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INTRODUCTION

In the present paper an elementary proof is given of the combinatorial inversion
formula (2.1) which can also be deduced from the M&bius inversion formula (cf. [1],
[2]) The proof makes use of the properties of common matrix functions. Conversely,
this formula is applied to obtain some expressions of these matrix functions in terms
of each other; especially, the permanent is expressed in terms of the principal minors
of the same matrix and vice versa. These formulae yield some combinatorial identities.
Further, the close relationship between graphs and matrices makes it possible to
express the number of hamiltonian circuits of a non-directed finite graph in terms of
the principal minors of its incidence matrix.

I wish to thank Professor M. FIEDLER on whose suggestion these matters were dealt
with.

1. PRELIMINARIES

Let M be a set. Denote by M/M, ... M, the partition of M into M, ..., M,, i.e.
the (non-ordered) k-tuple of non-void mutually disjoint sets My, ..., M; whose union
is M. By |[M| denote the cardinality of M. Denote by M//M ... M, the partition of M
into M, ..., M, such that |M;| > 1 for each 1 < i < k. By S(M) denote the family
of all non-voxd subsets of M. Denote by s( |M |, k) the number of partitions of M
into k parts. This number is usually called the Stlrlmg number of the second kind
(v. [3].

Let n be a positive integer. Denote N = {1, 2,..., n}.

Let A = (a;) be an n x n matrix. As usual, denote by det A the determinant of 4

and by per A the permanent ) [] a;,, of 4 (summation is extended over all permuta-
i=1
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tions {py, ..., p,} of N). Further, consider the matrix functions

cydd = (-1)"1 Ziljla,-m

and
cypA = Z]:[lai,,,,

where summations extend over all cyclic permutations {p,, ..., p,} of N. Let Ve S(N).
Denote by A(V) the principal submatrix obtained from A4 by deleting the rows and
columns with indices from N — V. Thus, under this notation, 4 = A(N), a;; =
= A({i}). Observe that there are the following connections between the above
matrix functions:

n
(1.1) detA=3 ) cydAM,)... cyd A(M,)
k=1 N/Mjy...My
(1.2) per A = 2 2 cyp A(M,) ... cyp A(M,)
k=1 N/My...

They are based on the fact that each permutation is, roughly speaking, a composition
of cycles.

Denote by I the n x n identity matrix and by J the n X n matrix each element of
which is 1. The number of cyclic permutations of N being equal to (n — 1)1, it holds
cypJ =cypJ —1=(n—1)! for n > 1. The number of permutations {p,, ..., p,}

of N such that p, # i for each ie N being d, = n! Z( 1)¥/k!, it holds per (J — I) =
= d,. Obviously, det (J — I) =(=1y"1(n - 1)

2. AN INVERSION FORMULA

r
(2.1) Let N be a finite set. Let c, d be two function defined on S(N) such that

IM|
dM)=3% Y oMy)... (M)
k=1 M/M;..My
for each M € S(N). Then

) = S (-0 k= 1) X d(M) - d()

Mi..My
for each M € S(N).
Proof. First of all, prove that
IM]|
(*) C(M) = qu z d(Ml)-.. d(Mk)
k=1 M/M;y..My
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for each M € S(N), the coefficients g, satisfying the recurrence

g, =1

-

9k = —

s

k
qu”...qu.l for 1<k élN}.

=2 (1.} V1...Vs

The case [M| = 1 being obvious, suppose that 1. < [M| < |N| and that the last state-

ment is true for each M’ such that |M’| < |M|. It follows

(M) = d(M) —:gl M/M;..MkC(MI) coo(My) =

M|

—dm) =Y Y (Ya Y dw)..dw))..

k=2 M/M;.. M s=1 M;/Vy..Vs
| M|

(e Y dWy)...d(V).

s=1 Mi/Vy..Vs

Further,
c(M)=d(M)__'Z'2 3 qw,,_qmlM/Mz'Mkd(Ml)...d(Mk),

k=2 s=2 {1...k}/V1...Vs 1ee

which completes the first part of the proof. Thus the coefficients g; in (*) are
independent of M.

To compute them, notice that according to (1.1), the relation (x) is true for the
functions ¢(V) = cyd A(V) and d(V) = det A(V) for each n x n matrix A. The
substitution A4 = J yields g = (—1)™!~*(|M| — 1)! for each M e S(N).

(2.2) Let N be the a finite set. Let d, p be two functions defined on S(N) such that
IM] 1
Y(=1)f k=1 Y dM,)...dM,) =
k=1 ) M/My...My

=:§1(—1)|Ml_k (k — 1)ng 3 kp(Ml) ... p(My)

M;...M;

for each M € S(N) Then

p(M) =1|‘%={:I1(_ et k!M/MZ'..M M) ... dOM)

for each M € S(N).

Proof. First of all, prove that

(»*) p(M) =‘:§(-—1)“‘”‘“ re 3y dM,)...d(M,)

M/M;.. M
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for each M e S(N), the coefficients r, satisfying the recurrence

r1=1

k
n=k=-D'+Y(=10(G=-1)! ¥ 7y ...rp for 1<k=|N|
s=2 ek} [V 1.V,
The case |M| = 1 being obvious, suppose that 1 < |[M| < |N| and that the last
statement is true for each M’ such that |[M’| < |M|. It follows

p(M) =:§(—1)“""" (k - 1)!M/ Yy, dM,)...dM,) +

M;...M,

+k|§i(—1)"(k—— n ¥ kp(Mx)---p(Mk) =

M;...

=:§1(——1)'M""(k 0L S (). () +

Laee

FEO k- S (B S aw).di).

IMi..My s=1 M/Vi...Vs

(’:‘gi(_l)w-s no T dv)...dv) =

%/V1...Vs

e G L R G R o

1.k} V1.V,

o) 2 d(My) ... d(My)
M/M;...Mi

which completes the first part of the proof. Thus the coefficients r; in (*#) are in-

dependent of M.

To compute them, notice that according to (1.1) and (1.2), the relation () is true
for the functions ¢(V) = cyd A(V), d(V) = det A(V) as well as for the functions
o(V) = cyp A(V), d(V) = per A(V) for each n x n matrix 4. Further, according to
(2.1), the relation (x*) is true for the functions d(V) = det A(V), p(V') = per A(V).
The substitution 4 = J yields rj,, = |M|! for each M e S(N).

3. MATRIX FUNCTIONS

Besides of and owing to (1.1) and (1.2), there are the following connections between
the functions of an arbitrary n x n matrix 4. They are an easy consequence of the
results of the preceding section.

(1)  coydd =k§=":1(_1)k-1 (=t T det (). det A(M)

k
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(3.2)

(3.3) |

(34)

cypA =Y (=1t (k—1)! ¥ per AM,)... per A(M,)
k=1 N/My...My

n
det’ A=Y (—=1"% k! Y per A(M,)...per A(M,)
N/My...My

k=1

per A=Y (=1%k! Y det A(M,)...det A(M,).
k=1 N, .

1o

4. COMBINATORIAL IDENTITIES

The substitution of the matrices I, J and J — I into (1.1), (1.2), (3.1)—(3.4) yields
the follewing combinatorial identities. Many of them can be, of course, rewritten and
proved in a more natural way.
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"2:31(—1)"N,M§Mk(‘M1| - (M -1)=0 (n>1)
i Yo (M| =D (M] - D) =n!

k=1 N/M;...Mg

;( )k_‘lN//M;..quMll B 1).! (M =)t =n -1

Y (M| =DM - D) =4,

k=1 N//Mj...My

(=1 (k = 1)!'s(n, k) =0 (n>1)
( 1)+ ‘(k—l)' ZM[M1|!...|Mk|z=(n—1)!

(k - 1)' ,Z...M,‘(IMII = (Mf -1 =(n-1) (n>1)
1)“ 1 (k - 1)'N/ g.M,‘dlM” vl = (n -1 (n> 1)
( 1) *k!s(n k) =1

( 1)"k' Y MMt =0 (n>1)

N/M;y..My

z
z LT ] =0 () - 1) = 4,

( l)k 1 k! E dlMll ces d[Mkl =n-—1.

N/Miy..Mg



5. GRAPHS

Let G be a finite non-directed graph of n vertices. Having chosen a fixed ordering
of its vertices, assign to G an n x n matrix Ag = (ay,) such that a;, = 1if G contains
an edge between the i-th and the k-th vertices, a; = O otherwise. This matrix is
usually called the incidence matrix of G.

(5.1) Let G be a finite non-directed graph of n vertices and Ag its incidence matrix.
Then the number of hamiltonian circuits of G is equal to

I (=1 k= 1)1 Y det Ag(M,) ... det Ag(M,).
k=1 N/M;...My
Proof. Let G’ be a directed graph obtained from G by replacing each (non-directed)
edge of G by a pair of oppositely directed edges. Evidently, cyp A; coincides with the
number of cycles of the length n in G’. Pairs of oppositely oriented cycles of G’ are
in one-to-one correspondence with hamiltonian circuits of G. The required expres-
sion is obtained by combining this with (3.1).

(5.2) Let G be a finite non-directed graph of n vertices and Ag its incidence matrix.
Let i,je N, i & j. Denote by Ag the matrix obtained from Ag by deleting the i-th
row and the j-th column. Then the number of hamiltonian paths between the i-th
and the j-th vertices of G is equal to

n
1Y (=1 HHR (ke = 1)1Y det A5(M,) det Ag(M) ... det Ag(M,)
k=1

where summation extends over all the partitions My, ..., M, of N such that i, je M.

Proof. Differentiate (3.1) with respect to a;;. The obtained formula implies the
required result similarly as (3.1) implies (5.1).
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