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OSCILLATION OF SOLUTIONS OF THE DELAY
DIFFERENTIAL EQUATION

y50) + TS 00E) = 0. nz 1

PAavoL MARUSIAK, Zilina

(Received September 28, 1972)

Our purpose in this paper is to give some ocsillation criteria for the nonlinear delay
differential equation

(1 Yo + 3 pOS DOl = 0, n21,

where y, () = y[h()] i=1,...m

(2 p:ieC[R, =[0,0),R,] (i=1,...,m)

(3) fieC[R,R], zf(z)>0 for z 0, f(z) isnondecreasing

on R(i=1,..,m)
(4) heC[R,,R], hft)<t for teR, (i=1,...,m).

We shall assume the under the initial conditions y(f) = ¢(t), t < o, y®(t,) =
=y, k=1,..,n — 1, the equation (1) has a solution which exists for all t =
=1, > 0.

A solution y(t) of (1) is called oscillatory if the set of zeros of y(t) is not bounded
from the right. A solution y(t) of (1) is called nonoscillatory if it is of constant sign
for sufficiently large ¢. The equation (1) is called oscillatory if every solution is oscil-
latory.

BurkowskI [2], GoLLwiTzeR [3], ODARIC-SEVELO [9, 10] have given necessary
and sufficient conditions for second order nonlinear delay differential equations to be
oscillatory. LADAS [4], MARUSIAK [8] have given oscillation criteria for the differen-

tial equation
YR + F(t, y(0), y[h(@®]) = 0.
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Recently, Kusano and ONost [7], SeveLo and VARrecH [11] and STAIKOS and
Sricas [12] (these papers appeared while my article was being reviewed) have proved
sufficient conditions for the oscillation of certain nonlinear delay differential equations

of arbitrary order.
In the next part we shall need the following lemma due to KIGURADZE [ 5, Lemma 2]

Lemma 1. Let u(t), ..., u™*)t) be absolutely continuous and of cosnstant sign
in the interval (to, ). If u(t) Z 0, u™(t) < O for every t = to, then there exists
an integer k with0 < k < m, m + k is odd and

(2) u()zo0, i=1L..k, t=t,,
(b) . (=Lilu() 20, i=k+1.,m, tZt,

G) (0 W) < 1 u*D), =1k 12 1.
(t - to) '
Analogous statement can be made if u(t) < 0, u™(f) 2 0 in the interval (¢,, co).
" Lemma 2. If u(®), ..., u™=1(t) are absolutely continuous and of constant s;'gn

in the interval (to, 0) and u(t) u™(t) < O, then there exists an integer k with
0<k<mm+ kisodd and

(6) u()u() 20, i=01,.,k and
(_1)m+:-1 u“"(t)u(t) >0, i=k+1,...m, t=t,, ‘

W) [u®(1)| g R Vi ) R 8 YN
®) 0(0)] 2 BT ()], i =1k, 2 27k
where .

2-(m+k+i)3 N

Bi:(m—k):..(m—k-!:i—l)'

Proof. The correctness of (6), (7) follows from Kiguradze’s lemma 1 [6] and its
proof. Integrating (7) i times (i € {1, ..., k}) from ¢, to t and usmg (6), we obtain

u(k—x (t _ to)m—k+l 1
| )(t)l (m=k)..(m—k+i-1)

Iu(m—l)(zm—k-—lt)l , t % to .

If we put ¢ instead of 2™~*~'¢ into the last inequality and then use u(f) uk~i+ lj(t) >
= 0, we get

© 0] 2 Wm0 2
> AR (el it 1Y i [u=D(0)]|, 22"y
(m=k..(m—k+i-1) - °
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Lett > t, =2.2m % 14, then t — 2" %!, > ¢/2 and from (9) with regard to
the last inequalities we get (8). o

Lemma 3. Let u(t), ..., u™(t) be continuous functions in the interval (t,, ) and
u®()u(t) >0, (k =0,1,....m), u(t) u™*(t) < 0 (m is an integer and let A be
a nonnegative real number. Then

lim —~— u(®)
—w u(t + A)
Proof.
{ > fim u(r) > 1 : _1, t1={t; ) m=i},
t»o u(t + A) 1+Alim“(t‘) t+A4; m>
t— o0 u(t
because

lim (1) lim (M)(tl)
t—w u(t) t=w U™ 1)(1)

Theorem 1. Let functions p;, f;, h, satisfy (2), (3), (4) and, in addition, suppose that

(10) 5[1 thz"‘l pt)dt < 0.

Then the equation (1) has at least one nonoscillatory solution.

Proof. Let us consider the following system

(11 yo(t) = {1, 1<t
1, t=t,
1, t <t
J’j+1(t) =1+ Z {J:o (s(2 p( )f.(y,[h (s)]) ds +
’ © (S _ to)Zn—l _ (S - t)2n—1 S
+ J; (2n — 1) pds) fly,[hds)]) ds,
where ¢, is chosen such that
(12) IIE?Sme i(z)li { f (—s—(z;w- pi(s)ds +
so(s _ to)2n-1 —- (S - t)Zn—l 9 ds
+J, (2n — 1) P'()d}él

That we can do because (10) holds.
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By mathematical induction, with regard to (11), (12) and (3), it is easy to show that
12 y()Sy;44(0)<2,j=0,1,..., t = t, holds. From the last inequalities it
follows that the seqiience {y(f)};%o of continuous functions is nondecreasing and
uniformly bounded on [ty, ) and therefore uniformly convergent on every finite
interval. Let y(f) = lim y,(f). Then 1 < )(f) S 2,¢ = t, and y(¢) is the solution
of the equation Joe

t<sty
y(t) N o s —t )
; { i 1)! P;(S)f;(y[hi(s)]) ds +
.[ (s—to )zz 1 S’-— 1)~ pi(S) FIGLY0)) ds},

However, it means that y(f) is a nonoscillatory solution of the equation (1). The proof
is therefore complete.

Theorem 2. Let functions p, f, h, satisfy (2), (3), (4) and, in addition, suppose that

13) (@) HMe)=1t—g(t), 0<g(t)<M, teR,
(i) there exists a number B, 1 < B such that

lim 1nff( 2) +0

el |2]?
(14) (i f 1 i) dt =
Then the differential inequality
) Y0 + pOfOMOD <0, teR,
® () + ) SOIOD 2 0, teR,]

has no positive [ negative] solution on [to, ®) for every tye R,.

Proof. Suppose that the conclusion of Theorem 2 is false. Assume that there exists
a positive solution y() of (A) for t = t, € R,. (The case of the differential inequality
(B) is treated similarly.) Since lim h(t) = 00 as t — co there exists a ; = t, such
that y[h(f)] > Ofort > 1,. (A) with regard to (2) and (3) implies

(15) ¥ < - p() fO[A(D]) <0, t21,.

From y2”(f) < 0, y(¢) > 0t follows that there exists t, = t, such that y(¢), y'(t), ...
., Y@=1)(1) have constant sign for t > t,. Then by Lemma 2 for ¥(¢) and its de-
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tivatives (6)—(8) hold, where ke {1,3,.. ,, — 1}. By (6), y**=1(t) is decreasing
and y*""Y(c0) = ¢ = 0 holds.

Integrating (A) from ¢ (¢ = t,) to 0 anq neglecting ¥y~ 1(w0), we get

(16) yemU(h) 2 Jwﬂs)f(yh(s)) ds, t2t,

and then in view of the monotonicity of y(2r-1)(t) and (4) we obtain

(17) YO 2 Jmp(s)f(Yh(s)) ds, t=t,.

I. From (7), for k = 1 we get
(18) y(O) z 2 yEneTi), tz 1.

If k = 1 then, with regard to (6), y"(t) < ¢ for t = t, y**"~1X(1) is decreasing and
so from (18) we have

yl(t _ M) g [t - M)Zu-Z y(2n~1)[22n—-2(t - M]
2 [t — M2 yCm0e D0, 126265+ M.

From (16) using the last inequality we get

(19) Y(t-M) 2 [:_M]2;~2 j C )] s, t2 8.

22n-2¢

Integrating (19) from t; to ¢, t = t5 ,we obtain

(20) y(t - M) - y(t3 _ M) > 22n-2¢ [22—2ns - M]Zn—l - [t3 _ M]Zn—l y
22n-2¢y 2n -1

t_MZn—l_t__MZn—‘l 0
x o) fTon(e)] ds + L= M1 = [ta = M] o) FLu(s] s .
2n -1 22n-2¢
From (20), with regard to the monotonicity of y(f), f(z) and t — M < h(t), we get

t [S - M]2n—1 - [t3 — M]Zn-l
2n -1

Wt — M) gf p(22"2s) f{y(s — M)] ds.

t3

In the sequel we shall use the method due to ATKINsON [1].

If we raise the last inequality by —pB (8 > 1), then multiply by {[t — M]**"* —
— [ts — M]*"~1} p(22"~21) f[y(t — M)], (t = t;) and integrate the resulting in-
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equality from t, to t5 (13 < 1, < t < t5), we have

@0 [l = M5 = [t = M2} 50729 D6~ M [ots — M)] s 5

< (2n - 1) [{f ([s — M=t = [1; — M]*"Y) p(22"25) f[ (s — M)] ds} ”]t.

4

For ts — oo the right hand side of (21) is bounded and therefore the integral
[ 71t = et = 1 = 29 36 - 20) 66 - 2] s
t4
is convergent. If we choose t, = 2M, we can show easily that
(22) J(t,) = fwsz"."lp(?’“zs)f[y(s ~M)][ys - M)]*ds < .
ta

By virtue of the assumption y(t) > 0,t=t, and Lemma 2 either y(oo) =b>0
or y(o0) = co. In either case, with regard to the continuity and the monotonicity of
f(2) and the assumption (ii) of Theorem 2, there exists T 2 t, such that

=M1, 100 1>
Ly 240 rET

Then, from (22) we get

w0 > J(t) 2 (T) = df

T 22n-27

2n 1 p(22n ZS) ds = d(22 2n\2n— IJ- t2n-—~1 p(t) dt,
which contradicts (14).
II. Let ke {3, ...,2n — 1}. Frome (8), for i = k — 1) we obtain,

y'(t) g Ktzn—zvy(Zn:-l)(t)’ t g 2(n-—kt2 — 23 s

where K = B, _,.
Then, with regard to (6) and (13) we have

yl(t) _Z_ yl(t _ M) ; K[t _ M]2n—2 y(2n—1)(t — M) , t > i4 23 + M.

From (17), by means of the last inequality it follows
CCELITES L WSV PO LR
t

Further, exactly as in the case I we obtain
(23) J(7s) =f s?1p(s) fIv(s — M)] [¥(s)] % ds < 0.
is
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(6) implies y(r) > 0, y'(t) > 0, y"(f) > 0 and therefore y(co) = co. Then, by
virtue of the assumption (ii) and Lemma 3

e DE=0] 0L 0]
METDOP R D sy T Ly

holds. In view of the last inequality there exitss T = 75 such that

=M. 45
DT =>d=0, t>T

Then we get from (23)
o > J(is) =z JT) = aj s2~1 p(22"~25) ds = d(22 %) 1'[ t*~1p(r)dt,

22n-2T
which contradicts (14).

This completes the proof of Theorem 2.
We shall now apply Theorem 2 to obtain the oscillatory character for the equation

1.
" Theorem 3. Let functions p;, fi, h; satisfy (2), (3), (4) and, in addition, suppose
(@) h(t) =t —g), 0= g(t) S M, teR,,(i=1,...,m)

(ii) there exists a number B, B > 1 such that

hmmflf‘( )| >0, (i=1,...,m).

|z]= IZl

Then the equation (1) is oscillatory if and only if

(24) J 2 p()dt =
at least for one je{1,...,m}.
Proof. 1. The necessity follows immediately from Theorem 1.

II. The sufficient condition. Let us suppose that the conclusion of Theorem is false.
Let y(1) be a nonoscillatory solution of the equation (1). We may assume to be specific
that y[h(f)] >0(i=1,..,m)for t = ¢, = t, € R,. Then from the equation (1),
in view of (2), (3) we have

(25) Y0 + O FOOD S0, 121,

and y(1) is a solution of (25). By virtue of Theorem 2, the inequality (25) has no positive
solution and this contradicts the fact that y(¢) is a positive solution of the equation
(1). The proof of Theorem is complete.
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Theorem 4. Let p satisfy (2) and, in addition,
(26) (@) heC'[R4,R], W(t)z= 0 for t2TeR,, h(t)<t, teR,,
limh(f) = 0 8 t— o0,
() feC[R,R], 2#f(z)>0 for z+0, f(z)20, zeR,
(c) for everye >0

® dz “® 4z
'f(z)<oo [—‘fzi<00]
@) @ . f TR o) di =

Then the differential inequality (A) [(B)] has no positive [negative] solutions on
[to, ) for every toe R,.

Proof. Suppose that the conclusion of Theorem 4 is false. Assume that there
exists a positive solution y(t) of (A) for t 2 t, € R,. [The case of (B) is treated similar-
ly.] It follows from (26) that there exists ¢, > t, such that y[h(f)] > 0 for t = t,.
From (A), in view of (2) and (b) of Theorem 4 we get y?"(f) < 0 for t 2 t,. From
the last inequality, by virtue of y[h(f)] > 0, ¢ = ¢,, we can assert that the assumptions
of Lemma 1 are fulfilled. Then (5), for k =20 + 1, i =2v (ve{0,1,...,n — 1})
implies

0 < y@+i(f) < - (2”) (), t>t,.

1)*

By virtue of the last inequality there exists a constant K, 0 < K < 1 and a number
t, > t, such that

(28) 0=ty < KQu)! y'(H), t=t,, ve{0,1,...,n—1}.

If we multiply (A) by [h(£)]**~* £~ *[yi(1)], integrate the resulting inequality from
a(2max {t,, T}) to t, use Lemma 1, the assumption (b) and omit negative numbers,
we obtain

@ [TOF Hds 5 e0 + @n =) [ 550 MO~ ) x
X f—l[yh(s)] ds < ¢y + (2n - 1)J.‘y§.2u—1"‘)(s) [h(s)]z"_z h’(s) x
xS DM ds s ¢+ @ = D 00 w2 1) dx,

_ h(a)
where ¢; = y**~V (@)[A(a)]*"* "' (y4(a)) 2 0.
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If we integrate the last integral in (29) by parts 2(n — v — 1) times and neglect nega-
tive numbers, we obtain

(30)

f TP ple)ds < € + @n = 1) Qo+ )| y@9(x) 52 F1(3(x)) dx,

h(a)

where C is a positive constant.
From (30), in view of (28), we get
t

[T o as s e xCn -1y 66 ax

h(a)

t
§C+K(2n—1)!f dz/f(z) <o for t— .
yh(a)]

It means that [ [h(s)]>*~* p(s) ds < o, but this contradicts (27). This completes
the proof of Theorem 4.

Corollary 1. Let p;, i = 1, ..., m satisfy (2) and, in addition,
(31) (a) h,eC[R4,R], h{t)<t for teR,, hi(t)=20 for t= TeR,,

limh(tf) =00 as t->w(i=1..,m)),

(32) (b) fii=1,...,m satisfy the assumptions (b), (c) of Theorem 4. Then the
equation (1) is oscillatory if

(33 [Tt po e = o
at least for one je {1, ..., m}.

Proof. Let us suppose that the conclusion of Corollary is false. Let y(t) be a non-
oscillatory solution of the equation (1) and let y[h(#)] >0 (i =1,...,m) for t =
2 t; 2 to€ R,. [The case y(f) < 0is treated similarly.] Then from the equation (1),
in view of (2), (32) we have (25) and (?) is a positive solution of (25). This contradics
Theorem 4.

The proof of Corollary is complete.

Finally, we shall study the oscillatory properties of the differential equation
(34) YD) + F(t ya(8)s oo 21, (1)) = 0.
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With regard to the equation (34) we assume that the following cenditions are

satisfied:
2Yp(Medx), x;>0, i=1..,m

(3%) F(t, xg, o0 )] '

SYp®ydx), x,<0, i=1..,m

i=1
F(1,0,...,0) =0,

where (a) pt), i = 1, ..., m, satisfy (2),

(b) ¢; € C[(0, ), (0, )], ¥;€ C[(—0,0), (—0,0)], i =1,...,m

Theorem 5.. Let the equatibn (34) satisfy (35) aﬁd; in addition,

(@) by i=1,..., m, satisfy (4), (13),
(i) ¢2) ¥(z), i = 1, ..., m, are nondecreasing functions,
(iii) there exists B > 1 such that

o |2 ’ lziT_i::fb%?’>o’ i=1..,m.

Then the equation (34) is oscillatory if (24) holds at least for one je {1, ..., m}.

Proof. The proof of this Theorem is very similar to that of Theorem 2 and hence
we omit it.

Theorem 6. Let the equation (34) satisfy (35) and, in addition,

@) ki i =1,..., m, satisfy (31)
(i) there exzst(p(u) ¥i(v) and(p(u) = 0 foru > 0, !ﬁ(v) 20forv<0,i=1,.
. m’
(iii) for every ¢ > 0
f"’ du ~® dv , o
' <00, <o, i=1...m.
[ (pi(u) : . - '//i(v)

Then the equation (34) is oscillatory if (33) holds at least for one je {1, ..., m}.

Proof. The proof of this Theorem is very sxmllar to that of Theorem 4 and hence
we omit it.
Acknowledgment. The author wishes to thank Prof. J. KurzweiL for his helpfu]

suggestions.

140



References

[1] Atkinson F. V.: On second-order non-linear oscillations. Pacific J. Math., 5 (1955), 643— 647.

[2) Burkowski F.: Oscillation theorems for a second order nonlinear functional differential
equation. J. Math. Anal. Appl. 33 (1971), 258—262.

[3] Goliwitzer H. E.: On nonlinear oscillations for a second order delay equation. J. Math, Anal.
Appl. 26 (1969), 385—389.

[4] Ladas G.: Oscillation and asymptotic behavior of solutions of differential equations with
retarded argument. J. Differential Equations 710 (1971), 281—290.

[51 Kueypadse H. I'.. O xonebnemocts pemennit ypasuenus d™u/d:!™ 4 a(t)|u|” sgnu= 0.
Mar. C6opnuk T. 65 (107) N, (1964), 172—187.

[6] Kueypaose H. T.: K Bonpocy koneGIeMOCTH peliennit HenuHedHpix quddepeHunatbHbIX ypas-
Henuii. Judd. Ypasuenus, 8 (1965), 995— 1006.

[7] Kusano T. and Onose H.: Oscillation of solutions of nonlinear differential delay equations of
arbitrary order. Hiroshima Math. J. 2 (1972), 1—13.

[8] Marusiak P.: Note on the Ladas’ paper on oscillation and asymptotic behavior of solutions of
differential equations with retarded argument. J. Differential Equations, /3 N, (1973),
150—156.

[9] Odapuu O. H. v Illeeao B. H.: O6 OCUM/UTATOPHBIX CBOUCTBAX pelreHui HeTAHERHBIX QuddepeH-
LMAJBHBIX YPAaBHEHHSIX BTOPOTO MOPAOKA C 3ama3AblBAlOMIMM aprymMeHToM. Mart. ¢m3uka,
Bbin. 4 ,,HaykoBa nymmka“ K. 1968.

[10] Wlegeso B. H., Odapuu O. H.: HexoTopbie BOIPOCH TEOPHH OCTUILUIALUMH (HEOCUHIUIALIAMA)
pewennii AuddepeHuHaIbHbBIX YPAaBHEHHH BTOPOro MOPpAaKa C 3ana3abIBaloiEM apryMEHTOM.
Vxpaunuckuit Mar. XKypuan T 23 (1971) Ne 4.

[11] Ilfegeao B. H. u Bapex H. B.: O HEKOTOPBIX CBONCTBaX pemieHmt N epeHIManbHbIX ypaBHE-
HMi ¢ 3ana3gpiBaHueM. Ykpaunckuit Mar, Xypnan, T 24 (1972), 807—813.

[12] Staikos V. A. and Sficas Y. G.: Oscillatory and asymptotic behavior of functional dif-
ferential equations. J. Differential Equations 12 No. 3 (1972), 426—437.

[13] Waltman P.: A note on an oscillation criterion for an eugation with a functional argument.
Canad. Math. Bull. 17 (1968), 537—595.

Author’s address: 010 88 Zilina, Marxa-Engelsa 25 (Vysok4 $kola dopravn4).

141



		webmaster@dml.cz
	2012-05-12T05:57:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




