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CASOPIS PRO PESTOVANI MATEMATIKY
Vyddvd Matematicky ustav CSAV, Praha

SVAZEK 98 * PRAHA 7.11,1973 * CISLO 4

PERIODIC SOLUTIONS OF A WEAKLY NONLINEAR
WAVE EQUATION IN ONE DIMENSION

Jikf PeSL, Valasské Mezifi¢i
(Received July 16, 1971)

In applications of the theory of partial differential equations the following problem
may rise up: The existence and uniqueness of classical (twice continuously differen-
tiable) solutions are to be investigated for the wave equation

(7, X) — (T, X) = g4(7, X) + e Fy(@, ej (1, x)

considered in the domain {(r, x) | r € (— 00, +0), x € €0, n)} under the periodicity
condition #@(t + 2nw, x) — @(t, x) = 0 and boundary conditions of various types
at the points x = 0 and x = =, where g, and F, are 2nw-periodic in the variable 7.
The problem with w = 1 is solved in [1], the special case of boundary conditions
of Dirichlet type for an arbitrary w in [2]. While the both papers utilize the Poincaré
method, in this paper a different method is used — solutions are sought in the form
of Fourier series with respect to 7, which guarantees the periodicity of the solutions.

Performing the transformation v = wt and putting u(t, x) = d(z, x), the above
equation assumes the form

(0.1) u(t, x) — 0 u(t, x) = g(t, x) + & F(u, &) (¢, x) ,

where g and F are 2zn-periodic in the variable ¢, and the periodicity condition men-
tioned above reads

0.2) u(t + 2m,x) — u(t,x) =0, te(—o0, +o), xe{0, ).

As for the boundary conditions the paper deals with the following three types:

(0.3) u(t, 0) = °h(t) + & °X(u, €) (1),
u(t,n) = *h(t) + ¢ 'X(u, &) (1) ;
(0.4) u (1, 0) + ap u(t, 0) = °h(t) + e °X(u, &) (1),

u(t, m) + a, u(t, ) = *h(t) + & X(u, &) (1) ;
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(0.5) u(t, 0) = h(?) + ¢ °X(u, &) (1),
ut, ) + au(t, ) = *h(t) + ¢ 'X(u, £) () .

The paper is divided into three paragraphs. The first, preparatory paragraph
contains definitions and lemmas, the second one deals with the linear problem,
i.e. with the case where ¢ = 0. The results obtained are used in the final paragraph
to solve the weakly nonlinear problem.

The author’s gratitude and acknowledgement is due to O. Vejvoda for his valuable
advice and help.

1. SOME DEFINITIONS AND AUXILIARY LEMMAS

R, & and A are the symbols for the sets of reals, positive integers and integers,
respectively. ¥®[a, b] (or *[a, b], if need be) denotes the space of real-valued
(or complex-valued) functions the k-th derivative of which is continuous on (a, b),
the letter # stands for the closed interval <0, n). Finally, let us write e(f) = €',
te X, ke MA.

With respect to the method used it is convenient to introduce some functional

spaces, derived from Sobolev spaces #7%5(0, 2r).

Definition 1.1. Let us denote by #;, (r € #) the subspace of real-valued functions
f & #%5(0, 2r) fulfilling the relation

f®02r) =f®0), 0sk<r, ked,

where f,,, € ¥~ V[0, 2n] is the absolute continuous representant of f (i.e. fyp, = f
almost everywhere in (0, 2n)). The norm in #%, is defined by

r 2% 1/2
,m,,=[z j Q) dr] -
4 k=0 Jo

Remark 1.1. A function f € 25, will usually be identified with the corresponding
Funs € €~ V[0, 211]-
The following lemma may be easily verified:

Il

Lemma 1.1. )¢5, (r€ &) is a Banach space.

Definition 1.2. Let us denote by ¥®(#; #7,) (re 4, ke #, k > 0) the space
of mappings u : & — #7, which are, together with their derivatives 4™, 0 < n < k,
continuous transformations on £ into s, . (We shall often write (#; 5#5,) instead
of ¥°(#; 5#%,).) The norm in this space is defined by

k
"“"w‘!(:;r'z..) =max [ ) "“(")(x)".%r'z..]m-
xef n=0
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Also the next lemma can be proved easily:
Lemma 1.2. ¥®(5; #7%,) (re &, ke #, k 2 0) is a Banach space.

Remark 1.2. Analogously to Remark 1.1, the mapping u € ¢*(£; 5#3,) may
be identified with the function u(x, f) (of two real variables) defined on the rectangle
# x (0, 2n), whose derivatives 0"**u[ox"or, n =0,1,...,k, s=0,1,...,r = 1,
are continuous and fulfil the condition

an+su
x, 0
ox" or* (=, 0) =

X, 27 xeSf.
o a,( )

Remark 1.3. Any function . he %#%, (re A") can be extended onto (—co, + )
2n-periodically preserving its smoothness (the function extended in this way will
be denoted by h as well). This fact enables us to define the “translation of the argu-
ment” (. + to) : #5, — K%, for an arbitrary t, € # by

h(.+1) (f) = h(t + to), t€(0,2n), he #%,.

Since #%, (re &) is a subspace of £,(0, 2x), any function h e 5#%, can be ex-
pressed in the form of a Fourier series h = z h,e,, where h, = (1/2m) [2* h(t) e_,(t) dt.
Analogously, each u e ¢%(s5; #7%,) cant be written as u(x) = Z %) e x€ L.

On the other hand, provided that the coefficients h, (n € .#) or'u (x) (ne M, xe )
satisfy certain conditions, the corresponding series converges in the space #7%, or
¢*(SF; A%, Tespectively.

Definition 1.1°. Let us denote by i (r € A") the space of sequences h = {h,}%,
of complex numbers satisfying the conditions:
() hon=h,, ned,
(i) ¥ n*|h|* < 4+ 0.
neM
The norm is defined (putting 0° = 1) by

v =NEDLE T rmlhe.

Definition 1.2%. Let us denote by ¥®(5; 1) (k 2 0, ke .4, re &) the space
of sequences u = {u,}%,, of complex-valued functions defined on # with the fol-
lowing properties: .

I

(i) u-n(x) =7,(:_c§, ne#,xes,
(i) u, e 8Y(S), nes,

(iii) the series ). n*|u{(x)|>, s=0,1,..., k, converge uniformly on .
nek
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The norm is defined by

k r
v = V@R ML T T w1

s=0m=

The following important lemma can be proved quite analogously as Lemma 1.3

in [3].

Lemma 1.3. The spaces #%, and Yy (r € &) are isomorphic and isometric. This
relation also holds between €®(#; #,) and €*(F; ) (re N, ke M, k = 0).

Let us introduce the space % = G(SF; #3,) N €Y(F; #3,) N €D(F; #3,)
with the norm

lulle = max {ulecs s ullecrisimrnn [ulearsmin) -
Analogously: u = %(£; b%) n ¢9(#; h?) A ¢@(s; bY),

lulls = max {{ullgsin [ulecrisor [ulemcsn) -
Then the spaces % and u are isomorphic and isometric as well.

Let & be a subset of # and r € A". Let us denote b, = {h = {h,}* €b’ | h, =0
for all ne # \ ¥} and [b,]* = b7, 5. Then the decomposition b = B}, + [B]*
is valid. Analogously: #5, = [#%. ]y + [#5.)5 U = Uy + Us.

The two following lemmas, quite analogous to Lemmas 5.3 and 5.4 in [1], enable
us to transfer the results obtained in the linear case to the weakly nonlinear problem.
First the notation used: [#; — 2,] denotes the space of all linear continuous
transformations from £, into 2, (2, and 2, being normed linear spaces),
#(po; 6;2) = {pe ?||p — po| < 8} is an open ball in the normed linear space 2.

Lemma 1.4. Let the operator W = W(u,d)(¢) map 2@ x @ x {0, ¢,y into P
(2, 2 being Banach spaces), let it be continuous and have continuous Gateaux’s
derivatives (further only “G-derivatives”) W,, W; on the domain %(0; 0; P) X
x B(d; d0; D) % €0,&,). Let Ve[D — P). Then there exist numbers &* and
e* (0 < 6* < 8y, 0 < &* < &) such that the equation

u=V(d) + e W(u, d) (e
has a unique solution u = U(d) (¢) € 2 for each de B(d; 6*; D) and ee <0, e*)

continuous in g. This solution has the G-derivative U] continuous in both variables d
and ¢.

Lemma 1.5. Let the operator P = P(d) (¢) map for every &€ (0, &) an open set
9 <9, into 9, (92,, D, being Banach spaces), let the following assumptions
be fulfilled:
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(i) The equation P(do) (0) = 0 has a solution d* ¢ %.
(ii) The operator P is continuous and has the G-derivative P; = Pi(d) (&) con-

tinuous on the set B(dgy; 0; %) x <0, &) (¢ > 0 being a suitably chosen
number).

(iii) There exists Q = [Py(d3) (0)]~ ' € [2, - 2,].
Then there exists ¢, € (0, &) such that the equation

P(d) () = 0

has for e € €0, &) a unique solution d* = d*(¢) € 4 continuous on <0, ;) and such
that d*(0) = dg.

2. THE LINEAR PROBLEM AND ITS SOLUTIONS

2.1. The formulation of the problem. Before solving the weakly nonlinear problem
it is convenient to solve the linear one. In accordance with the previous paragraph
we shall formulate this problem as follows:

Let functions g € (F; #32,) U € F; #3,), ‘he #3,(i = 0, 1) and real numbers
o > 0, oy, ®;, « be given. Every function u € % that satisfies the equation

(2.1.1) —w? u"(x) + 4,u(x) = g(x), xeS

in sense of 4(S; #;,) (where 4, = d?/ds* means the Laplace operator) and the
boundary conditions

(2.12) u(0) = °h,
u(n) = ‘h
(2.1.3) u'(0) + o u(0) = °h,
w'(m) + oy u(m) = 'h
(2.1.4) _ u(0) = %,

w'(m) + au(n) = 'h

insense of #°2, will be called a solution of the problem (2}), (23) or (#3), respectively.

The solvability of our problem depends essentially on the number-theoretical
character of the parameter w. With respect to this fact two cases will be investigated
separately:

(i) @ = p/q, where p, q are relatively prime natural numbers,
(i) the number w satisfies the following assumption with a natural ¢ > 2.
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[£e]: there exists a constant C, > 0 such that

-1-—21- 2 Con™? forall m,neA .
w n

Remark 2.1. According to Liouville’s theorem (see [4]) the assumption [Zp]
is fulfilled e.g. when w is an algebraic number of the degree g.

Expanding the functions g, °h, 1h into Fourier series
g(x) = ng(x)ek, ih = Z hee, i=0,1
and assuming the existence of a solution u € %,
(2.1.5) u(x) = Y w(x) e, xef,
ke K
the equation (2.1.1) yields the system of differential equations
o? uy(x) — K2 ux) = gi(x), xeS ke .

General solutions of these equations are

(2.1.6)  u(x) = uy(x) + a cos (kx/w) + bk sin (kx/w), k%0,
uo(x) = %ug(x) + ao + box, xesf,

where the particular solutions

@217)  Oux) = %ug) (x) = (k)™ J’ :gk(C) sin (k(x — &)jw) ¢ ,

“uo(x) = °uo(9) (x)

~o [(ade) - §de

are chosen to fulfil the relation °uy(0) = %u;(0) = 0. Using Schwarz inequality

(if g € €Y)(S; #3,), then also integrating by parts in (2.1.7)), it is easy to verify

that the function %u(x) = Y %u)(x) ¢,, x € #, lies in %. Hence, the function u given
kek

by the series (2.1.5) belongs to % if and only if the coefficients a,, b, in (2.1.6) satisfy
the condition

(2.1.8) a={a)2,€h’, b={h}2,eh’.

Now let us look far such couples (a, b) € h> x h? that the correspondmg ueu
fulfil the boundary conditions required.
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2.2. Problem (£9). Substituting (2.1.5) and (2.1.6) for u, the boundary condition
(2.1.2) assumes the form

(2.2.1) ay =h,, ke M.

In this way, the sequence a = {a,}2, €b® is determined by °he 3, uniquely
and the condition (2.1.2,) gives

I

(222 by sin (kn/w)
bo

k B(g, °h, *h), ke # \ {0},
n_l BO(g9 0h1 1h) s

where
(2.23)  By(g, °h, *h) = 'h, — °h, cos (kn|w) — ®ulg) (n), ke #.

First, let us investigate the rational case with © = p/q, where p, q are relatively
prime natural numbers. Then sin (kn/w) = 0 if and only if ke (1) =
= {ke # | k|p € #}. Therefore, equations (2.2.2) are equivalent to the system

(2.2.4) by = n~! By(g, °h, 'h),
= k(sin (knq/p))~* B(g, °h, 'h), ke \ (1),

(2.2.5) Bg,°h,'h) =0, ke&L(2) = (1) \ {0}.

Here the relations (2.2.4) define the coefficients by, k € # \ ¥(2), whereas (2.2.5)
represents a solvability condition.

To fulfil (2.1.8) let us assume that g € €(S; #73,) U €(F; #3,) and ‘he H#3,
i = 0, 1. Then, if the condition (2.2.5) is satisfied, all solutions of our problem are
given by

(2.2.6) u = Vy(d) + Wy(g, °h, 'h),

where the sequence d = {d,}2,, ranges over b2, and the operators V;, W, are
defined by

(2.2.7) Vi(d) (x) = Z k"dk sin (kx/o) e, xe S,
(2.2.8) Wi(g, °h, *h) (x) = Z [®ui(g) (x) + °hy cos (kx[w)] e, +
+ B Bla, o) S

ke M\ (1) sin (kn/w)
n~! By(g, °h, 'h) xeq, x€ 5.
It is easy to verify that V; € [b3,,) — %] and )
W, e [6(F; #2,) x (#3)* = U] o [0S #3.) x (#3,)* = 4]
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Defining an operator Z, = Z,(g, °h, *h), Z,:(4(F; #3,) v € (SF; #3},)) x
X (#34)" = H3, by

(22.9) Zi(g.°h, k) = "h(. + mq[p) - °h +
" 211}; f : J :[g(S) (- + &a/p) + 9(9) (- — a/p)] d9 d¢

and integrating by parts, the condition (2.2.5) may be modified into the form

f U240, °h, ) (f) e (i) dt = 0, ke ().

Hence, denoting by R, = Ry(g, °h, *h) the operator given by

-1

(2.2.10)  Ry(g, °h, h) (1) =pZ

Jj=0

Ry e[€(S; H#3) x (#32)* » H3.] 0 [0S #20) x (#3,)° > #3,]

;%Zl(g, °h, 'h) (t + 2mj[p), t€(0,2m),

and performing the following arrangements

R(on 1)) = £20)” | “Ry(g. %%, 1) () = de 1) =

ik p=1 p2n
=Y g > | Zug, °h, ') (v + 27j[p) e_y(c) dr (f) =
ke 2T j=0 J,

-k 2n p—1 riki
=3 ;7: Z(g, °h, *h) (n) e-«(n) dquoez WP gt) =
. 2

ke#

ikp 2 07, 1
= —= | Zi(g, °h, *h) (n) e_u(n) dn e (1),
ke#(2) 27 Jo

we obtain the solvability condition (2.2.5) in*a more closed form
(2.2.11) Ry(g,°h,'h) =0.

Theorem 2.2.1. Let the problem (P3) with @ = p/q be given, where p, q are
relatively prime natural numbers. Let g € 6(#; #73,) U €Y, #%), ‘he 3,
i = 0, 1. Then the problem has a solution if and only if

Rl(g’ Oh, 1h) =0 (equality in the space fgu) .

In the affirmative case every solution of (#3) is given by
u = Vy(d) + Wy(g, °h, 'h),

where d is an arbitrary element of b2y
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Further, let @ be an irrational number satisfying the assumption [ #¢] for a natural
¢ 2 2. Then equations (2.2.2) determine the coefficients b;, k € 4, uniquely and so
the uniqueness of the solution of (£%) is proved. Supposing g € €(S; #%:') U
U €N SF; H#E,) and ‘he #5;%, i = 0,1, the requirement (2.1.8) is fulfilled as the
assumption [.‘?Q] gives the estimate

(2.2.12) |sin (knjw)| 2 2Cok* ™2, ke .

|sin kn/

"")I kn|ljo — nfk| 2 2kCok™2.)
|km|w

(Indeed, |sin (kn/w)| =

In this case, our problem has a solution
(2.2.13) u = Wy(g, °h, 'h),
where the operator
Wy [6(F; #5: 1) x (#%22)? > U]  [6(F; #Y,) x (#5357 - %]
is defined by
(2.2.14) Wa(g, °h, h) (x) = k%[ouk(g) (%) + °hy cos (kx| )] e, +

sin (kx/w)
* ke,«z(o}Bk( h) sin (kn/w)

71 By(g, °h, 'h) xeo, x€.5.

e +

Theorem 2.2.2. Let the problem (#)) with w satisfying the assumption [Z¢]
for a natural ¢ 2 2 be given. Let g € 4(F; #5:") U €(F; #3,) and ‘he #%}2,
i = 0, 1. Then the problem has a unique solution

u = Wy(g, °h, 'h).
2.3. Problem (#9). Inserting (2.1.5) and (2.1.6) into (2.1.3,) we obtain
(2.3.1) bk = w(ohk - aoak) N k € v” AN {0} N

bO = oho — OoQy .

Considering these equations as definitions of coefficients b,, the boundary condition
(2.1.3;) gives

(23.2) aofay — &y — apaym] = Ao(g, °h, h),

2 2
a [(m — ap) cos (kmjw) — ’_‘_Lk“lfﬂ sin (kn/w)] = A9,°h,*h), ke \ {0},
)
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where

(23.3) 4(g, °h, *h) = *ho ~ °hofl + ay7) + @~ f go(m — &) (1 + a,§) ¢,
0
Ai(g, °h, 'h) = 'k — °hy[cos (kn|w) + a;wk™? sin (kn|w)] +
+ 0?2 r gi(n — &) [cos (k¢|w) +
0

+ a0k~ sin (k&[w)] dE, ke# \ {0}.

Firstly, let us investigate the particular case when oy = &, and = p[q, p, ¢ —
natural, relatively prime. Consequently, equations (2.3.2) reduce to

(2.34) ao; = —n"1 Ao(g, °h, 'h),

ay sin (knfw) = ;2—:5—2—2 A9, °n, '), ke ~ {0}.

(A): Let ¢y = a; = 0. Then the equations (2.3.4) are fulfilled if and only if

(2.3.5) o = Alg, °h, '), ke~ £(1),

k sin (kn/ w)
(2.3.6) Alg, °h, ') =0, keS(1).

(Here &(1) is the same set as in Section 2.2.)
The solvability condition (2.3.6) can be written after certain arrangements
(analogous with those used to derive (2.2.11)) as

r—1
(2'3'6’) R3(gQ Oh’ lh) = Z Z3(g, oh, 1h) (- =+ 27[J/p) = 0 ,

j=0
where the operator Zy: (6(.3 #3,) U (3 #17) x (3)? » #3, s defined by
(2.3.7) Z3(g, %h, 1h) = 1h(. + nq/p) — % 4+

+ %(q/p)2 J:[g(x) (- — gx/p) + g(x) (- + gx/p)] dx.

Provided that the condition (2.3.6") is fulfilled, every solution of our problem has
the form

(2.3.8) u =Vy(d) + Ws(g, °h,'h), d={d}2,€b3,,

where '

(239 Vy(d) (x) = Y dicos(kx|o) e, xes,
kes(1)
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(2.3.10)  Ws(g, °h, 'h) (x) =ke.l§\:(0) [ou,,(g) (x) + °h, ;p; sin (kx/a))] e +

+ [Cuo(g) (x) + °hox] e, —
_ S 4g,°h h p cos (kx/a)) s

keMNP(1) kg sin (kn/co)
Obviously:

. Vie[b3a - %], Wse[6(F; #3) x (#5,) > 2] n
A [€0(5; #L) x (HL) - %], Rye[6(=: #3,) x (#3) — #%,]
N [60(F; #3,) x (#3:) » #2.] .

(B): Let ag = a, + 0. Then conditions (2.3.5), (2.3.6) from the case (A) are to be
replaced by

(23.11) a = [sin (kn/w)]™ Ag, °h '), ket ~ £(1),

—kw
k* + w?a
ao = “ﬂ—la(;z Ao(g’ oh’ lh) 3
(2.3.12) Ag, °h, 'h) =0, keZ(2) = £(1) \ {0}.

Defining the operator Z,: (4(Sf; #3,) U € SF; #3,)) x (#3,)* > H#3e
by
(2.3.13) Z4(g, °h, ') (1) = %Z,(g, Oh, 1h) (1) +

+ (a0 a/20) J" [6(2) (¢ = Zalp) — a(2) (¢ + Ealp)] dé
(V]
the solvability condition (2.3.12) is equivalent to
-1
(23.12) Ru(g, °h, 'h) = 3" Z4(g, °h, 'K) (. + 2mjjp) = 0.
j=0

If this condition is fulfilled, every solution of (#9) has the form
(2.3.14) u =V,(d) + Wg, °h, 'h), d={d}2,€b}q,

where

319 V@)= 3 & [cos (kxfe) = %2 sin (kx/a))] &
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(2.3.16) Wi(g, °h, 'h) (x) =k§‘°uk(g) (x) ex + hoxe, +

. + Y °mp/(kq) sin (kx|w) e +

ke N\ {0}

3 {—kpq (g, °h, 'h) [sin (knfw) (k2g* +
ke NP(1)

+ a2p?)] ™ [cos (xfo) = %22 sin (kx/w)] ek} -

— g2 Ag(g, °h, 1h) (1 — apX) €0, x€S.
Obviously:
Vie b3 = %], Wae[6(F543,) x (#3,)" = U] n
A [80(F; #L) x (#2,) > U], Ree[€(F; #2) x (#3:)* > #L,]
N [€D(F5 H3,) x (H3,)* > H3] -
Theorem 2.3.1. Let the problem (23) with ay = a;, and w = p|q be given, where p,
q are relatively prime natural numbers. Let g € 6(F; #3,) Y €Y(F; #},) and

thes#i,i=0,1.
(A): Let ay = a; = 0. Then the problem has a solution if and only if

Ry(g, °h, *h) = 0 (equality in the space #3,) .
In the affirmative case every solution of (#3) is given by
u = Vi(d) + Wi(g, °h, *h),

where d is an arbitrary element of b3).
(B): Let ay = a; = 0. Then the problem has a solution if and only if

R4(9, °h, 1h) = O (equality in the space #},).
If this condition issatisfied, every solution of the problem is given by
u = Va(d) + Wi(g, °h, *h),

where d is an arbitrary element of b2

Further, let o, = a, and let @ be an irrational number satisfying the assumption
[Ze] for a natural ¢ = 2. Since in this case sin (kz/w) + 0 for all ke .# \ {0},
the coefficients a,, ke # \ {0}, are determined by (2.3.4) uniquely.

(A): Let ay = a, = 0. Then equations (2.3.4) give the solvability condition

(2.3.17) Rs(g, °h, h) = Ag(g, °h, 1h) = 0
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and every solution of the problem can be written as

(2.3.18) u =Vs(d) + Ws(g,°h,'h), dex,

where the operators V5 and W are given by

(2.3.19) Vs(d)(x) = dey, xe.f,

(2.3.20) Wi(g, °h, *h) (x) = J‘Z\{O}{ou,‘(g) (x) + °mowk™! sin (kx|w) —
— o[k sin (kn/w)]™* 4,(g, °h, *h) cos (kx|w)} e, +
+ [Cuo(g) (x) + %hox]eo, xef.

Using the estimate (2.2.12), it is easy to verify that

Wse[6(F; #5.") x (#5.7) - U] 0 [6(F; #%,) x (#5:7)* > 2].

(B): Let oy = &; % 0. Then equations (2.3.4) determine all coefficients a, and the
problems has a unique solution (provided that the functions g, °h and 'k are smooth
enough):

(2.3.21) u = We(g, °h, 'h),

where

(2.3.22) Wy(g, °h, ') (x) = ﬂ};{o}{"uk(g) (x) + °hywk ™! sin (kx[w) —
— ko[(k* + w®a3)sin (kn/w)]™* A(g, °h, *h) x
% [cos (kx[w) — apwk™? sin (kx/w)]} e —
— nYag? Ag(g, °h, *h) (1 — aox) ep +

+ [Cuo(g) (x) + %hox] e, x€.£.
Obviously: ’

W e [6(F; #55Y) x (#551) > U] n [60(F; #5,) x (#551) - ]
Theorem 2.3.2. Let the problem (23) with a, = ay and with w satisfying the

assumption [ £¢] for a natural ¢ = 2 be given. Let g € €(5; #5;") U ¢ V(F; H#%,)
and ‘he #%',i=0,1.

(A): Let ap = &, = 0. Then the problem has a solution if and only if
Rs(g, °h, 'h) = 0 (equality in ®).
In the affirmative case every solution of (#3) is given by
u = Vy(d) + Ws(g, °h, 'h),

where d is an arbitrary real number.
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(B): If g = 1 * 0, the problem has a unique solution

u = W(g, °h, 'h).

Finally, let &y + ®; and w = p/q, where p, q are relatively prime natural numbers.
Let us denote

2 2
k* + wfayx,

(2.3.23) S;(k) = (@1 — a) cos (knjw) — sin (knfo), ke # \ {0},

S3(0) = al - ao - aoaln .

Then |S,(k)| = |1 — ao| > Ofor all k e &(2)and the relation (2.3.23,) can be written
for ke # \ ¥(1)as
' . k? + o’ayn
S3(k) = («, — a) sin(kng/p) | cotg (kng/p) — ————2~].
k w(d1 - ao)
The first term in the square brackets acquires only p — 1 values on the set of ke
e M \ ¥(1), the second one can assume the same value for at most two different
k € #, the whole expression in the brackets is equal to k/(w(¢o — «;)) asymptotically.
Hence, the set #(3) = {k e .# | S3(k) = 0} contains at most 2p — 1 numbers and,
moreover, the following relations hold:

[Sa(k)| = Clk|, ke# \~ (1) \ £(3), C beinga constant,
IS3(K)| = |y — @o|, ke F(2).
Obviously, conditions (2.3.2) are equivalent to
(2.3.24) a, = (S3(k))~! A(g, °h, 'h), ke \ ¥(3),

(2.3.25) A9, °h, 'h) =0, ke#(3).

Then, to guarantee that a = {4,}%,, €b?, a higher smoothness of the functions g,
%h and 'h must be assumed, e.g. g € €(F; H#'3,) v €L HE,), el i=0,1
or g€ 6(F; [#3,]5) © €I [#2alo) 'he [H#on]oay 1 = 0,1 (in this case
Ax(g, °h, 'h) = 0 for ke #(2)).

Defining the operator R;: (€(f; o#3,) U €)(F; #3,)) x (#2,)? - hhs, by

Ak(g, Oh, lh) ’ k € y(3) N

2.3.2 °h, *h) = {n}= =
(2.3.26) R4(g,°h,'h) = {n}2,, n {0, ‘ ke # \ #(3),

the solvability condition (2.3.25) can be written as
(2.3.25) Ry(g, °h, th) = 0.
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If this condition is fulfilled, every solution of (#3) is given by

(2327) u =Vi(d) + Wig, °h, k), d = {42, €byes)

where

(23.28) V) (x)= Y  difcos (kx/w) — apw k™! sin (kx[@)] e +
keZ(3)\{0}

+ do(1 — apx) ey, Xx€F,

Wi(g, °h, 'h) (x), if 0e&(3),
(2:3.29) Wi(g, °h, h) (x) = {W(g, °h, h) (x) + (S5(0))~* Ao(g; °h, h) x
x (1 — apx) ey, if 0¢5(3),

(2330) Wy(g, %, h)(x) = T (Ss(k)~" Ayg, °h, th) x

ke M\ £(3)\{0}

x [cos (kx|w) — apwk™* sin (kx|w)] e, +

+ Y [Cu9) (x) + °hwk™*sin (kx|/o)] e, +
ke N(O]

+ (Pup(g) (x) + ®hox) ey, xe€f.

(As to (2.3.27) let us remind that the sequence d = {d;}%,, € hy(s, has only a finite
number of non-vanishing terms which may assume arbitrary complex values such
that d_, = d;, k € .#.) Obviously:

Vye [[)ly(s) - 0”] , Wre [%(v‘& ”33) X (‘%pg")z - %] N

N[E(F; #3L,) x (#3,) = U]
and as well

W, e [4(2; [#5)50) % ([£ilo@) = Usa) -

Theorem 2.3.3. Let the problem (#3) with «y * a, and @ = p|q be given, where p,
q are relatively prime natural numbers. Let ge%(F; #3,) v €(S; #3,),
the#3, i=0,1 or geb(F;[#2 o) © ES; [#rlso@) 'he[Hr o0
i =0, 1. Then the following assertions hold:

(A): If £(3) is a void set, the problem has a unique solution
u = Wyg, °h, 'h).
(B): If the set &(3) is non-void, the problem has a solution if and only if
R4(g, °h, 'h) = 0 (equality in the space bys,) .
In the affirmative case every solution of (#)) is given by

u = Vy(d) + Wy(g, °h, *h),

where d is an arbitrary element of I)ly(s).
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Remark 2.2. In the case when a, # o; and o is an irrational number the investi-
gation of existence of solutions in integers of the equation S;(k) = O represents
a fairly difficult pumber-theoretical problem. Therefore this case is omitted in this
paper.

2.4. Problem (#3). Identically with the problem (£}), the boundary condition
(2.1.4,) gives

(2.4.1) a = °h,, ke .
Then the relations (2.1.5) and (2.1.6) inserted into (2.1.4,) yield
(242) blo™!cos (kn|w) + ak™* sin (knjw)] = Dy(g, °h, *h), ke.# \ {0},

bo(l + aTC) = Do(g, Oh, lh) .
where

(243)  Do(g, °h, 'h) = tho — aho + w2 J "golm — &) (1 + ad) de,
0
Dy(g, °h, 'h) = *hy + °h[ko™* sin (knjw) — a cos (knjw)] +
+ o™t rgk(n — &) [~ cos (k&[w) +
0

+ ak™ ' sin (ké[w)] &, ke.# \ {0} .

Firstly, let us investigate the simpler case, when o = Qand w = p/ g, P, 9 — natural,
relatively prime. Then expression in the brackets in (2.4.2) reduce to @ ™! cos (kng|p).

(A): Let p be an odd number. Then cos (kng/p) = 0 for all k € # and so equations
(24.2) give

(2.4.4) b, = w[cos (kn/w)j“1 Dy(g, °h,*h), ke \ {0},
by = Do(g, °h, 'h).

Thus, if g € €(F; #3,) U €(F; #3,), °h€ #3, and he #3,, the problem (23)
has a unique solution

(2.4.5) u = Wy(g, °h, 'h),

where

W e [4(F; #2,) x H3, x 3, > U] 0 [€0(F; #3,) x Hia X K3, > U]
is defined by
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(2.4.6) Wy(g, °h, 'h) (x) =keﬂz\(o){°uk(g) (%) + °hy cos (kx[w) +
+ [k cos (knfw)]~* Dy(g, °h, *h) sin (kx[w)} € +
+ [uo(g) (x) + °hy + Do(g, °h, *h) x) ep, x€F.

(B): Let p =2m be an even number. Then cos(kng/p) =0 if and only if
ke #(4) = {ke.# | klm = odd number} and so conditions (2.4.2) give the system

(24.7) by = o[cos (kng[p)]~* Di(g, °h, 'h), ke H \ F(4) \ {0},
bO = DO(g’ Oh’ lh) ’
(2.4.8) Dy(g, °h,*h) = 0, ke(4).

The solvability condition (2.4.8) can be written after certain arrangements in the

form
2m-1
(2.4.8) Rg(g,%h,*h) = Y (—1) Zo(g, °h, *h) (. + mjjm) =0,
j=0
where the operator Zy: (6(SF; #3,) U G F; H#),)) x Ky, X Hop — K3, is
defined by

(2.4.9) Zo(g, °h, 'h) (1) = "h(t + na/p) + (a/p) (% Oh(i) +
+ 3(afp)? j "To(e) (1 + &afp) —

— 9(&) (t — ¢q/p)] dE, te(0,2m).

Hence, Ry € [6(F; H#3,) X H3p X K- H3] 0 [69(F; H#3,) X H, x H5, >
g x%ﬂ]'

Thus, supposing that the functions g e €(f; #3,) U € F; #},), ®he #3,
and *h e #3, fulfil the condition (2.4.8'), every solution of our problem has the form

(2.4.10) u =Vo(d) + Wo(g, °h, 'h), d = {d}>,€b}u,,

where

(2.4.11) Vo(d)(x) = Y dk™'sin(kx|w)e,, xe€S,
keS(4)

(2.4.12) Wy(g, °h, k) (x) =k;«[°uk(g) (x) + °hy cos (kx/w)] e +
o 15 @ sin (kx/w) .
" ke,«\(%;\y(a,)Dk(g’ h ) k cos (knjw) *

+ Dy(g, °h, *h) xe,, x€5.
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Obviously:
Voe D2 > %), Woe[G(F; H3,) x H3 x K3 > U]
N [€N(S; #3,) x #3, x HE — U]
Theorem 2.4.1. Let the problem (#3) with « = 0 and o = p|q be given, where p,

q are relatively prime natural numbers. Let geé(S; #3,) v €V(F; #},),
%he 3, and *he 3, Then the following assertions hold:

(A): If p is an odd number, the problem has a unique solution
u = Wy(g, °h, 'h).

(B): Let p = 2m be an even number. Then the problem has a solution if and

only if
Ro(g, °h, th) = 0 (equality in the space H#73,) .

In the affirmative case every solution of (#3) is given by
u = Vo(d) + Wo(g, °h, *h),

where d is an arbitrary element of [);(4).

Further, let « = 0 and let w be an irrantional number satisfying the assumption
[Zo] for a natural ¢ > 2. Hence the estimate

(2.4.13) |cos (knjw)| = 2'7¢Cok'™¢, ke N

follows and so
Wee[6(F; #5: ") x %> x #%' - U]
N [€D(F; #Y,) x HG? x H4 - U]

Since cos (kn/w) #+ 0 for all k € 4, equations (2.4.2) give again (2.4.4) and the
function u = Wg(g, °h, 'h) is the unique solution of the problem.

Theorem 2.4.2. Let the problem (#3) with o = 0 and with o satisfying the assuinp-
tion [£e] for a natural ¢ 2 2 be given. Let ge4(S; #5:") v €Y(F; #4,),
%he #%* and *h e #%:1. Then the problem has a unique solution

u = Wylg, °h, 'h).

Finally, let o % 0 and w = p/q, where p, q are relatively prime natural numbers.
Let us introduce the set #(5) = {ke 4 | S5(k) = 0}, where

(24.14)  S4(k) = ko~ cos (knw) + asin (knjw), ke \ {0},
550) = 1 + ar.

350



Thus, if cos (kng/p) = 0, then |Ss(k)| = |a| > 0, if not, we can write

Ss(k) = cos (kngq[p) [kq[p + «tg(kng[p)], k+0.

Since tg (kng/p) assumes only p values on the set of k € #, the set &(5) contains
at most p numbers. Moreover, for all ke # \ F(5) such that cos (kng[p) + 0 the
estimate |S5(k)| = C|k| is valid, where C is a suitable positive constant.

Thus, conditions (2.4.2) are equivalent to

(2.4.15) b, = k[Ss(k)] ™! Dig, °h, *h), ke \ F(5) \ {0},
by = [S5(0)]"* Do(g, °h, 'h), when O0¢ F(5),

(2.4.16) Dy(g, °h, 'h) = 0, ke £(5).
The solvability condition (2.4.16) may be also written as
(2.4.16)) Ryo(g, °h, th) = 0,
where the operator Ryo: (6(F; #3,) U €N F; H#3,) X H3e X H3e = by,
is defined by

0p 11 — 1o _ [D(g,%h, h), if kes(5),
(24.17) Riolg, °h, *h) = {rdZa, "“{0, if ke \ L5).

If this condition is satisfied, every solution of the problem has the form
(2.4.18) u = Vyo(d) + Wio(g, °h, 'h), d = {d,}°, €bis)»
where

Wiolg, °h, 1) (x), if 0e(5),
(24.19) Wio(g, °h, *h) (x) = { Wiolg, °h, *h) (x) + (S5(0)) 7! x
x Do(g, °h, 1h) xeq, if 0¢2(5),

(2.4.20) W, (g, °h, h) (x) = kszﬂ[%k(g) (x) + °hy cos (kx|w)] e, +

+ Y (Ss(k)~* Dlg, °h, h)sin (kx|w) e, x € F

ke AN{0}N\F(5)
and
(2.4.21) Vlo(d) (x) = Z dk Sin (kx/a)) ek + doxeo s X € j .
. keZ(5)\{0} .

Obviously: Vo € [by s, = %]
Properties of the operator W, , are rather complicated for the equality |S(k)| = |«

(when cos (kn/w) = 0) leads to the requirement of a higher smoothness of g, °h
and 'h. It is necessary to distinguish two cases:
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(1): The number p is odd. Then W,,e[€(F; #2,) x #3, x H#2, - U] n
A [€(s; L) x H3, x #2, - U]

(ii): The number p is even, p = 2m. Then W,, € [€(F; H30) x Hse x H3p
- U] n [€M)(F; H#3) x K5, X H3e — U] as well as Wy, € [6(5; [”%u]?’(ﬁ)x
x [#3,]54 % [#2 )@ — U

)o@y X [ 29 sl

Theorem 2.4.3. Let the problem (gzg) with o + 0 and ® = p[q be given, where p,

q are relatively prime natural numbers. Let one of the following assumptions

be fulfilled:
(i) p is an odd number, g € €(F; #3,) U €ONF; #},), Che H3, and *he #3,;

2n>

i) p=2m is an even number and g 4(F; #3,) U € (F; #2,), he #2
2 2=n

2n

he ”gn or ge %(j; [”gu].lv(«t)) v %(1)(-7; [‘#;n];(‘*))’ °he [‘#gn] ;’(4)’
lh € [x;n];“)_

Then the following assertions hold:
(A): If £(5) is a void set, the problem has a unique solution
_ u = Wo(g, °h, 'h).
(B): If the set #(5) is non-void, the problem has a solution if and only if
Rio(g, °h, th) = 0 (equality in the space hjs)) -
In the affirmative case every solution of (9"3)) is given by
u = Vyo(d) + Wio(g, °h, 'h),

where d is an arbitrary element of I)}(s).

Remark 2.3. The problem with « 3 0 and an irrational w leads to difficulties
analogous to fthose met with in the irrational case of (#3) with &, #+ «; and so this
problem is omitted as well.

3. THE WEAKLY NONLINEAR PROBLEM

3.1. General considerations. Taking into account that the linear problem was
solved in the previous paragraph, the linear parts g, °h and 'h of the right-hand
sides in (0.1) and (0.3)—(0.5) may be omitted without loss of generality. Therefore
we can formulate the weakly nonlinear problem as follows:

Let the operators F = F(u,e), F: % x 0,8,y > €(F; #3,)s ‘X = X(u,¢),
X : U x 0,60y = H3,, i =0,1 and real numbers w > 0, oy, ®;, a be given.
The mapping u* = u*(e), continuous on an interval <0, e*) < 0, ¢,> into %,
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is called a solution of the problem (2,), (#,) or (2,), if for each g€ <0, &*) the
function u = u*(e) € % satisfies the equation

(3.1.1) —a?u"(x) + 4, u(x) = e F(u, &) (x), xeSf
and the boundary conditions

(3.1.2) u(0) = ¢ °X(u,¢), u(n) =¢&'X(u, )

or

(3.1.3) w(0) + oo u(0) = & °X(u, &), w(m) + o, u(n) = &' X(u, &)
(3.1.4) u(0) = ¢ °X(u, &), () + au(n) =e'X(u,¢),

respectively.

Remark 3.1. The most frequent case is that F, °X and 'X are Njemyckij-operators,
i.e.
F(u, &) (x) (1) = f(t, x, u(x, t), ulx, 1), u(x, 1), &) ,
IX(u, &) (1) = Ix(t, u(0, t), u (0, 1), u (0, 1), u(m, 1), u(x, 1), us(x, t), &) ,
j=0,1, xef, te0,2n).

Then the continuity of the operators F, °X, X and their G-derivatives F,, °X}, X/,
is guaranteed by a sufficient smoothness of the functions f = f(t, x, u,, uy, u,, &),
Iy = x(t, By Bas B> Bas Bs»'Bes€), j =0,1. For example: if the derivatives
o"flot oud out uf, n =i+ j+ k+ m <3, i< 3 exist, are 2n-periodic in t and
continuous on the domain

{(ta X, u01 ul, Uz, s)l te <Oa 27!), X € <09 7I>, an ula u, € (—w’ + C’O), g€ <09 80>} >

then the operators F and F, are continuous from # x <0, ¢, into 4(S; #3,).
However, if e.g. F,: % x <0, &,) - €(F; #3,) is required, it is already necessary
to assume that df/du; = 0, i = 1,2, which means that f = f(t, x, uy, ¢). Similarly
the requirement F, : % x <0, g,) — 4(S; #3,) can be fulfilled only if 9f ou; = 0,
i=0,1,2, ie. when [ = f(t, x, ¢). Properties of the operators °X, 1X are quite
analogous.

The weakly nonlinear problems will be solved by the following standard procedure,
based on the application of Lemmas 1.4 and 1.5 to the results obtained in the linear
case. _

Let us denote the weakly nonlinear problems (%), (#,), (#,) by a common
symbol (#), the linear problem corresponding to (%) (and having the same para-
meters , &g, ;, «) by (#°). In accordance with the previous paragraph we shall
distinguish the two following cases.
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[‘61]: There exist Banach spaces %, Fo, ¥1, 2,, 2, and linear continuous
operators Re[F x F, x F, - D,], Ve D, > U], We[F x Fo x F, > U]
such that it hold§:

The problem (2°) given by the right-hand sides g € #, *he #, and ‘he #,

has a solution if and only if R(g, °h, *h) = 0. '

If this condition is satisfied, every solution of \#°) is given by the relation u =

= V(d) + W(g, °h, *h), where d is an arbitrary element of 9,.

[#2]: There exist Banach spaces &, #,, &, and a linear continuous operator
We[F x Fo, x F, - %] such that the problem (#°) given by ge &, *he F,
and 'h e #, has a unique solution u = W(g, °h, *h).

The two following assertions, corresponding to the cases [#1] and [#2], respec-
tively, can be easily obtained by the succesive application of Lemmas 1.4 and 1.5.

Assertion [1]. Let #, F,, F,, D, D, and R, V, W be the Banach spaces and
the operators from the case [¥1]. Let the operators F = F(u, ¢), F : % x 0, gy) —
- F, ‘X = X(u,e), ‘X:U x 0,60y > F,;, i =0,1, be continuous and have
continuous G-derivatives F,, °X|, 'X_. Let °d be an element of the space 2, and let
U =U(d,z¢), U:B(°d; d0; 2,) x <0,8,) = % be a continuous operator having
the G-derivative U continuous (in d and €) and such that the function u = U(d, €)
solves the equation

u =V(d) + & W(F(u, ¢), °X(u, ), 'X(u, ¢))

for arbitrarily chosen d € B(°d; 5,; 9,) and &€ {0, &). (According to Lemma 1.4
such operator U exists and it is unique.) Defining the operator P : B(°d; 8,; 9,) x
x €0, 8> = 2, by

P(d, &) = R(F(U(d, &), ¢), °X(U(d, €), €), * X(U(d, e), £)),

let the following assumptions be fulfilled:

) P(°4,0)=0,

(ii) there exists an operator Q = [P;(°d,0)]™' €[2, - 2,].
Then there exist a number & > 0 and a continuous mapping d* = d*(e), d*:
<0, &, — B(°d; 803 D,) such that d*(0) = °d and the equality P(d*(g),e) =0
holds for all € € €0, &,). The transformation u* = u*(¢), defined on <0, &,) into U
by the relation u*(e) = U(d*(e), ¢), is a unique solution of the problem (%) con-
tinuous on <0, &) and such that u*(0) = V(°d).

Assertion [«2]. Let #, F, and &, be the Banach spaces from the case [$2].
Let the operators F = F(u,e), F:%U x <0, 80y = F, 'X = X(u,e), 'X:U x
x €0, &) = F;, i = 0,1, be continuous and have continuous G-derivatives F,,
°X., 'X.. Then there exist a number ¢, > 0 and a unique mapping u* = u*(e)
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continuous on <0, &, into % such that u*(0) = 0 and u* solves the weakly nonlinear
problem (2).

Using these general assertions, we can reduce the following sections to the for-
mulations of theorems holding in concrete problems (2,), (#.) and (2;).

3.2. Problem (2,). Theorem 3.2.1. Let the problem (#,) with w = p|q be given,
where p, q are relatively prime natural numbers. Let $(2) denote the set
{ke | klpe.# \ {O}}. Then the assertion [£1] is valid, where F = 6(F; #3,)
or ¥ = (g(l)('f; '}fén)’ 'g;i = ”;m i=0,1, @1 = l).2‘(2)’ @2 = f%m V="V,
W= W, and R = R,.

Theorem 3.2.2. Let the problem (9’1) be given, where the number w satisfies the
assumption [S’Q] for a natural ¢ = 2. Then the assertion [s£2] is valid, where
F =4I #%5") or F = 6NF; #S,) and F; = #3552, i=0,1.

Remark 3.2. If F, °X and X are Njemyckij-operators, the above theorem is useful
only with ¢ = 2. According to Remark 3.1, our problem with ¢ = 3 must inevitably
be a linear problem.

3.3. Problem (2,). Theorem 3.3.1. Let the problem (2,) with ay = «, and w = p/q
be given, where p, q are relatively prime natural numbers. Let ¥(1) =
={ke s |klpe 4} and ¥(2) = ¥(1) \ {0}.

(A): If 4o = oy = O, the assertion [/1] is valid, where F = €(F; #3,) or F =
=FNI; H), Fi=H i =01, D, =D}y, D, =H5, V=V, W=W,
and R = R;. .

(B): If g = &y * O, the assertion [1] is valid, where F, F, and F, are the
same spaces as above and Dy = b} ,), D, = H#},, V="V, W= W, and R = R,.

Theorem 3.3.2. Let the problem (2,) with oy = «, be given, where the number @
satisfies the assumption [ £¢] for a natural ¢ 2 2.

(A): Let g = ay = 0. Then the assertion [ 1] is valid, where F = ¢(F; #%3!
or F=€0I; H#%,), Fi=H5", i=01, D,=2,=R, V=V;, W=Ws
and R = R;.

(B): If ag = oy = O, then the assertion [ /2] holds, where #, F, and ¥, are
the same spaces as above. ‘

Theorem 3.3.3. Let the problem (2,) with ay + a, and w = pla be given, where p,
q are relatively prime natural numbers. Let (3) denote the set {k € # | Sy(k) = 0},
where Ss(k) is defined by (2.3.23). Putting either F = 4(SF; #3,) (or F =
=C(F; H3)), Fi=Hr i=0,1 or F=4(F[H]eq) (or F=
= (S; [#2)ow) Fi=[H3)oy i =01, where #(2) = {ke # |klpe
€ # \ {0}}, the following propositions hold:
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(A): If &(3) is a void set, the assertion [ £2] holds.

(B) If the set &(3) is non-void, the assertion [#1] is valid, where 9, = 2,
= I)S’(S), V= V7s W= W7 and R = R7

3.4. Problem (#). Theorem 3.4.1. Let the problem (%) with « = 0 and w = p[q
be given, where p, q are relatively prime natural numbers.

(A): If p is an odd number, the assertion [.s&’2] holds, where F = €(S; #3))
or F = ¢S H),), Fo=H3, and F, = K},

(B): Let p = 2m be an even number and let $(4) denote the set {k eM|kim =
= odd number}. Then the assertion [ /1] is valid, where F, ¥, and &, are the
same spaces as above and 9 = b§(4), Dy = H3, V=V, W= W, and R = R,,.

Theorem 3.4.2. Let the problem (2;) with « = 0 be given, where the number
satisfies the assumption [ £¢] for a natural ¢ 2 2. Then the assertion [&#2] is valid,
where F = €(F; H5LY) or F = ¢S5 HS,), Fo = H5i? and F, = #510.

Theorem 3.4.3. Let the problem (25) with « + 0 and w = p[q be given, where p,
q are relatively prime natural numbers. Let $(5) be the set {ke # | Ss(k) = 0},
where Ss(k) is defined by (2.4.14), and let the spaces F, ¥, ¥, have one of the
following meanings:

(i) If p is an odd number, F = G(F; #3,) or F = €F; H3,), Fo = #3,
and F, = #2,.

(i) If p = 2m is an even number, either F = €(F; #3,) (or F = €V(£; #3,)),
Fo =W F1=Hip0r F = 655 [H3]0s) (or F = €0(F3[#2:]504)),
Fo = [#3:J5y F1 = [#3]5ay where #(4) means the set {k e M | k|m =
= odd number}.

Then the following propositions hold:

(A): If #(5) is a void set, the assertion [#2] is valid.

(B): If the set S(5) is non-void, the assertion [ /1] holds, where 2, = 2, =
= Bysy V' =Vio, W= Wyo and R = Ry,
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