,9), which is satisfied by the solution of 
(10,13).) So both the assertions (i), (ii) of Theorem 3.6 and the remark following this 
theorem hold. From here it follows that we may put the function U in Theorem 3.6 
equal to H and choose T0, Ty, Wso that (10,5 — 6) hold and 

(10.15) R0(t, s) = H(t) T0 W(s) , [t, s]e<$0, 

Ri(t,s) = H(t)TlW(s), [t,s]e$l. 

Substituting this into (10,14) and using the definitions of P, Q we obtain (10,7). 
Substituting again from (10,15) to (10,13) we get (ii). (iii) has been already proved 
and (iv), (v) follow immediately from Theorem 3.7. 

3.11. Remark. The resolvent equation of (10,4) is 

(11,1) R0(t,s) = U(t)S0V(s) + 

+ U(t) [s0 t'vRj-, s) + S0 fVi?0(-, s) + sj VR0(-, s)l, 

Rt(t, s) = U(t) S, V(s) + 

+ U(t) [s0 f V/^% s) + S, (SVRt(-, s) + S, C VR0(-, s ) l , t < s . 
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The resolvent kernel is given by (if it exists) 

(11,2) R0(t9 s) = H(t) Y~% TI - ( f VH\ H(S)~3 U(s) SI V(s) , t > s , 

Rt(t, s) = H(r) Y - ^ i | 7 + ( J VH) H(s)-1 U(s) SI V(s) , t < s , 

where 

Y= Uo'Ho - S, J VH = U^Hj - So J VH . 
Jo Jo 

From (10,3) we obtain (U_ 1H) ' = SVH. Using this and substituting (11,2) into (11,1) 
we prove the relations (11,2). It follows 

R0(t, t) - /*-(*, t) = B0(t9 t) - BX(U t), 

MoI?1(0,s) + M 1 K o ( l , s ) = 0 , 

from (11,1). We obtain (10,15) from here, using Lemma 3.4 and (11,2). It also holds 

M0H0 + MXH, = (M0U0 + MXU,)Y. 

Provided that the left hand side is a regular matrix, the unique solution of (10,9—10) 
is given by (10,8). 

3.12. Example. We shall study the equation (10,4) if S0 — St. Then we may put 
S0 = S! = I without loss of generality. So we get the Fredholm integral equation 

(12.1) x(t) = a(t) + U(t) | V(s) x(s) ds , t e J , 

with degenerate kernel. The corresponding boundary value problem (10,9—10) is 

(12.2) x(t) - P(t) x(t) = d(t) - P(t) a(t) , teJ, 

(12.3) M0 x(0) + Mt x(l) = M0 a(0) + M, a(l), 

where P = UU-1 and where we assume 

(12.4) M0U0 + MjU! = 0 . 

(I) has a unique solution 

x(t) = ii(r) + U(t) 11 - f V(s) U(s) ds l f V(s) a(s) ds , i e / , 

if 

V(s) U(s) ds + J. 1-
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On the other hand, it follows from (12,4) that the boundary value problem (12,2 — 3) 
has not a unique solution. 

3.13. Example. Let (10,4) be of the form 

/«* ,\ / \ / \ M r Me~M f1 

(13.1) x(r) = *(*) + - z~-\x + - - x , r e / , 
i — e Jo i — e J t 

where 1 — exp( —M) 4= 0. Using the notation of Theorem 3.10 we obtain 

M Me~M 

S0 = — ™ - ^ 9 s 1 = J ! f _ , 5 = M , U = V=1, 
1 - e M 1 - e M 

H(t) = eMr, teS, P = 0 , Q = M . 

We put M0 = e x p ( - M ) , Mt = - 1 so that (10,1-3) hold with / = m = 1. The 
boundary value problem (10,9—10) has the form 

(13.2) x(t) - M x(t) = d(f), ( e i , 

(13.3) e~M x(0) - x(l) = e~M a(0) - a(l) . 

So the solution of (13,1) is 

(13.4) x(t) = eMt | x 0 + I e~Ms a(s) ds 1 , t e J . 

Substituting into (13,1) we obtain that (13,1) is not uniquely solvable for all a. We 
shall prove that there does not exist an equation of the form (10.8) such that all its 
solutions a for arbitrary x satisfy (13,2 — 3). Indeed, if the opposite were true, the 
relations 

(13.5) P = Q + HTW, 

(13.6) (M0H0TX + M ^ F o ) W = 0 

would hold. Substituting into (13,6) we should obtain 

(e~MTx - e-MTo)W=0 
so that 

TW = (T0 - Tx) W = 0 . 

Substituting into (13,5) we should obtain M = 0, which is a contradiction. 

3.14. Remark. Let (6,5 — 6) hold for the kernel of the equation (I), that is, let (I) 
be an equation of the form (10,4). Let the propositions of Theorem 3.10 hold with 
the exception of (P). Then (10,4) follows from (10,9-10) (Theorem 3.6). The reverse 
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assertion is not generally true. (Example 3.12) (10,4) follows from (10,9 — 10) 
(Theorem 3.7) if the boundary value problem (10,9—10) is uniquely solvable for 
the unknown a. The solution of (10,9) is given by the completely analogous formula 
(10,8) if also (P) holds and then (10,9-10) also follows from (10,8) analogously as 
from (10,4). If (P) does not hold such an equation need not exist. (Example 3A3.) 

References 

[1] Cerha, J.: A notе on Voltеrra intеgral еquationѕ with dеgеnеratе kегnеl, CMUC I3, 4 (1972), 
659-672. 

[2] Vejvoda, O., Tvrdý, M.: Exiѕtеnсе of ѕolutionѕ to a linеar intеgroboundary-diffегеntial еqua-
tion with additional сonditionѕ. Anuali di matеmatiсa pura еd appliсata IV— LXXXIX 
(1971), 169-216. 

[ЪУ Schmeidler, W.: Intеgralglеiсhungеn mit Anwеndungеn in Phyѕik und Tесhnik, Lеipzig 
1955. 

Adresa autora: ìввll Praha 6 - Dеjviсе, Suсhbátaгova 2 (Elеktгotесhniсká fakulta ČVUT). 

379 


		webmaster@dml.cz
	2012-05-12T06:23:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




