
Časopis pro pěstování matematiky

Jiří Pešl
Periodic solutions of a weakly nonlinear wave equation in one dimension

Časopis pro pěstování matematiky, Vol. 98 (1973), No. 4, 333--356

Persistent URL: http://dml.cz/dmlcz/117812

Terms of use:
© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/117812
http://project.dml.cz


ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Matematický ústav ČSAV, Praha 

SVAZEK 98 * PRAHA 7. 11. 1973 * ČÍSLO 4 

PERIODIC SOLUTIONS OF A WEAKLY NONLINEAR 
WAVE EQUATION IN ONE DIMENSION 

JIRI PE§L, Valasske MezifiCi 

(Received July 16, 1971) 

In applications of the theory of partial differential equations the following problem 
may rise up: The existence and uniqueness of classical (twice continuously differen-
tiable) solutions are to be investigated for the wave equation 

"«(*, *) ~ M T ' x) = #i(T> x) + e Fx(u, e) (T, X) 

considered in the domain {(T, X) | T e ( — oo, + oo), x e <0,7c>} under the periodicity 
condition W(T + 2na>, x) — W(T, X) = 0 and boundary conditions of various types 
at the points x = 0 and x = n, where gx and Fx are 27iG)-periodic in the variable T. 
The problem with co = 1 is solved in [l], the special case of boundary conditions 
of Dirichlet type for an arbitrary co in [2], While the both papers utilize the Poincarg 
method, in this paper a different method is used — solutions are sought in the form 
of Fourier series with respect to T, which guarantees the periodicity of the solutions. 

Performing the transformation T = cot and putting u(t9 x) = W(T, X), the above 
equation assumes the form 

(0.1) utt(t, x) - co2 uxx(t, x) = g(t, x) + e F(u, e) (t, x) , 

where g and F are 27c-periodic in the variable t, and the periodicity condition men­
tioned above reads 

(0.2) u(t + 27i, x) - u(t, x) = 0, t e ( - oo, + oo), x e <0, n} . 

As for the boundary conditions the paper deals with the following three types: 

(0.3) u(t,0) = °h(t) + e°X(u,e)(t), 

u(t,n) = xh(i) + e ^ i i - e ) ^ ) ; 

(0.4) ux(t, 0) + ao u(t, 0) = °h(t) + e °X(u, e) (t) , 
ux(t, n) + ô  u(t9 n) = 1h(t) + e ^(u, e) (t) ; 
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(0.5) u(t,0) ~°h(t) + e°X(u,e)(t), 

ux(t, n) + otu(t, n) -=- xh(t) + e xX(u, e) (t) . 

The paper is divided into three paragraphs. The first, preparatory paragraph 
contains definitions and lemmas, the second one deals with the linear problem, 
i.e. with the case where e = 0. The results obtained are used in the final paragraph 
to solve the weakly nonlinear problem. 

The author's gratitude and acknowledgement is due to O. Vejvoda for his valuable 
advice and help. 

1. SOME DEFINITIONS AND AUXILIARY LEMMAS 

9t, Jf and Ji are the symbols for the sets of reals, positive integers and integers, 
respectively. #(fc)[a, b] (or ?(k)[a, b], if need be) denotes the space of real-valued 
(or complex-valued) functions the fc-th derivative of which is continuous on <a, b>, 
the letter J stands for the closed interval <0,n}. Finally, let us write ek(t) = elkt, 
te&, keJ(. 

With respect to the method used it is convenient to introduce some functional 
spaces, derived from Sobolev spaces i^k

2(0, In). 

Definition 1.1. Let us denote by 2tf 2n (r e Jf) the subspace of real-valued functions 
fe iTr

2(0, 2n) fulfilling the relation 

/JS(2w)=/ffi(0), 0 = fc<r, kzJC, 

where fabs e V(r-"1)[0, 2n\ is the absolute continuous representant of f (i.e. fabs -= f 
almost everywhere in (0, 2nfj. The norm in 3tfr

2n is defined by 
*2n * | l / 2 

\\*r2n ~ V EoJol/(i)tøľd'J 

Remark 1.1. A function/e 3f2n
 wiH usually be identified with the corresponding 

/ . W 6 ^ - 1 } [ 0 , 2 « ] . 
The following lemma may be easily verified: 

Lemma 1.1. j f 2n (r e Jf) is a Banach space. 

Definition 1.2. Let us denote by &k\f; jfT2n) (r e Jf, k e Jt, k > 0) the space 
of mappings u\J-+ 3tfr

2n which are, together with their derivatives u{n\ 0 S n g k, 
continuous transformations on J into #e\n. (We shall often write %(J; jt?r

2n) instead 
of &°\S; Jfrr

2n)) The norm in this space is defined by 

M W i # * * o = max [ i \\u^\x)\\2^21tf^ 
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Also the next lemma can be proved easily: 

Lemma 1.2. <«{k\f; Jfr
2n) (re Jf9keJt9k^$) is a Banach space. 

Remark 1.2. Analogously to Remark 1.1, the mapping u e ̂ k\J; 3tf2n) may 
be identified with the function u(x, t) (of two real variables) defined on the rectangle 
J x <0, 27c>, whose derivatives dn+sujdxn dts

9 n = 0, 1,..., fc, s = 0, 1,..., r - 1, 
are continuous and fulfil the condition 

dn+su , A. dn+su , „ v 
(x, 0) = (x, 27c), xe J . 

dxndtsK J dxndfy J 

Remark 1.3. Any function. h e 3^2n (re^V) can be extended onto ( — oo, -foo) 
27r-periodically preserving its smoothness (the function extended in this way will 
be denoted by h as well). This fact enables us to define the "translation of the argu­
ment" (. + t0) : J^2n -* Jf2n for an arbitrary t0 e 0t by 

h(. +10) (t) ** h(t + t0) , te <0, In}, h e 3ter
2n . 

Since #r
2ft (r e JV) is a subspace of Ĵ f2(0, 2n)9 any function h e 3^r

2n can be ex­
pressed in the form of a Fourier series h = £ ftne„, where /i„ = (l/27c) j ^ * h(t) e-n(t) dt. 

neJC 

Analogously, each u e #(k)(./; J^2n) can be written as u(x) = 5] wB(x) e„, xeJ. 
neJ( 

On the other hand, provided that the coefficients hn (n e M) or*u„(x) (neJ(9xeJ) 
satisfy certain conditions, the corresponding series converges in the space 3tfr

2n or 
<&*\f\ J^2n)9 respectively. 

Definition 1.1*. Let us denote by l)r ( re J ) the space of sequences h = {&„}-«, 
of complex numbers satisfying the conditions: 

(i) fe_n = hn9 neM9 

00 £"2rM2<+<»-
neJi 

The norm is defined (putting 0° = 1) by 

l*li--V(-*)[Z E »2mMT2 • 
m-0 neM 

Definition 1.2'. Let us denote by <#(k\S; If) (fc ^ 0, fc e Ji9 r e Jf) the space 
of sequences u = {u,.}!?^ of complex-valued functions defined on J with the fol­
lowing properties: 

(i) u_n(x) = un(x) , n e J(9 x e J, 

(ii) une%*\J)9 neJ(, 

(iii) the series £ w2r|w»s)(x)|2 , s = 0 ,1 , . . . , fc, converge uniformly on J. 
neJC 
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The norm is defined by 

E 
x e ^ a-=0 m = 0 ne_ ř̂ 

The following important lemma can be proved quite analogously as Lemma 1.3 
in [3]. 

Lemma 1.3. The spaces J^2n and t)r (r e Jf) are isomorphic and isometric. This 
relation also holds between <&k\J; #T2n) and ^k)(S; ff) (r e Jf,ke J(,k^ 0). 

Let us introduce the space W = <€(f; 3f3
2n) n <€^\S; Jf?2

2n) n <${2)(J; jP\n) 
with the norm 

H I * = max {HU^*>32,-)> IMv^HSiX'hn)' Hl**2^;*^*)} • 

Analogously: u = <€(S; f)3) n &l\j?; f)2) n <gi2)(S; I)1), 

Hlu = m a X ( INk**3) ' ||U |k(i)(̂ ;D2), Hkc->(jr^)} • 

Then the spaces °U and u are isomorphic and isometric as well. 

Let Sf be a subset of M and r^Jf. Let us denote r)^ = {h = {h.,}*^ e t)r | /*„ = 0 
for all n 6 Jt \ «9*} and [f)^]1 = ^ \ ^ . Then the decomposition \f = t)^ + [I)^]1 

is valid. Analogously: ^ ^ = [jf2n]y + [^2n]U <% = <%?> + *U%. 

The two following lemmas, quite analogous to Lemmas 5.3 and 5.4 in [1], enable 
us to transfer the results obtained in the linear case to the weakly nonlinear problem. 
First the notation used: \0>x -> ^ 2 ] denotes the space of all linear continuous 
transformations from 0>x into 0>2 (0>x and 0>2 being normed linear spaces), 
^(Po; <5; 0>) = {p e 0 | ||p — Po|| < d] is an open ball in the normed linear space 0>. 

Lemma 1.4. Let the operator W = W(u, d) (e) map 0> x 9 x <0, e0> into &> 
(&, 9 being Banach spaces), let it be continuous and have continuous Gateaux's 
derivatives (further only "G-derivatives") W'u, W'd on the domain @(0; Q; &) x 
x @(cl; d0; 9) x <0, e0>. Let Vs [9 -> 9 \ Then there exist numbers 8* and 

e* (0 < 6* < S0, 0 < e* ^ e0) such that the equation 

u = V(d) + e W(u, d) (e) 

has a unique solution u = U(d) (e) e 0* for each d e 3$(cl; 5*; 9) and ee<0 , e*> 
continuous in e. This solution has the G-derivative U'd continuous in both variables d 
and e. 

Lemma 1.5. Let the operator P = P(d) (e) map for every e e <0, e0> an open set 
9 e 9t into 92 (9U 92 being Banach spaces), let the following assumptions 
be fulfilled: 
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(i) The equation P(d0) (0) = 0 has a solution d* e <§. 

(ii) The operator P is continuous and has the G-derivative P'd = Pd(d) (e) con­
tinuous on the set @(d%; Q; <g) x <0, e0> (Q > 0 being a suitably chosen 
number). 

(iii) There exists Q = [Pd(d*) (0)]""1 e \92 -• 2X\ 

Then there exists et e (0, e0> such that the equation 

P(d)(£) = 0 

has for e e <0, ex} a unique solution d* = d*(e) e & continuous on <0, et} and such 
that d*(0) = dt 

2. THE LINEAR PROBLEM AND ITS SOLUTIONS 

2.1. The formulation of the problem. Before solving the weakly nonlinear problem 
it is convenient to solve the linear one. In accordance with the previous paragraph 
we shall formulate this problem as follows: 

Let functions g e <$(J; J^\n) u <${1\J; Jf *„), {h e J^\n (i = 0, 1) and real numbers 
co > 0, a0, al9 a be given. Every function u e °U that satisfies the equation 

(2.1.1) -co2 u"(x) + At u(x) = g(x) , xeS 

in sense of ^(J; 3tf\n) (where At = d2/dt2 means the Laplace operator) and the 
boundary conditions 

(2.1.2) w(0) = °h, 

u(n) = xh 
or 

(2.1.3) w'(0) +a au(0) = °ft, 

u'(n) + OL1 U(TI) = 1h 
or 

(2.1.4) u(0) =°ft , 

u'(n) + a u(n) = 1/i 

in sense of Jf \% will be called a solution of the problem (^J), (&*%) or (&% respectively. 
The solvability of our problem depends essentially on the number-theoretical 

character of the parameter co. With respect to this fact two cases will be investigated 
separately: 

(i) co = p\q> where p, q are relatively prime natural numbers, 
(ii) the number co satisfies the following assumption with a natural Q = 2. 
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\&Q\\ there exists a constant C0 > 0 such that 

= C0n"Q for all m, n e ^V . 1 _ m 
co n 

Remark 2.1. According to Liouville's theorem (see [4]) the assumption [&Q] 
is fulfilled e.g. when co is an algebraic number of the degree Q. 

Expanding the functions g, °h, 1h into Fourier series 

d(x) = Z 9k(x) eh9
 lh = £ %eh, * = 0, 1 

and assuming the existence of a solution u e f , 

(2.1.5) u(x) = J] "*(*) ek , x e / , 

the equation (2.LI) yields the system of differential equations 

— co2 uk(x) — fc2 uk(x) = gk(x) , xeJ,ksJ(. 

General solutions of these equations are 

(2.1.6) uk(x) = °uk(x) + ak cos (kxjco) + bfc/k sin (kxjco) , k =# 0 , 

u0(x) = °w0(x) + a0 + b0x, xeJ, 

where the particular solutions 

(2.1.7) °uk(x) = %(<?) (x) SE -(cok)-' [%,(£) sin (fc(x - «)/©) dc;, 

°u0(x) = °Uo(ff)W = - ® " 2 f*o(fl(* - {)d{ 

are chosen to fulfil the relation °uk(0) = °u'k(Q) = 0. Using Schwarz inequality 
(if g e# ( 1 )( , / ; Jfln), then also integrating by parts in (2.L7)), it is easy to verify 
that the function °u(x) = ]T °uk(x) ek9 xef, lies in %. Hence, the function u given 

keJi 

by the series (2.1.5) belongs to % if and only if the coefficients ak, bk in (2.1.6) satisfy 
the condition 

(2.U) a = { ^ . 6 ^ & = {&*}?„ efr2. 

Now let us look for such couples (a, b) e I)3 x \)2 that the corresponding u e % 
fulfil the boundary conditions required. 
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2.2. Problem (^°). Substituting (2.1.5) and (2.1,6) for u9 the boundary condition 
(2.1.2-) assumes the form 

(2.2.1) ak = °hk9 keM. 

In this way, the sequence a = {a*}-a, el)3 is determined by °he3^\K uniquely 
and the condition (2.1.22) gives 

(2.2.2) bk sin (knjco) = fc Bh(g, °h9
 xh)9 k e M \ {0} , 

bo ^n-1BQ(g,°h9
1h), 

where 

(2.2.3) Bk(g, °h, xh) = xhk - °hk cos (knjm) - °uJig) (n) , fc e ^ . 

First, let us investigate the rational case with co =-= p\q9 where /?, # are relatively 
prime natural numbers. Then sin (knj(o) = 0 if and only if fc e $f(\) = 
= {fc e M \k\pe Jf}. Therefore, equations (2.2.2) are equivalent to the system 

(2.2.4) b0 = n-1BQ(g,°h,1h)9 

bk = fc(sin (knq\p)Yx Bk(g, °h9
 xh) , fc e M \ $f(\) , 

(2.2.5) Bk(g9 °h9
 lh) = 0 , fc G «9*(2) = ^(1) \ {0} . 

Here the relations (2.2.4) define the coefficients bk9keJ( \ -^(2), whereas (2.2.5) 
represents a solvability condition. 

To fulfil (2.L8) let us assume that g e <6(f\ 3te\%) u «(1>(./; j f ^ ) and lh e #\„ 
i = 0, 1. Then, if the condition (2.2.5) is satisfied, all solutions of our problem are 
given by 

(2.2.6) u = Vt(d) + Wx(g9 °h9
 xh) , 

where the sequence d = {dk}1^ ranges over f£(2) and the operators Vl9 Wx are 
defined by 

(2.2.7) Vt(d)(x) = £ fc~*d*sin(kxH ek> xeS, 
keS?(2) 

(2.2.8) Wt(g, °h, lh) (x) = X [\(g) (x) + °hk cos (fcx/a,)] e* + 

+ I B^.«^«*)-?-te^^ + 
fc«^\^(i) sin (knjeo) 

+ ^~* -B0(̂ f, °ft, *fc) xe0 » x e / . 

It is easy to verify that Vt e [.&(2) -+ ^ ] and 

W.. e WS; X*,) x (JfL)2 - « ] n {&l\S; #1.) x ( j f | , ) 2 - • ] . 
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Defining an operator Zx = Zx(g, °h, 1 /J) , ZX : (V(S; X2
2K) U <&%f; X\$) x 

x (X3
2n)2 -> X\. by 

(2.2.9) Zx(g,*h, *A) = *A(. + nqjp) - °h + 

+ ~^ f f W ) (• + f */» + 5(5) (• - fr/p)] da d£ 

and integrating by parts, the condition (2.2.5) may be modified into the form 

f "zx(g, °h, -A)(t) e_k(t)dt = 0, ke9>(2). 

Hence, denoting by Rx = Rx(g, °h, *h) the operator given by 

(2.2.10) Rx(g, °h, -A) (t) = ' % 1 Zx(a, °A, *A) (* + 2«//p) , t e (0, 2jr) , 
j=o df 

*. e [«(./, jrf.) x (jfL)2 - xl] n [^(1)(^; * U x (^L)2 - jrL] 

and performing the following arrangements 

Rx(g, °h, *h) (0 = E (2*)-J f Vfo r , °lt, ' /.) (T) e~ik< dx ek(t) = 
fce.^ J 0 

= I ~ "Z fzi(tf> °lt> 'lO (* + -«j/i>) e_t(T) dT ek(t) = 
*€,« 27T i = 0 J 0 

= S ~ f"z-(*0/j'1/J) (') «-*(*)d,/ 1 ^ " <-(<) = 
kej(2nj0 j=o 

= Z M 2 Z1(ff,°A,1A)(,)e-t(9)d,e4(*). 
fce^(2) 27C J 0 

we obtain the solvability condition (2.2.5) in*a more closed form 

(2.2.11) R1(g,°h,1h) = 0. 

Theorem 2.2.1. Let the problem (&°) with co = pjq be given, where p, q are 
relatively prime natural numbers. Let g €<$(J; Jf|rt) u #(1)(jr; jpi^ fhe^f|n , 
i = 0, 1. Then the problem has a solution if and only if 

Ri(9> °h, xh) = 0 (equality in the space J?ln) . 

In the affirmative case every solution of(0>°) ts given by 

u-V^+W^OK'h), 

where d is an arbitrary element of $%(2y 
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Further, let co be an irrational number satisfying the assumption [$£Q\ for a natural 
Q _ 2. Then equations (2.2.2) determine the coefficients bk, ke Jt, uniquely and so 
the uniqueness of the solution of (^?) is proved. Supposing g e^(J; 3^Q

2
+X) u 

u <&X\J\ JfQ
2n) and lh e tfQ

2
+

n
2, i = 0, 1, the requirement (2.1.8) is fulfilled as the 

assumption [S£Q\ gives the estimate 

(2.2.12) |sin (fc7c/o>)| = 2C0fc
1 "« , fc G Jf . 

(Indeed, |sin (/c7r/o>)| = Mfc7r/"> ~ n7C)l k7r|l/o) - n/fc| = 2fcC0fc-<.) 

|fc7c/co — nn\ 

In this case, our problem has a solution 

(2.2.13) u = TV2(g, °h, *h) , 

where the operator 

W2 e [*(./; jf j :1) X (tfQ
2

+
n

2)2 -» * ] n [ ^ ( . Z ; jfj.) x ( « ^ 2 ) 2 -> * ] 

is defined by 
(2.2.14) W2(a, %, >h) (x) = £ [°uk(g) (x) + %k cos (kxj co)] ek + 

keJt 

v^ « r oi i r \ sin(kx/ct>) 
+ £ Bt(g, °h, *).) , ) I ek + 

kejc\{0} sin (knjco) 

+ n"1 B0(g,°h,ih)xe0, xeJ. 

Theorem 2.2.2. Let the problem (^) with co satisfying the assumption [&Q] 
for a natural Q = 2 be given. Let g e <€(f; J^Q

2
+1) u ^\J; tfQ

2n) and jh e tfQ
2
+2, 

i =- 0, 1. Then the problem has a unique solution 

u-W2(g^h9
1h). 

2.3. Problem (0>*2). Inserting (2.1.5) and (2.1.6) into (2.1.3X) we obtain 

(2.3.1) bk = co(°hk - (x0ak) , fc e Jt \ {0} , 

*>o = °K - «o<*o • 

Considering these equations as definitions of coefficients bk, the boundary condition 
(2.1.32) gives 

(2.3.2) a0[cct - a0 - a 0 a^] = A0(g, °h, 1h), 

«*[(*- - aa)cos(fc^/a>) - fe2 * Q ) 2 a ° a i sin (fac/a*)"] = Ak(g, °h, 1/i), fc e Jt \ {0} , 
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where 

(2.3.3) A0(g9 °h, *h) = xh0 - °/*o(l + *xn) + co~2 ?g0(n - Z) (I + cct{) d£, 

Ak(g9 °h, \h) = xhk - °hk[cos (fe7r/a>) + dycok"1 sin (knjco)] + 

+ CO'2 I 0k(7T - {) [COS (kZl<D) + 

+ OLiCok"1 sin (Hjco)] d£, fc e Jt \ {0} . 

Firstly, let us investigate the particular case when a0 = ax and co = p\q, p , q — 
natural, relatively prime. Consequently, equations (2.3.2) reduce to 

(2.3.4) a0(x
2 == -n-^o&oh^h), 

\r(ft 
ak sin (knjco) = — — Ah(g, °h, xh) , k e Jt \ {0} . 

/ r -f co4oc0 

(A): Let <x0 = ô  = 0. Then the equations (2.3.4) are fulfilled if and only if 

(2.3.5) ak « • , " ? .^fo, °*. **) , k e Jt \ ^(1) , 
k sin [knjco) 

(2.3.6) y4k(#, °h, *A) » 0 , ke&(\). 

(Here <9*(1) is the same set as in Section 2.2.) 
The solvability condition (2.3.6) can be written after certain arrangements 

(analogous with those used to derive (2.2.11)) as 

(2.3.6') R3(g, °h, *h) =P£z3(g9 % *A) (. + 2njjp) = 0 , 
1=o 

where the operator Z3: (#(</; J^\n) u <»(1)(S; ^\n)) x (jf\n)2 -• tf\n is defined by 

(2.3.7) Z3(g, °h9
 xh) = 1h(. + nqjp) - °h + 

+ ; MP)2 J [>(*) (• - 4*1 P) + 0(*) (• + «*/*)] d* • 
2 Jo 

Provided that the condition (2.3.6') is fulfilled, every solution of our problem has 
the form 

(2.3.8) u - V3(d) + W3(g, °h9 *h)9 d = {dh}?n e £ ( 1 ) , 

where 

(2.3.9) F 3 (d)(x)= £ dk cos (kxjco)ek9 xef, 
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(2.3.10) W3(g,°h,1h)(x)- £ r%(fif)(x) + %fsin(fcx/a,)let + 
te^t\{0}|_ kq J 

+ [V0)(*) + ° 'V(K-

teu»\^(i) fcg sin (fcjr/co) 
Obviously: 

*•* e [f&(1) -> I f ] , W3 e [<?(•; Jf I,) x (j f2 ,)2 -> ̂ ] n 

n p f ^ . Jfi.) x (*2„)2 -> • ] , U3 6 [«(•*; ̂ L ) x (*1-)2 - J f | J n 

nr(/;/L)x(/LN4]. 
(B): Let a0 = a t + 0. Then conditions (2.3.5), (2.3.6) from the case (A) are to be 

replaced by 

(2.3.11) ak - ~kc° [sin (fcTt/o)]"1 Ak(g, °h, -ft) , fc e Jt \ ^ (1) , 
fc + o) a£ 

a0 = -7t_ 1ao2 A0(g, °h, 1h) , 

(2.3.12) Ak(g, °h, xh) - 0 , fc e ^(2) = y(\) s {0}. 

Defining the operator Z4: (*(./; jTf.) u # (1)(./; Jf £„)) x (jf2,)2 -• Jf *, 

by 

(2.3.13) Zlg, °h, **) (0 = A Z3(ff, °h, xh) (t) + 
at 

(«o í/2p) Г|>({) (í - {g/p) - g(Ç) (t + Шì <-í > 

the solvability condition (2.3.12) is equivalent to 

(13.12') R4(g9 °h, *h) = % Zlg9 °fc, *fc) (. + 2n//p) = 0 . 

If this condition is fulfilled, every solution of (0^^) has the form 

(2.3.14) u = V4(d) + WA(g9 °h9*fc) , d =\dk}?„ e f&m , 

where 

(2.3.15) V4(d) (x) == £ dk [cos (toc/ai) - 5--? sin (/bc/a>)l e*, 
*e (̂2) L ^ J 
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(2.3.16) W4(g, %, */.) (x) = I °uk(g) (x) ek + %0xe0 + 
keJC 

+ Z °hkPl(kq) sin (kxjco) ek + 
keJí\{0} 

+ E í - kpq Ak(g, %, *h) [sin (*-,/,») (fc-g- + 
keJl\Sr(í) ( 

+ ÚP2)]'1 [cos (kxjm) - - ^ sin (fcx/a>)"| eA -

- 7i-1ao 2 Ao(0> °lí> 1'») (1 - «o*) eo » x e / , 

Obviously: 

K * 6 [ I ) J ( 2 ) - * ] , ^ e [ ^ ; ^ , ) x W " * ] n 

n [ ^ V ; JT*„) x (Jf2,)2 - <*] , K4 e [«(./; JT2,,) * i^**)2 -> J f J J n 

Theorem 2.3.1. Let fhe problem {8P°2)
 w^tn ao == a i and co = P/g be given, where p, 

q are relatively prime natural numbers. Let g e #(«/; Jf\n) u #(1)(*/; ^2*) am* 
'fcejf^, i = 0,1. 

(A): Lef a0 = at = 0. Then fhe problem has a solution if and only if 

R$(9> °h> *h) = 0 (equality in the space tf\^) • 

In the affirmative case every solution of (0>2) ™ given by 

u = V3(d) + W3(g, °h, *h) , 

where d is an arbitrary element ofJ)%(1y 
(B): Let a0 = ax + 0. Then the problem has a solution if and only if 

R4(g, °h, 1h) = 0 (equality in the space #e\^ . 

If this condition is satisfied, every solution of the problem is given by 

u = V4(d) + W4(g, °h, xh) , 

where d is an arbitrary element of $%(2y 

Further, let a0 = at and let co be an irrational number satisfying the assumption 
[jSfg] for a natural Q _• 2. Since in this case sin (knjco) 4= 0 for all k e Jl \ {0}, 
the coefficients ak,keJ( \ {0}, are determined by (2.3.4) uniquely. 

(A): Let a0 = at = 0. Then equations (2.3.4) give the solvability condition 

(2.3.17) R5(g, °h, rh) = A0(g, °h, *h) = 0 
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and every solution of the problem can be written as 

(2.3.18) u = V5(d) + W5(g, °h, xh) , d e 0t, 

where the operators V5 and W5 are given by 

(2.3.19) Vs(d)(x) = de0 , xeJ, 

(2.3.20) W5(g, °h, 1h) (x) = £ {°wk(g) (x) + ^ ^ k " 1 sin (kxjco) -
keJ(\{0} 

- co[k sin (kTi/co)]-1 Afc(g, °h, 1/i) cos (kxjco)} ek + 

+ [°uo(d) (x) + °"o*] <?o , x e / . 

Using the estimate (2.2.12), it is easy to verify that 

W5 G [#(</; tf^1) x (Jfj;1)2 -> « ] n [^(1)(^; JfQ
2n) x O^* 1 ) 2 -* « ] . 

(B): Let a0 = ax 4= 0. Then equations (2.3.4) determine all coefficients ak and the 
problems has a unique solution (provided that the functions g, °h and 1h are smooth 
enough): 

(2.3.21) u = W6(g, °h, 1/t) , 

where 

(2.3.22) W6(g, °h, *h) (x) = £ (X(g) (*) + ^ M " 1 sin (foe/©) -
* e ^ \ { 0 } 

- kco[(k2 + co2a2) sin OW©)]"1 Ak(g, °h, xh) x 

x [cos (foc/co) — a0wk~x sin (kx/a>)]} ek — 

- n"1^2 A0(g, °h, xh) (1 - a0x) e0 + 

+ l°uo(g)(x) + °h0x] e0 , x e / . 
Obviously: 

W6 e {V{J\ tf\ll) x ( j f ^ 1 ) 2 - * ] n [^(1)(J^; jfj.) x ( j f^ 1 ) 2 - * ] . 

Theorem 2.3.2. Let the problem (^2)
 w^h &o = a i a n ^ m'fh <° satisfying the 

assumption \J£o\for a natural Q = 2be given. Let g e (€(^\ Jfe
2V) u # ( 1 ) ( ^ ^2*) 

a n d ' h e ^ * 1 , i = 0,1. 

(A): Let a0 = cct = 0. Then the problem has a solution if and only if 

R5(g, °h, xh) = 0 (equality in &) . 

in the affirmative case every solution of(&>2) is given by 

u = V5(d) + W5(g9 °h, *h) , 

where d is an arbitrary real number. 
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(B): If a0 == #i + 0, the problem has a unique solution 

u = W6(g, °h, 'h) . 

Finally, let a0 # ô  and co = 1?/q, where p, q are relatively prime natural numbers. 
Let us denote 

1 2 2 

(2.3.23) S3(fc) - (a, - a0) cos (knjw) + " a ° g l sin (fcjt/a>), fc e Jl \ {0} , 
kco 

S3(0) = a. - a0 - «o«i« • 

Then|S3(fc)| = |at - a0| > 0 for all fce y(2) and the relation (2.3.23x) can be written 
for fc e M \ ^(1) as 

S3(k) = (a! - a0) sin (knqjp) cotg (knqjp) - + m a°aM . 
L fc (o^i - a0)J 

The first term in the square brackets acquires only p — 1 values on the set of fc e 
e J( \ .5^(1), the second one can assume the same value for at most two different 
keJV, the whole expression in the brackets is equal to fc/(ct>(a0 — aj)) asymptotically. ' 
Hence, the set £"(3) = {k e Jl \ S3(fc) = 0} contains at most 2p — 1 numbers and, 
moreover, the following relations hold: 

|S3(fc)| >= C|fc|, keJt\ y(l) \ ^(3) , C being a constant, 

\S3(k)\ = |«i ~ «o|, keST(2). 

Obviously, conditions (2.3.2) are equivalent to 

(2.3.24) ak = (S3(fc))"' Ak(g, °h, xh) , fc e Jl \ r(3) , 

(2.3.25) Ak(g,°h,1h) = 0, fce &(3) . 

Then, to guarantee that a = {a*}™,*, e h3, a higher smoothness of the functions g, 
°h and lh must be assumed, e.g. g e <€(J; 3f\K) u <€W(J; jf*.), 'fc e j f 3„ i = 0,1 
or ^ e <?(./; [JT*J^ 2 ) ) u &l\J; [jf2J£ (2 )), 'fc e [jflJ^ ( 2 ) > i = 0,1 (in this case 
Ak(g, °h, 1h) = 0 for fc e ^(2)). 

Defining the operator K7: (*(./; jrj„) u ^(1>(./; *»,)) X (#>\%y ^ f,f(3) b y 

the solvability condition (2.3.25) can be written as 

(2.3.25') R,(g,0h,lh)-0. 
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If this condition is fulfilled, every solution of (&%) is given by 

(2.3.27) u = Vn(d) + Wn(g, °h, lh) , d «- {dk}?x e .&<„, 

where 

(2.3.28) V7(d) (x) = £ d*[cos (kxjco) - a0co fc"1 sin (fcx/©)] ek + 
te5'(3)\{0} 

+ d0(l - a0x) e0 , x&J, 

\%(g,*hSh)(x), if 0ey(3), 
(2.3.29) W7(g, °A, JA) (x) = { W,(g, °h, XA) (x) + (53(G))-1 A0(g, °h, XA) x 

[x (1 - a0x)e0 , if 0 ^ ( 3 ) , 

(2.3.30) W1(g,°h,1h)(x) = £ (S3(fc))_1 Ak(g, °A, »A) x 
*6^\^(3) \ {0} 

x [cos (kxjco) — aocofc"1 sin (fcx/<w)] efc + 

+ I [°u^)(x) + °A^fc-1sin(fcx/o>)]e,+ 
keJt\{0} 

+ (°M0(g) (x) + °h0x) e0, xeJ. 

(As to (2.3.27) let us remind that the sequence d = {d*}-*, e I)^(3) has only a finite 
number of non-vanishing terms which may assume arbitrary complex values such 
that d~k = dk, k e M^) Obviously: 

V7 e [^ (3) - « ] , TV7 e pf(./; ^ ) x ( ^ L ) 2 - • ] n 

n.pf^./; ^L) x (^L)2 - *] 
and as well 

W7 6 [*(./; [jf 2 J£ ( 2 )) x ( [JT* J£ ( 2 ))
2 - « £(a,] -

Theorem 2.3.3. Let the problem (^2) with a0 4= at and co = P/q be given, where p, 
q are relatively prime natural numbers. Let g e <€(£', ^ 2 „ ) u #(1)(-/; -^L)> 
'fceJTl,, * = 0,1 or ffe^^JriJ^u^VjC^aJw,). ^ [ 4 ] ^ 
i = 0, 1. Then the following assertions hold: 

(A): If « (̂3) is a t;oid sef, rhe problem has a unique solution 

u - Wn(g, °h, Ah). 

(B): If the set S?(3) is non-void, the problem has a solution if and only if 

R7(g, °h, 1h) = 0 (equality in the space f) (̂3,) . 

In the affirmative case every solution of (&*$) is given by 

u -* Vn(d) + Wn(g, °h, IA) , 

where d is an arbitrary element of &y(3). 
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Remark 2.2. In the case when a0 =t= oct and co is an irrational number the investi­
gation of existence of solutions in integers of the equation S3(fc) = 0 represents 
a fairly difficult jiumber-theoretical problem. Therefore this case is omitted in this 
paper. 

2.4. Problem (^3). Identically with the problem (^?), the boundary condition 
(2.1.4]) gives 

(2.4.1) ak = °hk, keJf. 

Then the relations (2.1.5) and (2.1.6) inserted into (2.1.42) yield 

(2.4.2) bjlco"1 cos (knjco) + afc"1 sin (JCTT/CO)] = Dk(g, °h, xh) , keJt\ {0} , 

b0(l + an) = D0(g, °h, *h), 
where 

(2.4.3) D0(g, °h, *ti) = xh0 - « % + a>~2 [*g0(n - {) (1 + a£) dc; , 

Dk(g, °h, 1h) = 1hk + °hk[kco'1 sin (fcTr/o) - a cos (fcTr/co)] + 

+ co"1 gk(n - £) t^" 1 cos (k^jco) + 

+ afc"1 sin (fc£/a>)] d£, k e M \ {0} . 

Firstly, let us investigate the simpler case, when a = 0 and co = p]q, P,q — natural, 
relatively prime. Then expression in the brackets in (2.4.2) reduce to co""1 cos (knqjp). 

(A): Let p be an odd number. Then cos (knqjp) 4= 0 for all fc e M and so equations 
(2.4.2) give 

(2.4.4) bk = co[cos (knjco)]"1 Dk(g9 °h, xh) , k e Ji \ {0} , 

b0 = D0(g, °h, xh) . 

Thus, if g e «(. / ; ^ ) u <&x\f\ X\%), °h e X\% and ^ e X\%9 the problem (9§ 
has a unique solution 

(2.4.5) u = W8(fl, °fc,
 xh) , 

where 

W8 e \V(S; X2
2n) x J T ^ x X\% - * ] n [^(1 V ; *a . ) * ^ 2 * x *\% -> * ] 

is defined by 
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(2.4.6) Ws(g,°h,1h)(x)= £ {°uk(g)(x)+ °hk cos (kxlco) + 
keM\{0} 

+ co[k cos (knjcoy]"1 Dk(g9 °h9
 xh) sin (fcx/cw)} ek -f 

+ [°Wo(g) (x) + °h0 + A>(<7> °h9
 1h) x] <?o - -« € • / . 

(B): Let p = 2m be an even number. Then cos (knqjp) = 0 if and only if 
k e Sf(4) = \keJt\ k\m = odd number} and so conditions (2.4.2) give the system 

(2.4.7) bk = co[cos (knqjp)]-1 Dk(g9 °h, xh) , k e Jt \ ^(4) \ {0} , 

b0 = D0(g, % *h) , 

(2.4.8) Dk(g,°h,1h) = 0, ke<?(4). 

The solvability condition (2.4.8) can be written after certain arrangements in the 
form 

2 m - l 

(2.4.80 R9(g9 °h9 *h) = £ ( - iy Z9(g, °h, 1h) (. + «//m) = 0 , 
J=o 

where the operator Z9: (#(*/; ^ „ ) u #(1)(j**; JT.JJ) x j f |ff x 3tf\n -> J P ^ is 
defined by 

(2.4.9) Z9(g, °h, lh) (t) = lh(t + nqjp) + (q\p) A °h(<) + 
di* 

+ иФ)2\\яm + m-
J 0 

-ø(Z)(t-łф)ldł> *є(0,2я). 
Hence, K9 e [#(./; ^ | , ) x jrf, x jf | , -> jpf J n [<Žř(1>(./; jf*,) x #\, X ^ ; 

ŕ>2 -1 
2яJ-

2я 

Thus, supposing that the functions g e <$(J; 3^\n) u # ( 1 )(c/; J f^) , °h e J^\n 

and 1h e 3^\n fulfil the condition (2.4.80, e v e 3 7 solution of our problem has the form 

(2.4.10) u = V9(d) + W9(g, °h, *A) , J = {,*»}% e I& 4 ) , 

where 

(2.4.H) F 9(d)(x)= X dkk'x sin(kx\co)ek9 x e / , 
fte^(4) 

(2.4.12) W,(<7, °A, *A) (x) = £ LXt?) (*) + X cos (fcc/©)] e* + 
keM 

+ Z ^,X1/.)^t11e.+ 
fceU5f\{0}\^(4) k COS (k7r/Ct>) 

+ -%(#, °fc> **) *<?0 > * € - / . 
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Obviously: 

V9 6 [l£(4) - * ] , W9 6 [*(./; #1.) x jf*. x jf*. -> * ] n 

n [^(1)(У; ^L) x *\* x ** 2« 

Theorem 2.4.1. Let the problem (0*°) with a = 0 and co = p\q be given, where p, 
q are relatively prime natural numbers. Let g e ̂ (J; 3^\n) u # ( 1 )(*/; 3tf\n), 
0heJt?\n and 1heJf\n. Then the following assertions hold: 

(A): If p is an odd number, the problem has a unique solution 

u = Ws(g, °h, 1h) . 

(B): Let p = 2m be an even number. Then the problem has a solution if and 
only if 

R9(g, °h, 1h) = 0 (equality in the space J^\n) . 

In the affirmative case every solution of (0^) is given by 

u = V9(d) + W9(g, °h, 1 h) , 

where d is an arbitrary element of tfy^y 

Further, let a = 0 and let co be an irrantional number satisfying the assumption 
[if0] for a natural Q ^ 2. Hence the estimate 

(2.4.13) |cos(knj<o)\ ^ 21-<C0fc
1-<? , keJf 

follows and so 

ws e ]?{j\ jr 2 : x ) x ^ 2 : 2 x jfs: 1 - « ] n 
n [%(1)(jf; tfQ

ln) x 3^2X
2 x jfSJ 1 -> « ] . 

Since cos (knjco) + 0 for all keJt, equations (2.4.2) give again (2.4.4) and the 
function u = Ws(g, °h, *h) is the unique solution of the problem. 

Theorem 2.4.2. Let the problem (^) with a = 0 and with co satisfying the assump­
tion [&Q] f0r a natural g = 2 be given. Let g e <#(j?; #eln^) u <$a)(J; tf\n), 
°h e J^2n2 and xh e ^S**• Then the problem has a unique solution 

u = Ws(g, °h, xh) . 

Finally, let a =t= 0 and co = p/q, where p, q are relatively prime natural numbers. 
Let us introduce the set S?(5) = {keJi\ S5(k) = 0}, where 

(2.4.14) S5(fc) = fcoT1 cos (knjco) + a sin (knjco), fc e M \ {0} , 

;S5(0) = 1 + arc. 
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Thus, if cos (knqjp) = 0, then |S5(fc)| = |a| > 0, if not, we can write 

S5(k) = cos (knqjp) [kqjp + a tg (knqjp)] , k 4= 0 . 

Since tg (knqjp) assumes only p values on the set of fc e Jt, the set Sf(5) contains 
at most p numbers. Moreover, for all fc e Jl \ Sf(5) such that cos (knqjp) 4= 0 the 
estimate |S5(k)| .= C|fc| is valid, where C is a suitable positive constant. 

Thus, conditions (2.4.2) are equivalent to 

(2.4.15) bk = k[S5(k)]-1 Dk(g, °/i, *fc) , fc e M \ 2>(5) \ {0} , 
bo = [55(0)]-1D0(g,°h,1h), when 0 £ ^ ( 5 ) , 

(2.4A6) Dfc(g,°h,1/i) = 0, fce^(5). 

The solvability condition (2.4.16) may be also written as 

(2.4.16') i? lo(a,°h,1h) = 0, 

where the operator K10: ($(f\ $e\^) u <${1)(f\ Jf^)) x jtf\n x #\% -> ^ ( 5 ) 

is defined by 

(,4.n) WW-W.. , = {»:W>- ^ 5 % , . 
If this condition is satisfied, every solution of the problem has the form 

(2.4.18) u = V10(d)'+ Wi0(g, °h, 1h) , d = {d,}"^ 6 hj, (5 ) , 

where 

(J^ofVh/hHx), if 0e^(5), 
(2.4.19) W10(g,°h,1h)(x) = Wlo(g,°h,1h)(x) + (S5(0))-1 x 

x D0(g, °h, *h) xe0 , if 0 * ^ ( 5 ) , 

(2.4.20) W10(g, °h, 1h) (x) = £ [%(3) (x) + X cos (fcx/o))] eA + 

+ z (s5(fc)r' £*(<?, °*>**)sin (**/<»)e*, *e ̂  
ke^f\{0}\.y(5) 

and 
(2.4.21) VioOO (x) = £ dh sin (fcx/co) efc 4- d0xe0 , x G f . 

*e^(5)\{0} 

Obviously: V10 e [f)^(5) --> « ] . 
Properties of the operator JV10 are rather complicated for the equality |S5(fc)| = |a| 

(when cos (knjco) = 0) leads to the requirement of a higher smoothness of g, °h 
and 1h. It is necessary to distinguish two cases: 
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(0: The number p is odd. Then W10e [»(-/; Jf\n) x jf|, x je2
2n-+<ti\n 

n [^(1 V ; jf1,) x jf l . x jff, -> «] . 

(i-): The number p is even, p = 2m. Then W10e\%(J\ Jf\n) x tf\n x jfT\n -» 
.-> ^ ] n [#(1)(</; jrj,) x JT*. x jf*. -> m\ as well as Tf10 e [<g(S; [^,]£<4>) X 

X L^2n]£(4) X [^2*]£(4) -* ^£<4)]' 

Theorem 2.4.3. Lef fhe problem (^3) wifh a 4= 0 and co = P/q be given, where p, 
4 are relatively prime natural numbers. Let one of the following assumptions 
be fulfilled: 

(i) p is an odd number, g e <&(f\ #\K) u <iP(1)(-/; 3tf\n), °h e tf\% and xh e J^\n\ 

(ii) p = 2m is an even number and g e <€{S\ tf\n) u <${1)(J\ #\%\ °h e 2te\n, 
'he^l or ge^;[^y^4))u^(1)(y;[jry^(4)), °h e [ j f f j £(4), 
h G [«^2«]y(4)-

Then the following assertions hold: 

(A): If S?(5) is a void set, the problem has a unique solution 

u = JV10(g, °h, xh) . 

(B): If the set Sf(5) is non-void, the problem has a solution if and only if 

îo(g> °̂ > 1h) = 0 (equality in the space ̂ ( 5 ) ) • 

In the affirmative case every solution 0/(^3) is given by 

u = Vlo(<0 + TV10(g, °K xh) , 

where d is an arbitrary element of f)^(5). 

Remark 2.3. The problem with a 4= 0 and an irrational co leads to difficulties 
analogous to those met with in the irrational case of (@>°2) with a0 #- a1 and so this 
problem is omitted as well. 

3. THE WEAKLY NONLINEAR PROBLEM 

3.1. General considerations. Taking into account that the linear problem was 
solved in the previous paragraph, the linear parts g, °h and th of the right-hand 
sides in (0.1) and (0.3)—(0.5) may be omitted without loss of generality. Therefore 
we can formulate the weakly nonlinear problem as follows: 

Let the operators F = F(u, e), F : W x <0, e0> -> <€(f\ Jf\n),
 lX = lX(u, e), 

1X : % x <0, e0> -• 2tf\%, * = 0,1 and real numbers co > 0, a0, ai9 a be given. 
The mapping u* = u*(e), continuous on an interval <0, e*> c <0, e0> into * , 
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is called a solution of the problem (^J, (&2)
 o r {&z)> # *°r e a c h e G <0' 8*> t h e 

function u = u*(e) G ̂ r satisfies the equation 

(3.1.1) -co 2 u"(x) + At u(x) = eF(u, e) (x) , x e / 

and the boundary conditions 

(3.1.2) u(0) = e °X(u, e) , u(n) = e xX(u, e) 

or 

(3.1.3) u'(0) + a0 u(0) = e °K(u, e) , u'(n) + aA U(TT) = e xX(u, e) 

or 

(3.L4) u(0) = e °X(u, e) , U'(TC) + a U(TI) = e xX(u, e) , 

respectively. 

Remark 3.1. The most frequent case is that F, °X and XX are Njemyckij-operators, 
i.e. 

F(u, e) (x) (t) = f(t, x, u(x, t), ut(x, t), ux(x, t), e) , 

jX(u, e) (t) = J'x(t, u(0, t), ut(0, t), ux(0, t), u(n, t), ut(n, t), ux(n, t), e) , 

j = 0, 1, x G J , t e <0, 2TT> . 

Then the continuity of the operators F, °X, XX and their G-derivatives Fu, °X'U, XXU 

is guaranteed by a sufficient smoothness of the functions / = f(t, x, u0,u1,u2, e), 
JX = Jx(UPu Pi> P*, Pi, Psi'Pe* <0> J = °> 1- F o r example: if the derivatives 
3"//3f' 3u0 du* 3u™, n = i + j + k + m ^ 3, i < 3 exist, are 27r-periodic in f and 
continuous on the domain 

{(t, x, u0, uu u2, e)| t G <0, 27r>, x G <0,7t>, u0, u1? u2 G ( - oo, + oo), e G <0, e0>} , 

then the operators F and Fu are continuous from °U x <0, e0> into <€(J; 3^\n). 
However, if e.g. Fu : W x <0, e0> -> <€(f; 3tf\n) is required, it is already necessary 
to assume that dfjdut =. 0, i = 1,2, which means that / = f(t, x, u0, e). Similarly 
the requirement Fu:<% x <0, e0> -• <$(S; 3ff\n) can be fulfilled only if dfjdu-, .= 0, 
i = 0, 1, 2, i.e. when / = f(t, x, e). Properties of the operators °X, XX are quite 
analogous. 

The weakly nonlinear problems will be solved by the following standard procedure, 
based on the application of Lemmas 1.4 and 1.5 to the results obtained in the linear 
case. 

Let us denote the weakly nonlinear problems (&*i)9 (&2), (^3) by a common 
symbol (&), the linear problem corresponding to (&) (and having the same para­
meters co, a0, a l f a) by (^°). In accordance with the previous paragraph we shall 
distinguish the two following cases. 
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[ # ! ] : There exist Banach spaces F9 FQ» Fl9 9l9 @2
 a n d linear continuous 

operators R e \F % F0 x Fx -> 0 2 ] , Ve [9X -» * ] , We [F x F0 x ^ -> ^r] 
such that it holds: 

«#• 
The problem (^°) given by the right-hand sides geF, °heF0 and xheFx 

has a solution if and only if R(g, °h, xh) = 0. 
If this condition is satisfied, every solution of \jF°) is given by the relation w = 
= V(d) 4- W(g9 °h9

xh), where d is an arbitrary element of $)x. 
\%>2\: There exist Banach spaces F, F09 Fx and a linear continuous operator 

We [F x F0 x ^ -> ^ ] such that the problem (^°) given by g e F, °h e F0 

and xh e Fx has a unique solution w = JV(g, °h, 1h). 

The two following assertions, corresponding to the cases [^1] and [#2], respec­
tively, can be easily obtained by the succesive application of Lemmas 1.4 and 1.5. 

Assertion [s/i]. Let F, F0, F\, <BX, 22 and R, V, W be the Banach spaces and 
the operators from the case [#1] . Let the operators F = F(w, e), F :% x <0, s0> -> 
-> F, lX = ^(w, e), lX :<% x <0, e0> -> J^ , i = 0, 1, be continuous and have 
continuous G-derivatives Fu, °XU, XXU. Let °d be an element of the space ^x and let 
U = U(d, e), U : &(°d; 80; ^x) x <0, 80> -> tft be a continuous operator having 
the G-derivative Ud continuous (in d and e) and such that the function u = U(d, e) 
solves the equation 

u = V(d) + e W(F(u, s), °X(u, e), xX(u, e)) 

for arbitrarily chosen d e &(°d; d0; @x) and s e <0, £0>. (According to Lemma 1.4 
such operator U exists and it is unique) Defining the operator P : &(°d; S0; $)x) x 
x < O , g o > - 0 2 by 

P(d, s) = R(F(U(d, s), s), °X(U(d, s), e), xX(U(d, s), e)) , 

let the following assumptions be fulfilled: 

(0 P(°d,o) = o, 

(ii) there exists an operator Q = [Pd(°d, 0 ) ] " 1 e \Q)2 -> 3>x~\. 

Then there exist a number e.x > 0 and a continuous mapping d* = d*(s), d*: 
<0,ei>->m(°d;d0;9x) such that d*(0) = °d and the equality P(d*(s)9e) = 0 
holds for all s e <0, ex}. The transformation w* = w*(e), defined on <0, et> into % 
by the relation w*(e) = U(d*(e), s)9 is a unique solution of the problem (&) con­
tinuous on <0, £i> and such that w*(0) = V(°d). 

Assertion [*s/2]. Let F9 F0 and Fx be the Banach spaces from the case [#2] . 
Let the operators F = F(w, e), F:<% x <0, e0> -> F9

 {X = lX(u9 e), lX : % x 
x <0, e0> -> Fi9 i = 0,1». be continuous and have continuous G-derivatives Fu9 

°XU9
 XXU. Then there exist a number ex > 0 and a unique mapping w* = w*(e) 
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continuous on <0, sx> into % such that w*(0) = 0 and u* solves the weakly nonlinear 
problem (0>). 

Using these general assertions, we can reduce the following sections to the for­
mulations of theorems holding in concrete problems (0*^ (^2) a n d (^3)-

3.2. Problem (0>x). Theorem 3.2.1. Let the problem (^t) with co = p\q be given, 
where p, q are relatively prime natural numbers. Let S?(2) denote the set 
{keJt\k\peM \ {0}}. Then the assertion \s/l~\ is valid, where & = #(*/; J^\n) 
or & = <&Xf\#\>i> Pt^JPl*, i = 0,l, ^ = 1 ) ^ 2 ) , 92 = *\%9 V=Vl9 

W = Wx and R = Rt. 

Theorem 3.2.2. Let the problem (^x) be given, where the number co satisfies the 
assumption \&Q~\ for a natural Q ̂  2. Then the assertion \J&2\ is valid, where 

*; M^1) or & = %(l\J; tfQ
2n) and P% = tf^1, i = 0, 1. 

Remark 3.2. If F, °X and XX are Njemyckij-operators, the above theorem is useful 
only with Q = 2. According to Remark 3.1, our problem with .0^3 must inevitably 
be a linear problem. 

3.3. Problem (^2). Theorem 3.3.1. Let the problem (0>2) with <x0 = cct and co — pjq 
be given, where p, q are relatively prime natural numbers. Let S?(l) = 
= {k e Ji I k\p e J{] and S?(2) = S?(l) \ {0}. 

(A): Ifa0 = at = 0, the assertion [ ^ 1 ] is valid, where & = #(</; 2tf\n) or 3F = 
= <#*\J\ JF\n)9 &% = *l%9 i = 0, 1, Sx = & ( 1 ) , 02 = ^ L V=V29 W=W3 

and R = R3. 

(B): If oc0 a= ax 4= 0, the assertion [ ^ 1 ] is valid, where <F, &0 and 3FX are the 
same spaces as above and 2X = 1)%m> ^2 = #?\v V = V4, W = W4 and R = R4. 

Theorem 3.3.2. Let the problem (&2) with a0 = ax be given, where the number co 
satisfies the assumption \S£q~\for a natural Q _• 2. 

(A): Let a0 = ax = 0. Then the assertion [ J / 1 ] is valid, where & = <€(j; Jeq
2n

x) 
or SF = <fr\J\ JfQ

2n), 3?t = JTJ+1, i = 0, 1, ^ = 0 2 = « , V= V5, TV = TV5 

and R = £ 5 . 

(B): If a0 = a t 4= 0, fften fhe assertion \s/2] holds, where fF, 3F0 and 3FX are 
the same spaces as above. 

Theorem 3.3.3. Let the problem (@*2) with a0 4= a t and co == p\q be given, where p, 
q are relatively prime natural numbers. Let 6f(3) denote the set {ke J? \ S3(k) == 0}, 
where S3(k) is defined by (2.3.23). Putting either & = <$(f; 3tf\n) (or & = 
= ^ ( V ; ^ 2 ^ ^ i = ^ L * = 0,1, or * = V(S;[*l&m) (or * = 
= <&%f\ [JTJJ£(2))), * t = [*1,]£<2). i = 0,1, wAer* ^(2) = {k e M \ kjp e 
eJ( \ {0}}, the following propositions hold: 
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(A): If <f(3) is a void set, the assertion [s/2] holds. 

(B): If the set £f(3) is non-void, the assertion [s/1] is valid, where <&x = ©2 = 
= &m,V**V7hW= W7 and R = R,. 

3.4. Problem (^3). Theorem 3.4.1. Let the problem (&>3) with a = 0 and co = p\q 
be given, where p, q are relatively prime natural numbers. 

(A): If p js an odd number, the assertion [s/2] holds, where & = <%(J; 3tf\n) 
or & = <&\J\ tf\n), 3F0 = jff , and &x = #\%. 

(B): Let p = 2m be an even number and let S^(4) denote the set {k e J( | k\m = 
= odd number}. Then the assertion [s/1] is valid, where 3F, 1F0 and 3F\ are the 
same spaces as above and 3X = f&(4), 32 = &\%* V = V9, W = W9 and R = R9. 

Theorem 3.4.2. Let the problem (0>3) with a = 0 be given, where the number co 
satisfies the assumption [&o]for a natural Q _ 2. Then the assertion [s/2] is valid, 
where & = <£{J\ JPg1) or & = ^\J; tf\n), &0 = j f j* 2 and &x = jfSJ1. 

Theorem 3.4.3. Let the problem (t?3) with a #- 0 and co = p\q be given, where p, 
q are relatively prime natural numbers. Let ^(5) be the set {fce Jt \ S5(k) = 0}, 
where S5(k) is defined by (2.4.14), and let the spaces $F, 3F0, ^1 have one of the 
following meanings: 

(i) If p is an odd number, 3F = <e{f-9 tf\n) or & = <&»{/; tf\n), 3F0 = tf\n 

and y± = X\%. 
(ii) Ifp = 2m is an even number, either & = «(-/; tf\n)(or & = <${1)(J\ tf\n)), 

3F0 - J r j , , ^ = #\nor<F = <€(J; [ J f l j i w ) (orSF = <$™(f; [jrJJ£<4>))-
jrQ - [jf! J£ ( 4 ) , ^ = [^\n]yW, where &(4) means the set {keJ(\ k\m = 
= odd number}. 

Then the following propositions hold: 
(A): / / £?(5) is a void set, the assertion [s/2] is valid. 
(B): If the set £f(5) is non-void, the assertion [s/1] holds, where 3fx = 3f2 = 

= Vm»V= V10, W= W10 and R = *1 0 . 
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