
Časopis pro pěstování matematiky

Pavol Marušiak
Oscillation of solutions of the delay differential equation
y(2n)(t) +

∑m
i=1 pi(t)fj(y[hi(t)]) = 0,\quad n ≥ 1

Časopis pro pěstování matematiky, Vol. 99 (1974), No. 2, 131--141

Persistent URL: http://dml.cz/dmlcz/117835

Terms of use:
© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/117835
http://project.dml.cz


časopis pro pëstování matematiky, roč. 99 (1974), Praha 

OSCILLATION OF SOLUTIONS OF THE DELAY 
DIFFERENTIAL EQUATION 

j'(2B)(0 + fM0L(>'W0]) = o. » s i 
i = l 

PAVOL MARUSIAK, 2ilina 

(Received September 28, 1972) 

Our purpose in this paper is to give some ocsillation criteria for the nonlinear delay 
differential equation 

(1) /2tt\i) + t Pi(0/.Lv»,(0] = 0, „ fc 1, 
i = l 

where yhi(t) = y[h*(0] i = 1,..., m 

(2) Pi e C[R+ = [0, oo), R + ] (i = 1,..., m) 
(3) fi e C[R9 R] , zfi(z) > 0 for z * 0, f{z) is nondecreasing 

on R(i = 1,..., m) 

(4) hteC[R+9R]9 hj(t) ^ t for fe.R+ (i = l,..., m). 

We shall assume the under the initial conditions y(t) = cp(t)9 t g f0, y{k\t0) = 
= y{o\ fe = 1,...* w - 1- the equation (1) has a solution which exists for all t = 

^ *o > 0. 
A solution y(t) of (1) is called oscillatory if the set of zeros of y(t) is not bounded 

from the right. A solution y(t) of (1) is called nonoscillatory if it is of constant sign 
for sufficiently large t. The equation (1) is called oscillatory if every solution is oscil­
latory. 

BURKOWSKI [2], GOLLWITZER [3], ODARIC-SEVELO [9,10] have given necessary 
and sufficient conditions for second order nonlinear delay differential equations to be 
oscillatory. LADAS [4], MARUSIAK [8] have given oscillation criteria for the differen­
tial equation 

yinXt) + F(t9y(t)9y[h(ty]) = 0. 
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Recently, KUSANO and ONOSE [7], SEVELO and VARECH [11] and STAIKOS and 
SFICAS [12] (these papers appeared while my article was being reviewed) have proved 
sufficient conditions for the oscillation of certain nonlinear delay differential equations 
of arbitrary order. 

In the next part we shall need the following lemma due to KIGURADZE [5, Lemma 2]. 

Lemma 1. Let u(t),..., M(m"1}(0 be absolutely continuous and of cosnstant sign 
in the interval (t0, oo). If u(t) g 0, u(w)(0 -S 0 for every t ^ t0, then there exists 
an integer k with 0^k<m,m + kis odd and 

(a) n ( O ( 0 £ O , i**l,...,k, t^t09 

(b) . (_iy»+i-i MCI>(0 ^ 0 , i = /c + l , . . . ,m, t^t0, 

(5) (c) u(k\t) g L w(k" °(0 > i = 1,..., fc, t^t0. 
(t —t0) 

Analogous statement can be made if w(0 S 0, w(w)(0 ^ 0 in the interval (t09 oo). 

Lemma 2. If u(t)9..., M (W"1}(0
 a™ absolutely continuous and of constant sign 

in the interval (t09 oo) and u(t)u(m\t) ^ 0, then there exists an integer k with 
0 g k < m, m + k is odd and 

(6) u(i\t) u(t) ^ 0, i = 0, 1,..., k and 

( - 1 ) W + / - 1 M ( , ) ( 0 W ( 0 ^ O , i = k + l , . . . ,m , t^t09 

(7) |M
(fc)(r)| ^ f1'^1 u(m"1)(2w~k-10 , t^t0, 

(8) l i i ^ - ^ O I ^ - B i r - * * 1 " 1 ! ^ 1 ^ ) ! , i = l , . . . ,k , *£2"-*f0, 

where 
2-(m + * + i)3 

(m - k)...(m - k + i - í) 

Proof. The correctness of (6), (7) follows from Kiguradze's lemma 1 [6] and its 
proof. Integrating (7) i times (i e {1,. . . , k}) from t0 to t and using (6), we obtain 

(m - k) .., (m - fc + i - 1) 

If we put t instead of 2m"*" lt into the last inequality and then use w(0 u(fc~'+*)(A > 
^ 0, we get "" 

(9) |M (*"°(0| ^ |M(fc"°(2"*m+fc+10| £ 
^-(m-fc + i - l ) 2 / * /->» — *—1# \ m - k + i - l 

( m - * ) . . . ( m - * + i - l ) ' ' ° 
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Let t ^ tt ^ 2 . 2m~*~1f0, then t - 2m~*~1*0 = tj2 and from (9) with regard to 
the last inequalities we get (8). 

Lemma 3. Let u(t),..., u{m\i) be continuous functions in the interval (t0> oo) and 
u{k)(t) u(t) > 0, (k = 0, 1,..., m), u(f) u(m+1)(f) g 0 (m is an mteaer and let A be 
a nonnegative real number. Then 

l i m - ^ - = l . 
l-oo U(t + A) 

u(ř) ^ 1 „ fí; m = 11 
= hm w — = = 1, ty = <J V . 

ř - c u(ř + ,4) j + A h m u%) {t + A; m>\\ 

because 

,-ao U ( ( ) . = 00 l l < " - 1 ) ( f ) -

Theorem 1. Let functions p.,L, h( satisfy (2), (3), (4) and, in addition, suppose that 

(10) £ fV-^-tOd^oo. 

Then (he equation (1) has at /east one nonoscillatory solution. 

Proof. Let us consider the following system 

(U) J>o(0=(X t = t0 

(1, t = to 

^' < ' ) 4 + IJ£ ( -M ! p ' ( s ) / ' W M ! ) ] ) d s + 

+ f" ( s to)2n~1"(s, t)2'"1 PmiyMsW ás, 
J. (2n-l)! 

where f0 is chosen such that 'o 

(12) max L(2) £ { f - ^ - - ^ - P,(s) ds + 
isfgm ,=i (J,0 (2n - 1)! 

That we can do because (10) holds. 
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By mathematical induction, with regard to (11), (12) and (3), it is easy to show that 
1 g y/t) g yj+i(t) ^ 2, j = 0 ,1 , . . . , t *z t0 holds. From the last inequalities it 
follows that the sequence {yj(t)}jL0 of continuous functions is nondecreasing and 
uniformly bounded on [t0, °°) and therefore uniformly convergent on every finite 
interval. Let y(t) = lim yj[f). Then 1 <L y(t) £ 2, f ;> f0 and y(t) is the solution 
of the equation J~*™ 

X t S to 
2 n - l 

Ž { f \ to)2я~*pШiШs)])ds + 
= 1 U»o ( 2 n - -)' 

+ J- ( s - ^ - [ ' - ^2""1 Př(*Ш>Ms)]) d.} 

However, it means that y(t) is a nonoscillatory solution of the equation (1). The proof 
is therefore complete. 

Theorem 2. Let functions p,f, h, satisfy (2), (3), (4) and, in addition, suppose that 

(13) (i) h(t) = t-g(t),0£g(t)^M, teR+ 

(ii) there exists a number j8, 1 < j8 such that 

liminf{^ * 0 
M-oo \z\p 

(14) (iii) f V " - 1 ^ ) ^ * oo. 

77ren the differential inequality 

(A) y(2n)(0 + riO/MMD ^ o> ' * *+ 

(B) [y(2B)(0 + p(t)f(y[h(t)]) :> 0 , * 6 JR+] 

has no positive [negative] solution on [t0, oo)for every t0eR+. 

proof. Suppose that the conclusion of Theorem 2 is false. Assume that there exists 
a positive solution y(t) of (A) for t^t0eR+. (The case of the differential inequality 
(B) is treated similarly.) Since lim h(t) =- oo as t -> oo there exists a tt ^ t0 such 
that y[h(t)] > 0 for t £ tx. (A) with regard to (2) and (3) implies 

(15) y{2n)(t)£-p(t)f(ylh(t)])<o, t * t t . 

From y<M(t) < 0, y(t) > 0 it follows that there exists t2 ^ tt such that y(t), y'(t),... 
..., y{2n~1}(t) have constant sign for t ^ t2. Then by Lemma 2 for y(t) and its de-
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rivatives (6)-(8) hold, where ke {1, 3,.. 2n "" *)• B ? (6)' Z 2 "" 1 ^) 1S decreasing 
and y 2 "" 1 ^^) =- c __ 0 holds. 

Integrating (A) from t (t __ t2) to oo ana neglecting y(2tt~i}(co), we get 

(16) y{2n^\t)^^p(s)fi<yH(s))ds9 *__fa 

and then in view of the monotonicity of yten- i)(t) and (4) we obtain 

(17) .vi2""1X0-.r.<-)/(yJk(5))ds, f = f2. 

I. From (7), for k = 1 we get 

(18) /(f) = f2""2 /2"--)(2- l ,"a0 . ' = '2 • 

If Jt = 1 then, with regard to (6), /(f) _ 0 for f _: f2, / 2" _ 1 )(f) is decreasing and 
so from (18) we have 

/(f - M) = [f - MY""2 /2n-i)[2-' ,-2(f - M] 

= [f - M ] 2 " " 2 /2-i)(2-' ,"2 )f) , f = f3 = f2 + M . 

From (16) using the last inequality we get 

(19) y'(t - M) = [f - M ] 2 - 2 Г p(s)/Гл(s)] ds, f = 
J 2 2JI-2, 

f 3 . 

Integrating (19) from f3 tot,t>. f3 ,we obtain 

/ ^ / . ^ / »^ «. f22""2' [-2_2"s ~ M ] 2 " " 1 - [f3 - M ] 2 " " 1 

(20) y(t - M) - y(f3 - M) = i J- -J-i J x 
J22n-2,3 2n — 1 

x j<«)11>-(-)] d s + I ' ~ M ] 2 " " ' ~ [«s -_M]_-_I f" p(5)/[yA(s)] ds. 
2n — 1 J 22n-2, 

From (20), with regard to the monotonicity of y(t), /(_) and t — M £ h(t), we get 

><f - M ) = r [s - M ] 2 " " 1 - ^ - M ] 2 " - 1
 p(22(,_2s)/-^s _ M)-j ds ̂  

J t, 2n - 1 

In the sequel we shall use the method due to ATKINSON [1]. 

If we raise the last inequality by -fi (p > 1), then multiply by {[f - M]2""1 -
- [f3 - M]2""1} p(22n-2t)f[y(t - M)], (f = f3) and integrate the resulting in-
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equality from t4 to ts (t3 < t4 < t < t5), we have 

(21) j"{[s - M]2"*1 - [t3 - M]2""1} j<22"-2-)/IX- - M)] IX- - -M)]"' ds £ 

- "^r? [{J'([s~ M]2B_I "['3 ~ MY"~I) *i2n~2s)fws - MK d41"^' ,• 
For t5 -> oo the right hand side of (21) is bounded and therefore the integral 

{[s - M ] 2 " - l - [ t 3 - M]2""1} p(22""2s)/[j(s - M)] [j(s - M) ] " ' ds 
/ : 

< 00 . 

tt4 

is convergent". If we choose t4 ^ 2M, we can show easily that 

(22) J(t4) = f a*s2»-1p(22»-2s)/[y(s - M)] [y(s - M)]" ' ds 
J.4 

By virtue of the assumption y(t) > 0, t ^ t0 and Lemma 2 either y(oo) = b > 0 
or y(oo) = oo. In either case, with regard to the continuity and the monotonicity of 
f(z) and the assumption (ii) of Theorem 2, there exists T ^ t4 such that 

fbit-M)2 
[y(t - M)Y -

Then, from (22) we get 

oo > J(t4) £ J(T) = d f V - 1 p(22"-2s)ds = d(22"2w)2"-1 r t2"-1 p(t)dt, 
JT J 22n~2T 

which contradicts (14). 

II. Let k e {3,..., 2n — 1}. Frome (8), for i = k — 1) we obtain, 

y'(t) ^ K*2"-V2"-1^), t ^ 2 ( n"% = ?3 , 
where K = -#fc_i. 

Then, with regard to (6) and (13) we have 

y'(t) £ y'(t - M) £ K[* - M]2w"2 Z 2 ^ 1 ^ - M), t = 3f4 = t3 + M . 

From (17), by means of the last inequality it follows 

y'(t) £ K[t - M ] 2 - 2 f "p(s)fWs)] ^ , t 2? ?4 , 

Further, exactly as in the case I we obtain 

(23) J(ì5) = f V - tø/ГX- - M)] [y(s)ГP ds < 00 . 
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(6) implies y(t) > 0, y'(t) > 0, y"(t) > 0 and therefore y(oo) = co. Then, by 
virtue of the assumption (ii) and Lemma 3 

fin i n f & ~ *>- = lim inf __ZD<0]_ m ^ M/MO] > 0 

1X0? *— b(' + w)]" ,->. [xo? 
holds. In view of the last inequality there exitss T ^ J5 such that 

. ^ - ' - • • • - ' -

Then we get from (23) 

oo > J(?5) £ J(T) = 3 f "s2""1 P(22^2s) ds = 3(22-2w)2rt"1 f°° t2n~lp (t) dt, 
JT j22n~2T 

which contradicts (14). 
This completes the proof of Theorem 2. 

We shall now apply Theorem 2 to obtain the oscillatory character for the equation 
( i ) . ' , . 

Theorem 3. Let functions Pt,fi9 ht satisfy (2), (3), (4) and, in addition, suppose 

(i) ht(t) = t - gt(t), 0 = g{t) = M, * e £ + , (i == 1,..., m) 

(ii) fher£ exists a number /?, /? > 1 sucft ffeaf 

l i m i n f l ^ l > 0 , (i = l, . . . ,m). 
| * | - o o | z | ' 

T/ien fhe equation (l) is oscillatory if and only if 

(24) fV-V/Od^ 

A* least for one j e {1, . . . , m}. 

Proof. I. The necessity follows immediately from Theorem 1. 

II. The sufficient condition. Let us suppose that the conclusion of Theorem is false. 
Let y(t) be a nonoscillatory solution of the equation (l). We may assume to be specific 
that y[hf(0] > 0 (i = 1,..., m) for t ^ tx = t0 e R+. Then from the equation (1), 
in view of (2), (3) we have 

(25) y™(i) + pXOLWXO]) - 0 , tZh 

and y(t) is a solution of (25). By virtue of Theorem 2, the inequality (25) has no positive 
solution and this contradicts the fact that y(t) is a positive solution of the equation 
(1). The proof of Theorem is complete. 
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Theorem 4. Let p satisfy (2) and, in addition, 

(26) (a) he&lR+tR], h'(t)^0 for t^TeR+, h(t) ^ t, teR+, 

lim h(t) = oo as t -> co , 

(b) fe C^R, R] , zf(z) > 0 for z + 0, f'(z) = 0 , zeR, 

(c) /or every e > 0 

I."/T)<co O i H 
(27) (d) . f "WO]-"'*<<)*-«>. 

Then the differential inequality (A) [(B)] has no positive [negative] solutions on 
[*o> «>) for every t0eR+. 

Proof. Suppose that the conclusion of Theorem 4 is false. Assume that there 
exists a positive solution y(t) of (A) for t ^ t0 e R+. [The case of (B) is treated similar­
ly.] It follows from (26) that there exists tt ;> t0 such that y[h(ty] > 0 for t ^ tt. 
From (A), in view of (2) and (b) of Theorem 4 we get yi2n)(t) ^ 0 for t^ tx. From 
the last inequality, by virtue of y[ft(0] > 0, f 2> *!, we can assert that the assumptions 
of Lemma 1 are fulfilled. Then (5), for k = 2v + 1, i = 2v (ve{0,1,..., n - 1}) 
implies 

oz/^+'tyZrJ&P-yit), t>h. 
V " h) 

By virtue of the last inequality there exists a constant K, 0 < K < 1 and a number 
f2 > tt such that 

(28) 0£t2vy<2v+i)(t)£K(2v)ly'(t), t^t2, ve {0,1,. . . , n - 1} . 

If we multiply (A) by [fc(0]2"~ V^CMO]* integrate the resulting inequality from 
a(*>max {f2> T}) to t, use Lemma 1, the assumption (b) and omit negative numbers, 
we obtain 

(29) f '[K5)]2"-1 p(s) ds £ cx + (2/i - 1) f V 2 "" 1 ^) W')]2""2 *'(*) x 
J a J a 

x Z"1[>*(*)] ds g c, + (2n - 1) fV**,-1)(-) Ws)]2""2 *'(-) * 

x / _ 1 W s ) ] d- § c. + (2« - 1) P / * - " ( * ) x ' - V - ' M * ) ) < * * . 
J*(«) 

where c. - y 2 " " 1 ' ^ ^ ) ] 3 - - 1 / * 1 ^ ) ) £ <>• 

138 



If we integrate the last integral in (29) by parts 2(n — v - 1) times and neglect nega­
tive numbers, we obtain 

(30) 

f CKs)]2"" 1p(s)ds^C + (2n-l)... (2v + 1) f' j / 2 " * x>(x) x2TX*)) d * > 

where C is a positive constant. 

From (30), in view of (28), we get 

f'[/t(s)]2B_1 Ks) ds g c + *(-« ~ 1)! f / W W ) d* 
J a J h(a) 

^ C + K(2n - 1)! J dz / / (z) < oo for t -» oo . 

It means that J* [ft(s)]2'1""1 P(s)ds < oo, but this contradicts (27). This completes 
the proof of Theorem 4. 

Corollary 1. Let ph i = 1,..., m satisfy (2) and, in addition, 

(31) (a) hieC1lR+,R], ht(t) ^ t for teR+, K(t)^0 for t^TeR+r 

lim ht(t) = oo as t ~> oo (i = 1,..., m) , 

(32) (b) / i , i = 1,..., m satisfy the assumptions (b), (c) of Theorem 4. Tften ffte 
equation (1) is oscillatory if 

(33) r^xo]2"-1*/')*--® 

a* least for one j e {1, . . . , m}. 

Proof. Let us suppose that the conclusion of Corollary is false. Let y(t) be a non-
oscillatory solution of the equation (1) and let y[ft*(0] > 0 (i = 1,..., m) for t ^ 
^ tx ^ f0 e JR+. [The case y(t) < 0 is treated similarly.] Then from the equation (1), 
in view of (2), (32) we have (25) and y(t) is a positive solution of (25). This contradics 
Theorem 4. 

The proof of Corollary is complete. 

Finally, we shall study the oscillatory properties of the differential equation 

(34) /2n\t) + F(t, yhi(t),..., V J O ) = 0 • 
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With fegard to the equation (34) we assume that the following conditions are 
satisfied: 

-• Cm 
p Z P*(0 <r\(* ) > * i > 0 , i = l, ..., m 

(35) F(t9xi9...9xm)\ }mJ 

U£p/(0<Ai(*)> *t<0, i = l, ...,m 
I i-=i 

F(f,0,...,0) = 0 , 

where (a) pt(t)9 i = 1,..., m, satisfy (2), 

(b) (jo,. 6 C[(0, oo), (0, oo)], fa e C[(- oo, 0), ( - oo, 0)], i = 1,..., m, 

Theorem 5. Lee? fhe equation (34) satisfy (35) and, in addition, 

(i) A,., i = 1,..., m> satisfy (4), (13), 

(ii) ^,(z) ^,(z), i = l,... , m, are nondecreasing functions, 

(iii) there ex/5f5 /? > 1 sue A fhaf 

, i m i n f M^l>0 , lim i n f i l l > 0, i = 1,..., m 
Z-00 (Zf^ z - - a o |Z|" 

Then fhe equation (34) is oscillatory if (24) h0/d5 af least for one j e {l,.. . , m}. 

Proof. The proof of this Theorem is very similar to that of Theorem 2 and hence 
we omit it. 

Theorem 6. Let the equation (34) satisfy (35) and, in addition, 

(i) hi9 i = l,... , m, 5a*is/y (31), 

(ii) there exist <p,'(w), fa(v) and cp'^u) ^ 0/0r u > 0, ^-(i;) ^ 0/0r t> < 0, i = 1, ... 
..., m, 

(iii) /0r every e > 0 

f" dw f"00 dt; . , 
' — — ; " < 0 0 , , T 7 - T < 0 0 ' * = 1 » ' " » m -
Je W ) J-e W ) 

Then fhe equation (34) is oscillatory if (33) h0/d5 #t least for one je {1,. . . , m}. 

Proof. The proof of this Theorem is very similar to that of Theorem 4 and hence 
we omit it. 

Acknowledgment The author wishes to thank Prof. J. KURZWEIL for his helpful 
suggestions. 
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