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INTRODUCTION

Let f and g be two nonlinear functionals defined on a real Banach space X. Con-
sider the eigenvalue problem

(E) Af'(u) =g'(u), ueM/(f)={xeX:f(x)=r} |

(r > 0 is a prescribed number, f’ and g’ denote Fréchet derivatives of f and g,
respectively). The value of the functional g at the solution of (E) is called the critical
level. Denote by I' the set of all critical levels. L. A. LyUSTERNIK and L. SCHNIRELMANN
proved that the set I is, under suitable assumptions, at least countable (see [1, 10, 11]).
In papers [2, 3] it is proved that I is a sequence of positive numbers converging to
zero. While the determination of the lower bound for the number of points of the
set I' is based on topological methods, the upper bound is found on the basis of
properties of real-analytic functionals fand g. It is our object in this paper to prove
that if f and g are not real-analytic functionals, then the set I is small, i.e., x-Hausdorff
measure of I' is zero, where « depends on differentiability of functionals f and g. The
proof is based on the Morse-Sard theorem in infinite-dimensional Banach space which
was firstly for so-called ‘“Fredholm functionals’ considered by S. I. POCHOZAJEV
[13] (see Section 2). The results about the structure of the set I" are obtained in
Section 3. Section 4 deals with the applications of previous abstract results to the
boundary value problem for ordinary differential equations.

1. NOTATIONS AND GENERAL REMARKS

Let X be a real Banach space with the norm |||, X* its dual, Q an open set in X.
Consider the other (real) Banach space Y with the norm |||y and a mapping F of Q
into Y.
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Differentiability of mappings. The mapping F is said to have Fréchet derivative
dF(x, +) at the point x € Q if dF(x, -) is a linear and bounded mapping of X into Y
such that for each he X

F(x + h) — F(x) = dF(x, h) + r(x, h),
where

lim M’h_)"_! = 0 .
iwi~o  [[A]

Further, for each h,, h, € X, denote

dF(x + &hy, hy) — dF(x, hy)
; .

If we have defined d"~'F(x, ...) as a multilinear continuous mapping of X x ...
... X X ((n — 1)-times) into Y, then we set for each hy, ..., h,e X

d2F(x, hy, h,) = lim
[adY

n—1 __ n—1
(#) d"F(x, sy . By) = lim & Fx + hy by, - ”"-51) d"TF G By - Bei)
-0

The mapping F is said to have Fréchet derivative d"F(x, ...) of the order n, if
d"F(x, ...) is a multilinear continuous mapping of X x ... x X (n-times) such that
the relation () holds uniformly for |h,|| < 1,...,||h,] < 1. We shall denote
dF(x, *) = F'(x),i.e., dF(x, h) = F'(x) (h)and d"F(x, ...) = F"(x). Let us suppose F
has Fréchet derivatives up to the order nin X. If X, X, are subspaces of the space X,
and X = X, ® X,, x, € X,, x, € X,, then we denote for he X,

F (%1, x2) (h) = 05,F(xy, x2; h) = lim F(xy, x3 + é? — F(xy, x,) .
&-0

Linear mapping ,,F(x;, X,; *) (for x,, x, fixed) of X, into Y is said to be partial
derivative of F in x = (x4, X,) with respect to the variable x,. Analogously, we can
introduce partial derivative with respect to the variable x, and the partial derivatives
of the higher orders (up to the order n). For example, we see

-0 6
If f is a functional on €, then
d*f(x, b, +) = f"(x) (, *)

(for x fixed) can be considered as a continuous linear mapping of X into X*. We
shall denote f"(x) (k, .) = f"(x) (k).

aiz,xlF(xl’ X35 hl! hz) = 11m asz(xl + 6h17 X2 h2) - asz(xls X325 h2) .
4
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Spaces C**. Let k be a positive integer, a a real number, a € <0, 1). We shall write
F e C4(Q) if

(a) F has on @ all Fréchet derivatives up to the order k and these derivatives are
continuous in the variable x, i.e., with respect to the norm

PO =, e B0 o

,,,,,

(b) the derivative F® is a-hdlderian, i.e., there exists ¢ > 0 such that
reachnveq O PO e -l
or each x, y € Q.

We shall denote C*°(Q) = CHQ).

The mapping F is said an element of the space C**(Q) (2 denotes the closure of Q)
if FeC*%(Q) and the derivatives F¥ (j =0, ..., k) are continuously extendible
on Q.

Proposition 1.1 (Implicit function theorem). Let X, Y, Z be real Banach spaces,
Q an open set in the space X x Y, [xo, yo] € Q. Consider a mapping F e C*%(Q)
of Q into Z such that there exists the mapping [Fy(xo, yo)]™* of Z onto Y and
F(x09 yO) = 0.

Then there exists a neighborhood U(x,) of the point xo, and a neighborhood U(y,)
of the point y, and only one mapping ¢ from U(x,) into U(y,) such that

(1.1) [Fy(x, y)]~* exists and maps Z onto Y for each x € U(x,) and y € U(y,),
(1.2) F(x, ¢(x)) = 0 on U(x,).
Moreover, ¢ € CH%(U(x,)).

Proof of this assertion for F € C* (i.e., for « = 0) is given in the paper [6]. Let us
show that it holds for « € (0, 1), too. Suppose that U(x,), U(y,) are neighborhoods
and ¢ is a mapping such that (1.1), (1.2) are fulfilled and ¢ e C¥(U(x,)). We shall
prove ¢ € C**(U(x,)). It follows from (1.2)

dF([x, p(x)], k) = 0,F([x, 9(x)], h) + 0,F([x, o(x)], do(x, b))

for each h € X. By using (1.1) we obtain

9'(x) = — [F(x o(e)] ™ Filx, ().
Further, (if k 2 2), '
9'(x) = = [F(x, o()] 7" Fyx(x, o(x)) [Fy (x o(NI™*
F(x, o(x)) = [Fy(x, o(x))]7* Fy,(x, 0(x)) 9'(x) [Fy(x, (x))] "
Fi(x, (x) = [Fy(x, o(x))]™* Fiulx, 9(x)) = [Fy(x 0(x)] ™" Fiylx, 0(x)) ¢'(x)
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It is easy to see that

e®(x) = &,(x) + ... + B, (x),
where ®(x) (for fixed x) is a multilinear continuous mapping of X x ... x X (k-
times) into Z, which can be obtained as a suitable composition of [F)(x ¢(x))]™*
and of partial derivatives up to the order k (i = 1 ... p). Derivatives of F of the
order k are a-hélderian mappings, too.

Hence, it is sufficient to show [Fj(x, ¢(x))] ! is a-holderian. For X, x, € U(x,)
we have (||| is the norm defined in (a))

ICF5(x1 @Ge )]t = [Fy(x20 @(x2)] 7M1 =
ICF5 (2 @(x2))] 7 Fyxs, 0(x2)) [Fy(x1> 0(x1))] ™ =
— [Fy(x2, 0(x2))] ™ Fylxy, 0(x1)) [Fy(xs o(x))]7*]1 =
< [ [Fy(x2 0] M1 - [ Fix2s @(x2)) — Fifxs, o(x1))]: -
s o(x )] 71 £ efxs — x|

(it is easy to see that the norms ||[F)(x, ¢(x))]~*|, are bounded for x from a suf-
ficiently small neighborhood U(x,) of the point x,).

Hausdorfl measure. Let 4 be a subset of n-dimensional Euclidean space E, and let s
be a positive real number. Set for each ¢ > 0

Hs.(A4) = inf ) (diam 4,)°,
i1

the infimum being taken over all countable coverings {4;}{2, of A such that
diam A; < &. The number

p(A4) = lim p, (A)
=0+

is said to be s-Hausdorff measure of the set A. If u(4) = 0, then the set 4 is said to
be s-null. If 4 is s-null, then 4 is r-null for each r > s. If s = n, then p,(4) is the
n-dimensional Lebesgue measure of the set A.

2. INFINITE-DIMENSIONAL VERSION OF THE MORSE-SARD THEOREM

The well-known theorém about real-valued functions, so called Morse-Sard
theorem, says that if Q is an open subset of Euclidean n-space E, and f e C"(Q) is
a real function, then the Lebesgue measure of the set f(B) is zero, where

B = {xeQ:grad f(x) = 0} .
For further consideration, the following generalization is fundamental.
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Proposition 2.1 (see [8]). Let Q be an open set in E,, let f be a function, f € C**(Q)
(where k is positive integer, a € €0, 1).
Then the set f(B) is [n[(k + a)]-null.

?

Remark 2.1. If [n/(k + )] < 1, then the Lebesgue measure of the set f(B) is zero.
If s < [n/(k + a)], then we can construct a function f € C*%(R2) such that the set f(B)
is not s-null (see [8]). If f € C*(RQ), then the set f(B) is s-null for each s > 0, but this
set need not be countable. It is proved in [14], that in the case of real-analytic func-
tion f (i.e., each point w €  has an open neighborhood U such that the function f
has a power series expansion in U), the set f(B) is countable.

In the sequel we wish to give analogous assertion as in Proposition 2.1 for functionals
in infinite-dimensional Banach spaces. As the counterexample of 1. KUPKA (see [9])
shows, in the whole generality such assertion is not true. I. Kupka constructed the
functional f € C® on the separable Hilbert space such that the set f(B) has nonzero
Lebesgue measure. S. I. PochoZajev in the paper [13] introduced the notion of
“Fredholm functional” and he proved under some assumptions that the set f(B)
has a zero Lebesgue measure for f e C(Q). The analog of Morse-Sard theorem for
real-analytic “Fredholm functionals” in infinite-dimensional Banach spaces and for
functionals which derivative has a finite-dimensional range is given in the paper [4].
In this Section we give the proof of Morse-Sard theorem for “Fredholm functionals’
fe C"'“(Q), Q is an open subset in infinite-dimensional Banach space.

We recall that the linear operator 4 defined on the Banach space X with values
in Banach space Y is said to be Fredholm operator if the following conditions are
fulfilled:

(i) R = A(X) is a closed subspace of Y,
(ii) Y/R has a finite dimension,
(iif) Z = A~*(0) is a finite-dimensional subspace of X.

Note that if A = L + M, where Lis an isomorphism of X onto Y and M is linear
completely continuous mapping of X into Y, then A is Fredholm operator (theorem
due to L. Schwartz — see e.g. [5, Appendix B]).

Definition 2.1. Let X, Y be two Banach spaces, 2 < X an open subset and x, € Q.
The mapping F : Q — Y is said to be Fredholmian at the point x, if F has Fréchet
derivative F'(x,) at the point x, and F'(x,) is a Fredholm operator. Denote by
N(F, x,) the dimension of the space

{heX : F(xo) (h) = 0}.

The functional f: Q — E, is said to be Fredholm functional at the point x, € @
if f has Fréchet derivative f' on some open neighborhood U(x,) = £ of the point x,
and the mapping f' : U(x,) = X* is a Fredholmian operator at the point x,. (From
the definition of Fredholm functional f follows that there exists f"(xo))-
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If f: @ - E, is a Fredholm functional at x, € Q denote by N(f, Xo) the dimension

of the subspace
. {heX :f"(xo) (k) = 0}

(i.e., N(f, xo) = N(f’, x))- _

The main theorem (Theorem 2.2) is not lucid at the first sight. This is the reason
for the formulation of the following theorem, which is its special case. Theorem 2.2
is useful for the proof of Theorem 3.2, which is necessary for some more complicated
applications (see the proof of Theorem 4.1 for p > 2).

If ¢ is a given functional defined on Q, then we denote
={yeQ:¢9'(y)=0}.

Theorem 2.1. Let ¢ be a functional defined on an open subset Q of a Hilbert
space H. Let k 2 1 be a positive integer, a € {0, 1). Suppose that ¢ € C**1%(Q),
Yo € B and ¢ is Fredholm functional at the point y,.

Then there exists a neighborhood V(y,) = Q of the point y, such that

(B nV(y0)
is [N(o, yo)/(k + )] — null.

Corollary 2.1. Suppose that k = 1 is an integer, « € {0, 1) and ¢ is a functional
defined on an open subset Q of a separable Hilbert space H. Let ¢ € C**1: “(Q) and
denote for positive integer n

B, = {yeB: ¢ is Fredholm functional at the point y, N(¢, y) < n} .

Then the set ¢(B,) is [n[(k + «)]-null.

Proof. Assume that Theorem 2.1 is proved. For each y, € B, let V(y,) be an open
neighborhood from the assertion of Theorem 2.1. The system {V(yo)},oep, forms an
open covering of the set B,. Therefore we can select a countable covering {V(yi)} =1
for the space H is separable. Since the sets o(B n V(y,)) (i = 1,2, ...) are[n/(k + o)]-

null, the assertion follows from ¢(B,) = U ¢(B n V(y;)).
i=1

Corollary 2.2. Let the assumptions of Corollary 2.1 be fulfilled. Suppose ¢ € C*(Q)
and denote B = ) B,.

n=1
Then the set ¢(By) is s-null for each s > 0.
(This follows immediately from corollary 2.1.) -
We shall consider two Banach spaces Y, Y, satisfying the following condition (Y):
there exists a bilinear form ¢.,.» on Y; x Y, such that <.,.) is continuous on Y,
for each fixed y, €Y, and if y, € Y, (¥, y2) = 0for each y € ¥;, then y, = 0.
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For example, the spaces ¥; = C$*(<0, 1)) (the space of all functions from the class
C*%(<0, 1)) which values in the points 0,1 are zero) and Y, = C*%(<0, 1)) satisfy
the condition (Y) with the bilinear form

{u, vy = J:u(t) or) dt .

Theorem 2.2. Let Y, Y, be two Banach spaces satisfying condition (Y), Q an open
set in Y,. Let @ be a functional on Q, € C"”(Q). Suppose for each y e Q there
exists ®(y) € Y, (under our assumptions there exists only one) such that

(@) @'(y) (h) = <h, &(y)>
for each ye Q, heY,.

Let k be a positive integer, « € 0, 1> and y, € B. Suppose that ® € C**(Q) and ®
is Fredholmian at the point y,.

Then there exists a neighborhood V(y,) = Q of the point y, such that the set

(B 0 V(y0))
is [N(®, yo)/(k + a)]-null.

Remark 2.2. Theorem 2.2 implies Theorem 2.1 by the setting Y, =Y, = H, {.,.)>
the inner product in H and @ = ¢'.

Proof of Theorem 2.2. Define F = &'( Yo) (i.e., F is a linear mapping of Y, into Y5).
The subspace R = F(Y;) is closed and the space Y,/R is finite-dimensional (see
Definition 2.1). Hence, there exists a projection Py of Y, onto R, i.e., a bounded linear
mapping such that P3 = Pg. Denote

Z, ={yeY, :F(y) = 0}.

The space Z, is finite-dimensional, dim Z, = N(®, y,), for the mapping & is Fred-
holmian at the point y,. Thus, there exists a closed subspace Z, of Y, such that
Z, ®Z, =Y, For each ye Bitis #(y) = 0 and thus

0 = &(y) — &(yo) = F(y — yo) + r(y),
where

lim ——1(22-—— =0.
y=yo "Y - yO”n
Hence,

0= F(y — yo) + Prr(y).
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For y €Y, we shall write y = [z,, z,], where z;€Z,. For yeQc Y, =2, x Z,
define

_A([z1> 22]) = A(y) = F(y = yo) + Prr(y).

We have 4 € C*(Q) and
A;z(z?’ Zg) =F, ([Z(l)’ 2(2)] = .Vo) .

The linear operator A,(z?, z3) is an isomorphism of Z, onto R and therefore there
exists [A4,,(z3, z3)]~*. Implicit function theorem (see Proposition 1.1) implies that
there exists a neighborhood U(z}) < Z, of the point z§, a neighborhood U(z}) < Z,
of the point z3 (such that [U(z9) x U(z3)] = 2) and unique mapping w from U(z])
into U(z3) such that
(2.1) A(Zl’ a)(zl)) = 0
for each z, € U(z9).

Moreover, w € C*(U(z9)).

Define

?o(z1) = o([21, o(z,)])

for z, e U(z?) and
D = {z, e U(z}) : 9¢(z,) = 0} .

It is easy to see @, € C*(U(2Y)). If [z4, z,] € B 1 [U(29) x U(z3)], then we obtain
from (2.1) that z, = o(z,) and thus

0o(z1) = ¢;,([215 22]) + 0,([21, 22]) @'(2,) = 0.
Hence,

(B n [U(z1) x U(z3)]) = 9o(D 0 U(z1))

and with respect to Proposition 2.1 there exists a neighborhood Uy(z]) = U(z9)
such that the set 9o(D N Uq(2?))is [N(®, yo)/(k + a)]-null. Thus, the set p(B n ¥(x,))
is [N(®, yo)/(k + «)]-null, where V(y,) = Uq(23) x U(z3).

Corollary 2.3. Let Banach spaces Y,, Y, satisfy the condition (Y), let the space Y,
be separable, let Q be an open set in Y,. Let ¢ be a functional, ¢ € C**(Q). Suppose
that ® is a mapping of Q into Y,, ® € C**(Q), the condition (®) is satisfied. Set

B, = {y € B: & satisfies Fredholm condition in y, N(®, y) < n}.
Then the set ¢(B,) is [n[(k + a)]-null.

Proof. Analogously as Corollary 2.1 but by using Theorem 2.2.
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Corollary 2.4. Let the assumptions of Corollary 2.3 be fulfilled and let ¢ € C*(Q),
® € C(0). Set By = U B,
n=1

Then the set ¢(By) is s-null for each s > 0.
(1t follows immediately from Corollary 2.3.)

3. INVESTIGATION OF THE SET OF ALL CRITICAL LEVELS

Let X be a Banach space, let f, g be real functionals on X. For a given number
r > Odefine ’

M(f) = {xeX :f(x) =r}.

This Section deals with the eigenvalue problem

(3.1) | Af(x) = g'(x), xeM(f).

If xo € X is a solution of the problem (3.1) with a certain number 4 = Ao, then x,
is said to be a critical point of the functional g with respect to the manifold M (f)
and the corresponding number 1, is said to be an eigenvalue of the problem (3.1),
the number g(x,) is said to be a critical level of g. We shall denote the set of all
critical levels by I" and the set of all critical points by S, i.e.,

S = {x e M,(f): there exists A, Af'(x) = g'(x)}, T = g(S).

Remark 3.1. Suppose that f is (a + 1)-homogeneous, g is (b + 1)-homogeneous

with a > 0, b > 0 (i.e, f(tx) = 1*** f(x), g(tx) = *! g(x) for each t > 0, x € X).

_Itis easy to see that f” is a-homogeneous, g’ is b-homogeneous (as the mappings of X
into X*) and

f =@+ )7 (xf(x), 9(x)=(b+1)"(x,9'(x)

for each x € X (the brackets (x, x*) denote the value of the functional x* € X* at the
point x € X). Let x, be an arbitrary critical point of the functional g with respect to
the manifold M,(f), 4, a corresponding eigenvalues (i.e., (3.1) holds with x = x,,
A = Ag). Then we obtain (under assumption (xo, f'(xo)) # 0) that

2y = (x0:9'(x0)) _ b+ 1 g(x0) _ b+1 a(xo) -
(x0 f'(x0)) a+1 f(xo) rla+1)

Hence, if we obtain that there the set I is s-null for some s > 0, then the same is true
for the set of all eigenvalues.

The reason for the formulation of Theorem 3.1 is the same as in the case of Theorem
2.1. Theorem 3.1 is a special case of Theorem 3.2, but it can be proved also directly
from Theorem 2.1. Theorem 3.1 gives a possibility to obtain information about the

{
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set of critical levels (or eigenvalues) in certain special applications (see the proof of
Theorem 4.1 for the case p = 2). Theorem 3.2 is applicable in more general setting,
namely, in the case of differential operators with higher growths (see the proof of
Theorem 4.1 for p > 2).

Theorem 3.1. Let f, g be two functionals defined on a real Hilbert space H.
Suppose f, g € C**1*(H) and let xo € S and let 1, be the corresponding eigenvalue.
Then under assumption f'(xo) % 0 and Aof — g is a Fredholm functional at x,
there exists a neighborhood V(x,) of the point x, such that the set g(S n V(x,)) is

[(NGof — g, xo) + 1)[(k + @)]-null.

Corollary 3.1. Let f, g be two functionals defined on H, f, g € C***(H). Suppose
f'(x) % Ofor each x € S and denote by S, the set of all y € S such that the functional

(y,g(y)) .
( e ))f( x) — g(x)

is a Fredholm functional at the point y and
W(20 ) s
(3 ()

Then the set g(S,) is [(n + 1)/(k + )]-null.

Corollary 3.2. Suppose that the assumptions of Corollary 3.1 are fulfilled with
f» g € C°(H). Then the set g(Sy) is s-null for each s > 0, where Sg = U S,,.

n=1

Theorem 3.2, Let X, X, X, be three real Banach spaces, X, = X. Suppose X, X,
satisfy the condition (Y) (see Section 2). Let f, g be functionals on X, f, g € C}(X) N
N C** 14X ). Suppose for each x € X, there exist F(x) € X,, G(x) € X, (under our
assumptions there exist uniquely) such that
(f,) f'(x) (k) = <h, F(x)>, g'(x) (k) = <h, G(x)>
for each x,heX,.

Suppose F, G € C*%(X,). Let x, € S n X, and let X, be the corresponding eigen-
value. Assume that the mapping J,F — G : X, — X, is Fredholmian at the point X,
and,

(f2) there exists ho € X, such that f'(xo)(ho) + 0.

Then there exists a neighborhood V(xo) = X, of xo such that the set g(S nV(xo))
is [(N(AoF — G, x,) + 1)/(k + a)]-null.
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Remark 3.2. Setting X; = X, = H, {.,.) the inner product in H and F - f,
G = g’ we obtain that Theorem 3.2 implies Theorem 3.1. °

Proof of Theorem 3.2. Denote

Y ={yeX,:f(xo)(y) = 0}.
Then X, =Y, @ {h,}, hence for each x € X, there exist £ € E; and y € Y; such that
x = Eho + y. Consider &, € Ey, y, € Y, such that x, = &hy + yo. Define f(, y) =
= f(Eho + V).
Then f is a functional defined on E, x Y;, fe C**V%(E, x Y,),

a:f(an )’0) = f’(XO) (ho) *0
f&y)=r,

and

for (Ehe + y) € M(f).

Implicit function theorem (see Proposition 1.1) implies there exist neighborhoods
U(&) = E; (of the point &), U(y,) < Y; (of the point y,) and only one mapping #
which maps U(y,) into U(&,) and such that

J(y),y) =r

for each y € U(y,).
Moreover, n € C**1%(U(y,)). Define

o(v) = 9(n(y) ho + )
for y € U(y,)- .
For y € U(yo), v € Yy we have

N (o) = — BT _  F(1y) ho + ) ()
G2 OO = = @) T F0) e +9) (ho)

(see the proof of Proposition 1.1). From here

N (o) = — o f'((y) ho + y) (v)
(3:3) ?'(y) (v) = —g'(n(y) ho + ) (ho) F00) o & ) (ho) +

+ g'(n(y) ho + ) (v).

Denote
V(xo) = {x e Xy :x = Lho + y, E€U(&), yeU(yo)},
B = {yeU(0):0(y) = 0}.
From (3.3) we obtain: if x e S N V(xo), then y e B. Hence, g(S n V(x,)) = o(B).
It is easy to see that it is sufficient to prove there exists a neighborhood Uy(y,) <

< U(y,) of the point y, such that the set p(B n Uq(y,)) is [(N(AoF — G, xo) + 1):
:(k + a)]-null.
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We shall prove that the functional ¢ satisfies the assumptions of Theorem 2.2.
Define

. Y, ={yeX,:<ho, y) =0}.

It is easy to see the spaces Y,, Y, satisfy the condition (Y) with the restriction of the
form {.,.> onY; x Y,. Define

_ _ <ho, G(n(y) ho + ¥)>
(4 o) =-3" ) o & 9)o F(n(y) ho + y) + G(n(y) ho + y)
for y € U(y,).

Obviously, @ maps U(y,) into Y, and, ® € C**(U(y,)). From (3.3), (3.4) and the
assumption (f,) the validity of the assumption (&) in Theorem 2.2 follows. Now, we
shall show that @ is Fredholmian at the point y,.

By calculation we obtain

(3.9) P'(y0) (v) = —2o F'(xo) (v) + G'(xo) (v) —
_ Lhq, —=AoF"(xo) (v) + G}(xO) (o>
<ho, F(J’o)) F(yO)

for each veY,.
Denote

M={veY, :9'(yo)(v) = 0},
K ={veX, : 1 F(xo) (v) — G'(x0) (v) = 0} .

If v e M and at the same time

(3-6) <ho, Ao F'(x0) (v) — G'(x0) (v)> =0,

then clearly (from (3.5)) it is v € K.

Thus, if the relation (3.6) holds for each v € M, then M < K. In the oposite case
we can write M = M, @ {v,}, where

<Choy A F'(%0) (vo) — G'(%0) (vo)) *+ 0
and

ho, Ao F'(x0) (v) — G'(x0) (v)> =0
for all v e M,. Now we obtain as the above, that M, < K, hence

Mc K@ {vo} .
In all cases, we have ’

dimM < dimK + 1,
ie., )
* N(¢, yo) § N(}»oF - G, xo) + 1 .
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Further, the range R = (4o F'(x,) — G'(x,)) (X) is a closed subspace of X, of
finite codimension, the same is true also for the subspace

R" = (4o F'(xo) — G'(xo)) (Y1)
of the space Y,, for:
(1) if A F'(xo) (ho) — G'(x0) (ho) € R, then clearly R = R’;

(2) if Ao F'(xo) (ho) — G'(xo) (ko) € R’, then we know that (io F'(x,) — G'(x))
maps X, onto R and X; =Y, @ {ho}, where Y, is the closed subspace of X,;. Now
it follows immediately from Banach open mapping theorem that

= (4o F'(xo) — G'(x0)) (Y1)

is also a closed subspace of X,.

Since

R =R @ {4 F'(xo) (ho) — G'(xo) (ho)}

it is clear that R’ has a finite codimension. Now, if we define the projection P : X, —

- Y, by
P:x—>x—

Cign )
—_ 7 7 F s
Cho, Flrg)y | 0

then clearly
@'(yo) (Y1) = P(R)

and such projection of closed subspace of finite codimension is again closed subspace
of finite codimension.

Hence, the assumptions of Theorem 2.2 are verfied and thus there exists a neigh-
borhood Uo(yo) = U(yo) of the point y, such that the set (B n Uq(yo)) is
[(N(AoF — G, xo) + 1)/(k + a)]-null.

Therefore the set g(S N Vo(xo)) is [(N(AoF — G, xo) + 1)/(k + «)]-null, where

Vo(xo) = {x eX :x=C¢hy+y, Ee U(co), ye Uo()’o)} .

Corollary 3.3. Let the assumptions of Theorem 3.2 be fulfilled with X, separable.
Moreover, suppose that for each x € X there exists h € X, such that f'(x) (h) + 0
and let for ye S n X be (y,f'(y)) + 0. Denote by S, the set of all ye Sn X,
such that the mapping

- 80D iy G
MO

is Fredholmian at the point y and

v <(y, 9O
1)

-G,Y)§n
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Then the set g(S,) is [(n + 1)/(k + a)]-null.
(The proof is similar to that of Corollary 2.1.)

Corollary 3.4. Let the assumptions of Corollary 3.3 be fulfilled with F,Ge
e C(X,), f, g € C*(X,) n CY(X).
Then the set g(Sy) is s-null for each s > 0, where

(This Corollary follows immediately from Corollary 3.3.)

Corollary 3.5. Suppose the assumptions of Corollary 3.3 (3.4, respectively) are
satisfied. Let f be (a + 1)-homogeneous and g be (b + 1)-homogeneous (a, b > 0).
Denote by A, (A, respectively) the set of all eigenvalues corresponding to the set S,
(Sg, respectively).

Then the set A, is [(n + 1)/(k + «)]-null (the set Ag is s-null for each s > 0,
respectively). :

(This follows from Corollary 3.3 (3.4, respectively) and from Remark 3.1.)

4. APPLICATION TO THE BOUNDARY VALUE PROBLEM
FOR ORDINARY DIFFERENTIAL EQUATIONS

Let m be a positive integer, p a real number, p = 2. Denote by W;"((O, 1)) the well-
known Sobolev space with the norm

lelpm = (£, [ o ex) ™.

ie., W;,"((O, 1)) is the space of all functions u with the absolute continuous de-
rivatives ) on the interval <0,1) (i = 0,1, ..., m — 1) and such that for the de-
rivative of the order m (which exists almost everywhere on 0, 1) it is

1
J. lu™(x)|P dx < o .
0

If {=1[lo,lys--»lm] €Ems1, then we shall denote 7 = [Co»1s-ver (1] € Enme
For each u € W;'(€0, 1)) define

Y(u) = [u, u®, L u™] e [L]mY,

n(w) = [u, u®, ..., u™ V] e[L,]".
Set

Wr(€0, 1)) = {u € W;(€0, 13) : u(0) = u(1) = ... = u™~D(0) = u™1Y(1) = 0} .
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Further, let V" be a subspace of W,'(<0, 1)) which is determined by the conditions

m—1

(4.1a) Yeu®0) =0, j=1,..,r,
i=0
m—1

(4.1b) Z C,}j u(i)(l) =0, j=1,..,s,
i=o0

where r, s are given numbers, 0 < r < m, 0 < s £ m and the rank of the matrix (c?j)
is r, the rank of the matrix (c};) is s. (If r = 0, then no condition (4.1a) is prescribed.)
Obviously,

Wm0, 1)) = ¥V < Wr(0, 1)) .
Let us consider two real functions
A(X, $or s L) € CHK0, 1) X Epyy) s
B(x, 10, - - m—1) € C*(0, 1> x E,).

Suppose that the following growth conditions hold for each { € En+1, X €¢0, 1)
(u is a positive function defined on E,,):

ac’

(4.22) z—?(x, C)l Sum (L +[Ga)P, i=0,1,...m~1;
(4.20) gg (x, c)’ < ) (14 [Caly s

0%
4.2 O = P j=0,1,...,m—1;
(4.2¢) o, X Spm) (1 + |G, ij=0,1 m
(4.2d) 0’4 (x, c)' Sulm)(1+ LY, j=01,...,m—1;
42) |2 c>| < ) (1 + [Gal)2.

Assume there exist ¢; > 0, ¢, = 0 and in the case V + W(<0, 1)) also ¢; > 0

such that for each {, {® € E,,+1, x €0, 1)

(43) f

0 acl 6{ (xa Co) C Cj 2 clll:mlz + cZIﬂIZ

where || denotes the norm in E,, and the absolute value in E,.
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Let us consider functions Hy, H;, No, Ny € C*(E,,) such that

m-—1 a
(4.9) : Y —E@)nm;z0 (k=0,1)
i,j=0 5'Ita nj

for each n°, n e E,,.

Now, we define two functionals f, g on V:

(45) f(u) = ﬂA(x, {(u) (x)) dx + Ho(n() (0) + Hy(n(u) (1)) ,

o(u) = f :B(x, () () dx + Nof(w) (0)) + Ny(n(u) (1))

We shall consider the eigenvalue problem
(4.6) Afi(u)=g@W), ueM(f)={ueV:f(u) =r},

where r > 0 is a prescribed number. An element u € V' is a solution of the problem
(4.6) if f(u) = r and

@4.7) j z ——(x {(u) (%) hO(x) dx +
+ 4 Z [ 2 (n(u) (0)) K9(0) + -'('7(“) (1) h"’(l)]

j S 9B (x, nfu) () KO(x) dx — P [aN"( () (0)) H(0) +

0106]

+ 2 ) () 00| = 0

for each h e V.

Lemma 4.1. Let the conditions (4.2a, b) and (4.3) be fulfilled. If u € V is a solution
of the problem (4.6) with 2 + 0, then u € C™(<0, 1)).

Proof. The equation (4.7) holds for each heV. If he Wr(<0, 1)) < V, then (4.7)
can be written as follows:

@) [ {12 eme g [T BT % w o) -

- 3—5,‘ (t, n(u) (t))] dt} H™(x) dx = 0.
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Hence, for each h € WJ'(<0, 1)) we have the equation of the type

(4.9) J:R(x) h™(x)dx =0,

where R is a function of the class L,(<0, 1)), 1/p + 1/p* = 1 (this follows from the
growth conditions (4.2a, b)). Let us show that the following assertion (*) holds:
if R € L,(<0, 1)) and (4.9) holds for each h € W,'(<0, 1)), then there exist constants
ag, .., 4, such that

R(x)=ag + a;x + ... + ap_;x™ 1.
For the proof of the assertion () denote by ao, a4, ..., a,,_, such constants that

1
J.(R(x) +ag+ax+ ...+ a1 X" Hxidx =0
0

foreachj=0,1,....,m — 1.
The last relation implies

1
J (R(x) + ap + ayx + ... + ap_x" ) h™(x)dx = 0
0
for each h € W"(<0, 1)). Suppose f € L,(<0, 1)) and set

h(x) = f (e = 9" - )' (1) + bo + byt + . +b,,,_11"‘°")dt,

where b; (j =0, ..., m — 1) are choosen such that h e W;"((O, 1)). Substituting the
function h into (4.9) we have

0= J‘I(R(x) + a9+ ..+ o X" ) (f(x) + bo + ... + by x™ ) dx =
0
= JI(R(x) +ag+ ...+ apo X" ) f(x)dx.
0

Thus R(x) + a¢ + ... + a,—;x™"! = 0, for the function f € L,(<0, 1)) was arbitrary.
Hence, the assertion (x) is proved.

In our case we have
(4.10) F(x, {(u) () = jTA (x, L(u) (¥)) =
_1 ey [* G = it B,
(R[S 2 @ - 5 e ]a s

+ ag + ... + a,,,-lx’""> = g(x) e C(€0, 1) .

233



Since

6{,,, (x, n, ,,,) > 0

for each x € <0, 1) and all [, {n] € E,4; (see (4.3)), there exists on some neighbor-

hood U of the point [x,, () (¥o)] only one function (according to Implicit function
theorem) {,,(x, n) such that

Fx, . {ox, m)) = g(x)

for each [x, ] € U. Moreover, {,, is continuous on U. For sufficiently small |x — x|
it is [x, n(4) (x)] € U and

F(x, n(u) (x), Lnlx, n(u) (x)) = g(x)

and {,,(x, n(u) (x)) is continuous, for q(u) (x) is continuous. From (4.10) follows that
u(x) is a solution of the equation

F(x, {(u) (x)) =g(x),
too, and the uniqueness of the implicit function implies
w™(x) = Lulx, n(u) (x))

and thus 4™ is continuous on some neighborhood of arbitrary point x, € <0, 1),
which proves our lemma.

Lemma 4.2. Let the conditions (4.2) be fulfilled. Let ugeV, A % 0 and
= {veV:Af"(uo) (v; h) = g"(uo) (v, h) for each heV}.
Then dim D £ m.

Proof. Let ve D and h eV. Then
03 0B = ) o) = 4[5 T et (90000,
AT [% (n(u0) 0)) 520) N(0) +

+ aazl';l ('I(“O) (1)) v(l)(l) ‘h(j)(l)] — ' mi:o 6 ' : " (xa ’I(uo) (x)) U(i)(x) h(j)(x) dx —

b [ No_ Ny o 0(u0) () v<'><1>hw(1>]

an 10n;

(with respect to the conditions (4.26—0)).
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At first, let us consider H, = H, = Ny = N; = 0. Set
V,={heV:h(1) = k(1) = ... = K™ (1) = 0} .

By using the formula

v(x) = J ) i v(""(t) dt + vP(0) + xo“*1(0) + .

(m—i—

xm—l—l

(m—i—1) v )

amd integration by parts we obtain for ve D, h eV,
(an11) 0 = A f"(uo) (v, h) — g"(uo) (v, h) =
- [ 2 ) + 45, T s () ).

0

ac ac
(x — "t 94
o (m —j — 1)1 3L, oL,
L &—_?m——l;)l'[ a?zgc (w0 () - gm- (o) (t))]'

(. Lue) ) ¥ 1 + 5, (=1

((:n_—?m 0 v"(z) dt + Pyv, 1)) dt} h™(x) dx ,

where

m—i—-1
Po, %) = 09(0) + x 0 I(0) + .. + — (o).

(m—i-1)

Analogously as the assertion () in the proof of Lemma 4.1 we can prove the fol-
lowing assertion (s+): if R € L,.(€0, 1)), (1/p + 1/p* = 1),

J‘IR(x) h™(x) dx = 0

for each h € V,, then there exist constants ao, a1, -+, 4,—1 such that
R(x) =4y +ax + ... + ar—lx'_l ’

where r is the integer from the condition (4.1a).
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Thus, we have from (4.11)

024 (s m-1 524 ) ()
AE(X’ {uo) (x)) o ™(x) + 2 3. = acm( 2 {(uo) (x)

. (_[ o I?m—i_l o™(r) dt) - ;g(—l)"'“" ) iy

o('”"—) o(m—j—1)

2 (1 o) () 0™(1) d + Z (=0

3Cm5Cj
[ @ - 2 n(uo)m)]
(I gm__>_7 I )=
iy T4 M LA g () P R) = E (<1

(x = pymit

o(m'—j—— 1)'[ 3¢, o¢; (t C( 0)())

This can be written in the form

(t (o) (t))] Pv, 1) dt .

x m—1
(4.12) v™(x) + f K(x, 1) o0™(1) dt = ag + ... + g, X1 + _;)v("’(o)fs(x),

[}}

where K(x, 1) € C(€0, 1) x <0, 1)), f; € C(K0, D) (E=01,...,m—1).
Let us consider the mapping

x m—1

(4.13) W:veV > o™(x) + J K(x, 1) v™(r) dt — zo”“)(o) fix).
0 =

Because

ofx) = J (o ‘) v("')(t) at + P(x) ,

where P is a polynomial of the degree at most (m — 1), we obtain immediateiy from
the fact that the Volterra’s operator

wi— w(x) + J:K(x, 1) w(r) dt

is continuously invertible in the space C(0, 1)), that the space D of all solutions
veV of the equation (4.12) is finite-dimensional. So we can restrict the mapping W
to D. Thus we have

dim D = dim Ker W + dim Im W.
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Denote w; € C(<0, 1)) such that

wi(x) + f K(x, £) wilt) dt = f(x).
(1]
Then each v e Ker W has the form

@14)  w(x) = f (x = :)' (va(o) F(0) dt + z v (0)

and with respect to condition (4.1a) we have
dimKer W m — r.
Since dim Im W = r, we conclude
dmD=r+m—r=m.

This concludes the proof in the case Hy = H; = N, = N, = 0.
Let us consider the general case. We can write

d o ('l(u ) (0) 0(0) KO(0) + 1 (ﬂ(uo)(l)) o (1) K1) =
n: 0 on; 0

- - °wu®wmﬁ(———7wwm

foreach heV,,i,j=0,1,...,m— 1.
Hence, also in the case we can derived the equation of the type (4.12), where the
functions

*H, » x
28 o) 0)

can be included in the functions f,(x). This completes the proof.

The following assumptions will be usefull for the main theorem of this Section:

(4.15) % 2>,
(4.16) ; 3”—" mmz0

for each x € {0, 1), alln e E,, withn = 0and k = 0, 1.

Theorem 4.1. Let the conditions (4.2)—(4.4), (4.15), (4.16) be fulfilled. Suppose
AeC**'%(0,1) x E,.4), Be C“'l’“(((), 1> x E,), Ho,H;,No,N, € C"'“'“(Em)
(k 2 1, ae<0, 1)).
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Then the set of all critical levels of the problem (4.6) (where f, g are defined
by (4.5)) is [(m + 1)[(k + o)]-null.

Corollary 4.1. Let the assumptions of Theorem 4.1 be fulfilled, let a > 0, b > Q.
Suppose that

A(x, 7)) = " A(x, 0),
Hj(m) =<' Hyx),
B(x, tn) = «**! B(x, ),
Nj(n) ="' Nyn)
forxe0,1>,{€E, ,,neE,, t>0andj=0,]1.

Then the set of all eigenvalues of the problem (4.6) is [(m + 1)/(k + «)]-null.
(This follows from Theorem 4.1 and Remark 3.1.)

Remark 4.1. The assumption Be C**1%(<0, 1) x E,) implies g € C**1%(V). But
it is not true that

(4.17) AeC" 1 %((0,1) x E,y ;) =fe Ct1%V).
In general setting this is true for certain subspaces of ¥ of the smooth functions. The

implication (4.17) holds under additional growth conditions on the derivatives of the
function A up to the order (k + 1).

Proof of Theorem 4.1. At first, let us show that this theorem in the case p = 2

and under assumption f € C**1.%(V) follows easily from Theorem 3.1 and Corollary
3.1. In this case, Vis a Hilbert space with the.inner product

(u,0), m = Z u‘”(x) v9(x) dx .

We have g € C**1-%(V) (see Remark 4.1) and

(@18)  f"(u) (h ) = jﬁ 0 I

at, o ,( | 200) () KOG () v +

+ 5 [ 06 ©) KO0 H0) + I 40 () KO0 1009 | 2 el
n: 0

L=

(see (4.3) and (4.4)), where ¢ > 0. (We have in (4.3) ¢, > Oin the case V + W(<0, 1))
and in the case V = W}'(<0, 1)) the norm | +||,,, is equivalent with the norm defined by

([l ax)
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only.) It follows from (4.18) that f"(u) (k) (as a mapping of variable h of V into
V* = V) is an isomorphism of ¥ onto V. Further, we have

g”(u) (h, U) , JZ; 6 a h(l)(x) U(”(x) dx +
+ mi‘ [a > (n(u) (0)) *(0) 2"(0) o (n(u) (1)) k(1) v(n(l)]
ij=o0|dn; 0 ,

It is easy to see from here that for fixed u € V' the mapping g”(u) (h) of V into V is com-
pletely continuous. Properties of f” and g” imply that the functional (Af — g) is
Fredholm in each point u € V. Using Lemma 4.2, Theorem 3.1 and Corollary 3.1 we
obtain our assertion.

Now, let us consider the more general case. We shall show the assumption of
Theorem 3.2 are satisfied setting X =V, X, = {v e C"(<0, 1)) : v satisfies (4.1a, b)}.
Further, we shall denote by w = [wg, wy, ..., w,] the elements of the space
[C(<0, 1))]™**, the elements of E,,, are denoted by y = [yo, ..., Y2m—1] and the
elements of the space [C(<0, 1))]"'+1 x E,, are denoted by [w, y], where we
e [C(K0, 15)]™*%, y € Eyp. Set

P = {[w, y]€[C(K0, 1D)]"*" x E,, ::20 J':)wi(x) v(x) dx +

m—1
+ Y (y:v0) + ym+:v?°(1)) = 0 foreach veX,}.
izo

Set X, = ([C(KO, 1))]"*! x E,,)[P with the usual norm of the factor space. If
[w, y] e [C(KO, 1))]"*! x E,, then we shall denote by [W, 7] an element of X,
which is generated by [w, y]. For each v e X,, [W, 7] € X, define

N ) () 09() dx + Z (i 92(0) + yms i v(1)) 5

i=0 JO

where [w, y] € [C(€0, 1))]"*! X E,, is an element generatting the class [, 7]. It
is easy to see that X, X, with the bilinear form (.,.) satisfy the condition (Y) For
each u € X, define

Flu) = [ 7],

where

wi(x) = z—;(x, () %)y i=0,..om;
y, "H°(,,(u)(o)) —0.m—1:
- =2—I;:(r1(u)(1)), i=0,...m—1.
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Then F is a mapping of X, into X, and for each u, v, h € X, we have

- (hy F(u)y = i ?é (x, {(u) (x) K9(x) dx +

0

+z(“wmmww+§wmeWU
(4.19) {h, F' (u) (U)> = . sz_ ac 3, (x C(u) (x)) v(')(x) h(-’)(x) dx +

+§Xa£wmmwwww+”

*wxmwm“mv
= f"(u) (h, v) .

Let us consider a fixed element u, € X . Then F'(u,) (v) is a mapping from X, into X,
Using (4.3), (4.4) it is

(4.20)  <v, F'(uo) (v)> = sz‘,o s (x, {(uo) (x)) v(x) v(x) dx +
“ (o ;wwxwwmwwm+anwwmwwnwm

E
'1;

f(c [ + e lv“’(X)lz) dx,

where ¢, > 0, ¢, = 0 and ¢, > 0 in the case V + W"(€0, 1). Hence, if F'(u) (v)
= 0, then v = 0. That means, the mapping F'(u,) (v) is one-to-one.

Let [W, 7] € X, be arbitrary. Let us show there exists v € X, such that

It

F'(uo) (v) = [W, 7] .
This holds if and only if '

(4.21)

. JZ— aC. X, (x, {(uo) (x)) v(x) B P(x) dx +

+ 5 (2 0 O) 0 100 +

1(«nu»wwnw%n)
D RCLCEE RO

for each he X,.

Introduce a Hilbert space

V, = {ze WP(<0, 1)) : z satisfies (4.1a, b)}
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with the inner product (.,.), . Let us seek a function v € ¥, such that the equation
(4.21) holds for each h e V,. The right hand side in (4.21) can be considered as a linear
functional on V,, i.e., as an element of V. The left hand side in (4.21) can be considered
as a bilinear form ((v, h)) on V,. By (4.18) we have

(v, 0)) 2 efv]2m

where ¢ > 0.

Thus, there exists v satisfying (4.20) for each h € V,. Further, analogously as in the
proof of Lemma 4.1 we can show v e X, and

lellx. = (o) |[%: 7]]x. -

We have proved that the mapping F'(u,) (v) for each fixed u, € X is an isomorphism
of X, onto X,.

Foru e X, set

G(u) = [w, 7] eX,,
where

() = 27 (1) ()
m —M%@wm
,Vm+1 = —( ( )(1))

fori=0,...,m — 1and w,(x) = 0.
We have

Ch, Ga)) ='"zo 2 ol () x +2 ( No (n(u) (0)) K(0) +
+53Wwam9=ﬂ@@,

@422) <k, G(u)(0)) = (x, n(u) (x)) v(x) hD(x) dx +

olloaa

"'Z= (36 1;0 (n(u) (0)) v(0) K(0) + ONy ("(u) (1)) v(1) h(')(1)> = g"(u) (h, v)

for each u, v, h e X,.

It is easy to see that for each uo € X, the mapping G'(1o) (v) of X, into X, is
completely continuous. Suppose Ao # 0. Thus the mapping AF — G is Fred-
holmian at arbitrary point u, € X;. Lemma 4.2 together with (4.19), (4.22) gives
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N(AoF — G, uy) £ m. According to Lemma 4.1 all solutions of the problem (4.6)
with 1 # 0 are the elements of the space X ;.

If 2 = 0 is an eigenvalue, then
m—1 1 aB .
0=yg'()(u) =} o, (x, n(u) (x)) u(x) dx +
i=0 Jjo ON;

+3, (5206 0670 + 52 06) () ).

on;

With respect to (4.15) and (4.16) it is u = 0. Hence the set {g(u) : u € X,, g'(u) = 0}
contains only one point g(0). This fact together with the previous considerations and
with Theorem 3.2 and Corollary 3.3 gives our assertion.

Remark 4.2. Let the assumptions of Theorem 4.1 be satisfied with exception of
conditions (4.15), (4.16). Then the set of all critical levels which correspond to all
eigenvalues 4 + 0 is [(m + 1)/(k + «)]-null.

Remark 4.3. The properties of the Hausdorff measure imply that to obtain some
reasonalbe result we must suppose [(m + 1)/(k + a)] < 1.
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