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Časopis pro pěstování matematiky, roč. 99 (1974), Praha 

REMARK ON LINEAR EQUATIONS IN BANACH SPACE 

STEFAN SCHWABIK, Praha 

(Received July 20, 1972). 

In this note Fredholm theorems for linear equations in a Banach space are estab­
lished without requiring the knowledge of the usual adjoint space. 

The main result (Theorem 3) concerns the operator A = I -F T where T is a com­
pact (completely continuous) operator in a Banach space. In this theorem the usual 
adjoint operator is replaced by the operator which is conjugate to A with respect to 
a total space of continuous linear functionals on the Banach space. The investigation 
is based on some results about the dimensional characteristic of linear operators in 
a Banach space [4]. Reformulating the results from [4] in terms of linear equations 
we obtain a generalization of the well known Fredholm theorems. 

Let X be a Banach space (over the field of real or complex numbers). The set of all 
linear operators A mapping X into itself such that Ax is defined for all x e X (DA = X) 
let be denoted by L0(X). Let B0(X) be the set of all bounded operators belonging to 
L0(X). 

We denote by N(A) = {xeX; Ax = 0} the kernel of AelJX), by R(A) = 
= [y eX; y = Ax, xeX) the range of A e L0(X) and define ccA = dim N(A), fiA = 
= dim XJR(A)*). The index of A e L0(X) is the number 

ind A = pA - ccA . 

Let X' be the space of all linear functionals on X. A space 3 c X' of linear func­
tionals on X is said to be total if f (x) = 0 for all £ e 3 implies x = OeX. 

For a given A e L0(X) and a total space 3 c X' we define on 3 the conjugate 
operator A with values in X': 

A' £(x) = £(Ax) for all xeX and { e S . 

l) By dim the dimension of a linear set is denoted, X/R(A) means the quotient space. 
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By X+ the Banach space of all continuous linear functional on X is denoted; 
X+ is evidently total. The conjugate operator to A e L0(X) with respect to the space 
X+ is denoted by A\ If A e B0(X) then evidently A+ is continuous; i.e. A+ e B0(X

+). 

The space X can be embedded into S' (the space of linear functional on S) via 
the usual embedding x : X -* S', i.e. x x(£) = £(x) for xeX. The image xX of X 
in S' is a total space. 

Let now S c I ' be a total space. As above, for a given A' e L0(S) we can define 
An : xX -• S' and 4'+ : S+ -» S'. If ,4' e £0(S) then A'+ e B0(S

+). 

If for a given .4 e L0(X) and a total space 2 c T w e have R(A') c S then we say 
that the space S is preserved by the conjugate operator A!. If this is the case then also 
the space xX c S' is preserved by An (xX is a total space in S'). 

Further it can be shown that Anxx = xAx for all xeX, i.e. the operator A" : 
:xX -> xX conjugate to A' e L0(3) is (up to the natural embedding x) identical with 
the operator A if S is preserved by A'. 

Let us suppose that 2 c X+ is a total space (S is normed with respect to the norm 
in X+). Any x e X is assigned the linear functinonal xx e S'; the natural embedding 
x : X -* S' is a monomorphism (cf. [2]). Since we have |^(x)| ^ ||£|| . j|x||, the func­
tional xx is continuous, i.e. xx e S+ . Moreover, the image xX of X in S+ is a total 
space (cf. [2]). 

Theorem 1. Let X be a Banach space, 3 a X+ a total subspace of continuous 
linear functionals on X. 

Let A e B0(X) and let 3 be preserved by the conjugate operator A'. 

If ind A = 0 then either 

I. the equation 

(1) Ax = x 

has in X only one solution for any xeX 

or 

II. the equation 

(2) Ax = 0 

has r linearly independent solutions in X (r is an integer). 

If moreover ind A! = 0 then in the case I. the equation 

(3) A'Z - { 
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has also a unique soltuion in 3 for any | e S and in the case II. the equation 

(4) A'Z = 0 

has r linearly independent solutions in E. 

Proof. The first part of this theorem is almost trivial. Indeed, if ind A = 0 then 
dim N(A) = dim XJR(A) = r, where r = 0 or r > 0 is an integer. The case I. corre­
sponds to r = 0 and the case II. to r > 0. The second part of this theorem is a con­
sequence of Theorem 3 in [4] which assures that if ind A = ind A' = 0 then 
dim(N(A) = dimN(A') = dim2/*(A '). 

Remark 1. Theorem 1 has the form of the usual Fredholm theorems. The first 
part is the well known alternative and it is only a trivial reformulation of the assump­
tion ind A = 0. As for the second part let us mention that A' is not the usual adjoint 
operator. The classical (second) Fredholm theorem is a special case of our Theorem 1 
if we set 2 = X+. 

If the case II. in Theorem 1 occurs then some solvability conditions for the equation 
(1) are needed. Such conditions for the classical case are given by the third Fredholm 
theorem. Our aim is to obtain such a condition in terms of the conjugate equation (3). 

Theorem 2. Let X be a Banach space, E c X+ a total subspace. Let A e B0(X), 
R(A) is closed inX and N(A+) c E (A+ is the conjugate operator to A with respect 
to X+.) Then the equation (1) has a solution if and only if the relation 

(5) • £(x) - 0 

holds for any solution /; e E of the equation (4). 

Proof. Since R(A) is closed, we have R(A)L = N(A+), where R(A)L is the 
orthogonal complement of R(A) in X+; this is a well known fact (see for example 
[1]). Further we have evidently N(-A') = N(-4+) n 2 and by the assumption 
N(A+) cr 2 we have N(A') = N(A+). This proves our theorem. 

In the sequel we will formulate Fredholm theorems for the case A = I + T where 
I is the identical operator in X and Te B0(X) is compact. 

Theorem 3. LetX be a Banach space, E e X+a total space which is also a Banach 
space. Let Te L0(X) be a compact operator and let 2 be preserved by the conjugate 
operator V. Then the following assertion holds: 

Either 

I. the equation 

(6) x + Tx = x 
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has in X only one solution for any xeX 

or 

II. the equation 

(7) x + Tx = 0 

has r linearly independent solutions in X (r is an integer). 

In the case I. the equation 

(8) { + re = I 

has also only one solution in Sfor any | e S and in the case II. the equation 

(9) £ + T'{ = 0 

admits r linearly independent solutions in S. 
Moreover, the equation (6) has a solution in X if and only if £(x) = O/or any 

solution £e 3 of the equation (9) (and symmetrically (8) has a solution in 3 if and 
only if l(x) = Ofor any solution xeX of the equation (7)). 

Proof. First let us mention that this theorem is well known if we set S = X+. 
Further it is known that under the present assumptions A = J + Te B0(X) and 
ind .4 = 0. Moreover the operator T e L0(S) is also compact (cf. Theorem 7,4 from 
C III in [3]). Hence ind A' = 0 where A' = 7 + V and all assumptions of Theorem 1 
are fulfilled. This yields our theorem except the last part concerning the solvability 
conditions for the equation (6) and (8). 

The proof of this part we obtain from Theorem 2. For the case of a compact 
Te L0(X) it is known that R(A) is closed, A = 7 + T and similarly R(A') is closed 
in S, A' = 7 + r e 1^(3). It remains to prove that N(A+) c 3 and N(A'+) c xX. 
By definition we have 

(10) N(A+) nS = N(A') 

and therefore 

(11) dim N(A') g dim N(A+). 

Similarly 

(12) N(A'+) n xX = N(A") 

and 

(13) dim N(A") g dim N(A'+). 
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Since x : X -> S+ is a monomorphism we have dimN(-4") = dimN(.A). Hence the 
inequality (13) assumes the form 

(14) dim N(A) ^ dim N(,4,+). 

Using (14), (11) and the equalities dim N(.A) = dim N(A+)9 dim N(A') = dim N(_4'+) 
which are consequences of the compactness of Te L0(X)9 T" e L0(S) respectively we 
obtain 

dimN(A) ^ dimN(_4'+) = dim N(A') ^ dim N(A+) = dimN(A) 

and therefore 

dim N(A) = dimN(A') = dim N(A,+) = dimN(.A+). 

These equalities together with (10) yields 

dim(N(A+) n 3) = dimN(A') = dimN(^l+). 

Hence N(A+) cz S. Using (12) we obtain in the same way 

dim (N(A,+) n xX) = dim N(A") = dimN(A) = dimN(yl'+) 

and also N(4'+) c xX. 

Remark 2. Theorem 3 is a complete collection of Fredholm theorems for a com­
pact operator TeL0(X), the only difference between it and the usual Fredholm 
theorems being that it is sufficient to know a smaller total space of functional 
S <=: X+ and the conjugate operator acting in this space. 

We conclude this note by an example in which Theorem 2 and 1 is used. 
Let BV be the usual linear space of all real functions defined on [0,1] with bounded 

variation. If we set 
N.*K = |*(0)| + varjx 

for x G BV then ||. \\BV is a norm and BV is a Banach space. A satisfactory description 
of the conjugate space BV+ of all continuous linear functional on BVis not available. 

We denote by S the set of all break functions w(t) from BV for which we have 
lim W(T) = lim w(x) for all t e (0,1). The set S is closed in BV. 

x-*t+ x-*t-

Let us form the quotient space BV/S. The elements of BVJS are denoted by capitals 
and they are classes of functions such that their difference belongs to S. The canonical 
mapping of BV into BVJS is denoted by i//, i.e. for q> e BV we have \j/((p) = q> + S = 
= $ e BVJS. The space BVJS forms a Banach space with the norm 

(15) | |#IU/s= inf | M I S K = inf var0(p. 
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Let now $ e BVJS. We define for xeBV 

(16) ' <£(*)= (x(t)dcp(t) 

where ij/((p) = 4>. The integral in (16) is the Perron-Stieltjes integral. All integrals oc­
curring in the sequel are also Perron-Stieltjes integrals. 

The relation (16) is independent of the choice of <p e BV with the property \f/(<p) = $ 
(see [3], p. 326) and $(x) from (16) is evidently a linear functional on BV. Since 4>(x) 
from (16) is independent of the choice of the representant of the class # and the in­
equality 

II x(t) d<p(ť)\ ^ sup \x(t)\ . varj q> 
.€[0 ,1] 

holds we have 

and the functional 4>(x) from (16) is continuous. The Banach space BVjS can be identi­
fied with a subspace in BV+ which will be also denoted by BVJS (BVJS cz BV+). 

If x e BV, x * 0 then there is a $ e BVJS such that $(x) =1= 0 (see Lemma 5,1 in 
[3]). Hence BVJS is a total space in BV+. 

For a given real function k(s, t) defined on [0,1] x [0,1] (fc : [0,1] x [0, 1] -» R) 
and a nondegenerate interval J = [a, fe] x [c, d] c [0,1] x [0,1] we set 

m(J) = k(b, d) - k(b, c) - k(a, d) + fc(a, c) 
and define 

i>(fc) = sup]T|m(J£)| 
i 

where the supremum is taken over all finite systems of nonoverlapping intervals J, 
in [0,1] x [0,1] (i.e. J? n J* = 0 when * # ;). The number v(k) is a kind of two-
dimensional variation (the so called Vitali variation) of the function fc. 

Let us suppose that fc : [0, 1] x [0, ]1 -» R is such a function that v(k) < + oo 
and varj fc(0, •) < +oo. We define the operator 

Tx = J x(t) dtk(s, t) -í> 
on BV. We have evidently Te Lo(BV) and by Theorem 3,1 from [3] the operator T 
is compact. Hence ind (I + T) = 0. 

If moreover varj £(•, 0) < + oo then for $ e BVJS', \l/(<p) - $ we have (cf. Lemma 
2,2 in [3]) 

^ r x ) = r ( f ^ d , f c ( s ' , } ) d < p ( s ) = f i x w d< ( i o ^ ° d < ? ( s ) ) = r *(x) 
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where 

T'<P = ifr I f fc(s, 0 d(p(s)N\ , * = *(«>) . 

The operator T" is the conjugate of T and evidently preserves the conjugate space 
BVJS. By theorem 5,1 from [3] V e B0(S) is compact. Hence ind(J + T) = 0. 

All the assumptions of Theorem 2 being satisfied we obtain easily the following 

Theorem 4. Let k : [0,1] x [0, 1] -> R be such a function that v(k) < +oo, 
varj k(0,.) < +oo, var0 k(#, 0) < +oo. Then either the equation 

(17) x(s) + x(t) dffc(s, t) = x(s) 

has in BV only one solution for any x e BV or the homogeneous equation 

(18) x(s)+ f x(0dfk(s, 0 = 0 

has r linearly independent solutions (r is an integer). 
In the first case the equation 

(19) <p(t)+ f k(s9t)dq>(s) = cp(t) 

has a solution (not unique) for any q> e BV and in the second case the equation 

(20) q>(t) + f fc(s, t) d<p(s) = 0 

admits r solutions in BV which are independent over the subspace S in BV2). 
Moreover the equation (17) has a solution in BViff 

•I 

x(t) dcp(t) = 0 Í: 
for any solution q> G BV of the equation (20) and the equation (19) has a solution 
inBViff 

• l 

x(t) d<p(t) = 0 Í: 
for any solution xeBV of the équation (18). 

2) The functions <p\*...» 9r e BVare linearly independent over the subspace S if the relation 
c iP i + ••• + cr<Pr e ^(ci» •••» cr a r e rea^ numbers) yields cx = c2 == ... = cr = 0. 
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This theorem is slightly different from Theorem 3. It is obtained taking into ac­
count the relationship between the equations 4> + T'<P = $, <P + T'<P = 0, 4>, $ e 
e BVJS and (19), (2Q) respectively. A more detailed account is found in the proof of 
Theorem 5,2 in [3]. 

Remark 3. A similar example for the case of the space of n-vector functions of 
bounded variation can be found in [3]. Theorem 5,2 in [3] is essentially the same as 
the above Theorem 4 but the way of obtaining it in [3] is unnecessarily lengthy and 
cumbersome. A more complicated example is included in the paper [5] where Theo­
rem 2 is applied to integral boundary value problems for integrodifferential equations 
of a complicated nature. 
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