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Časopis pro pěstování matematik/, roč. 98 (1973), Praha 

INDEFINITE HARMONIC CONTINUATION 

JOSEF KRAL and JAROSLAV LUKES, Praha 
(Received May 24, 1971) 

The purpose of this note is to characterize harmonic spaces whose harmonic 
functions admit indefinite harmonic continuation. 

In the classical potential theory harmonic functions are defined as continuous 
solutions of the Laplace differential equation. In the one-dimensional case these 
functions reduce to locally affine functions and any harmonic (=affine) function on 
an interval of the real line R1 can thus be harmonically continued onto the whole 
of R1. We are going to describe all topological spaces which have a similar exceptional 
property (analoguous to that of the real line in the classical case) in the framework 
of the Brelot axiomatic theory of harmonic functions. 

By a Brelot space we mean a locally compact and locally connected Hausdorff 
topological space X which is equipped with a sheaf 3tf associating with each open 
set 17 c X a real vector — space Jf (U) of continuous functions, termed harmonic 
functions on U, such that the sheaf axiom, the basis axiom and the Brelot convergence 
axiom are satisfied. We shall say that a Brelot space (X, 3tf) has the continuation 
property CP if and only if each point x eX is contained in a domain ( = open and 
connected set) D c X such that each harmonic function defined on an arbitrary 
subdomain of D can be harmonically continued onto D. More precisely: Whenever 
D0 c D is a domain and h0 e J^(D0)9 then there is an h e Jf(D) such that h0 = 
= RestDo h (= the restriction of h to D0). It is known that if X is a 1-dimensional 
manifold, then every Brelot space (X, Jf) has CP (cf. [5]), and one may naturally ask 
whether there are other Brelot spaces possessing CP, besides those defined on 1-
dimensional manifolds. We are going to show that such spaces can be completely 
described and, as shown by the following theorem, cannot topologically deviate 
much from 1-dimensional manifolds. 

Theorem. A Brelot space (X9 3tf) enjoys CP if and only if for every xeX there is 
n 

a finite number n ^ 2 (depending on x) of arcs1) Cu ..., Cn in X such that \J C, 
*-=i 

l) By an arc in X we mean a subspace C c X which is homeomorphic with the segment 
{a;a<=R1,0^a^ l}. 
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15 a neighborhood of x in X and 

<^t n Cj = {x} whenever 1 ^ i < j ^ n . 

We shall see that the sufficiency of the above condition can be proved quite easily. 
Its necessity, however, requires some preliminary investigations (note that X is 
a general locally compact and locally connected space which is not assumed to have 
a countable base). 

We shall first assume in sections 1 — 5 that (X, 2tf) is a Brelot space with a con­
nected X satisfying the following condition: 

(C) For every domain D0 c X and every h0 e J^(D0) there is an h e J^(X) such 
that Rest^ h = h0. 

We shall prove several auxiliary results describing properties of such an X. For 
M c l w e denote by M and M* the closure and the boundary of M, respectively. 
#(M) will stand for the Banach space of all bounded continuous real-valued functions 
on M with the usual supremum norm. The number (possibly zero or infinite) of all 
points in M will be denoted by n(M) (0 ^ n(M) ^ oo). Let us recall that an open set 
[ / c l i s termed regular if it is relatively compact, U* =}= 0 and for eachfe <&(U*) 
there is a uniquely determined Hf e V(U) such that Restj, Hu

f e Jf(U)9 Rest^ Hu = f 
and, besides that, Hf^0 whenever f ^ 0. 

1. Lemma. If D0, D1 are regular domains such that 

(1) D0 c Dt , 

then n(Dl) ^ n(D*). If, moreover, 

(2) D0c:Dl9 

then n(D*) < oo. 

Proof. Assuming (1) we define the mapping T of <tf(D*) into #(D*) bY 

T f=RestD oJ/f , f€<$(D*). 

Clearly, T is a continuous linear mapping. Given an arbitrary g e %>(D*) we may 
apply to h0 = Rest^ H£° the process of harmonic continuation described in (C) so 
as to get an h e Jf(X) with RestDo h = h0. Clearly, g = RestDo* h = Tf, where f = 
= RestDl„ h e <#(D*). We see that T maps V(D*) onto ^(DJ). The assumption 
n(D*) < n(Dl) would mean that D* is finite and the dimension of #(£>*) is less 
than the dimension of ̂ (D*) (which is the image of ̂ (D*) under T) — a contradiction. 
Now assume (2) and denote by 

Bl = {f:feV(D*),\f\<l} 

the unit ball in ^(D*). By the Harnack principle, the image of Bx under T is a relatively 
compact set TBX in ^(D*). On the other hand, the Banach theorem assures that T 
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is open, because it maps#(D*) onto #(D*>). We conclude that the unit ball in ^(D*) 
is relatively compact and this implies n(D*) < oo. 

2. Lemma. If D is a regular domain, then 1 < n(D*) < oo and D is contained 
in a domain on which there exists a positive potential. 

Proof. Fix a regular domain D, y e D and another regular domain D0 such that 
yeD0, D0 c D. Suppose that n(D*) = 1. By preceding lemma also n(D*) = 1, 
say D* = {z}. Choose xeD\D0 and denote by Cx and Cy that component of 
D \ {z} which contains x and y, respectively. The equality Cx = Cy = C would mean 
that C n D0 = C n D0 is open and closed in C and y e C n D0, xe C\ D0, which 
is a contradiction. We have thus 

Cx n Cy = 0 , z e C , n C r 

Next choose a regular domain Dz such that z e DZ,DZ c D \ {x, y}. Then Cx n Dz 4= 
4= 0 =1= Cy n D2 and x e Cx\ Dz, y e Cy\ Dz, so that the boundary of Dz must meet 
both Cx and Cr Consequently, n(D*) ^ 2 > n(D*), which violates lemma 1. This 
contradiction proves the inequality n(D*) > 1. 

Since D* contains at least two points, we may fix two strictly positive linearly 
independent functions fuf2

eC&(D*) and employ (C) to continue H£ and Hj?2 

harmonically onto the whole of X obtaining thus hx and h2 in 3tf(X), respectively. 
Both hx and h2 being positive on D we may fix a domain Dt => D such that hx and /i2 

remain positive on Dv Since hi and h2 are non-proportional on Dl9 we conclude that 
there is a positive potential on the harmonic space (Di9 Rest^ Jf) ( = the restriction 
of the harmonic space (X, Jf) to DJ. Applying proposition 7.1 of R. M. HERVE [4] 
(cf. p. 440) we get a regular domain D2 a Dx such that D c. D2 which, by lemma 1, 
guarantees n(D*) < oo. 

3. Lemma. Let D 4= 0 be a relatively compact domain, F e %>(D), RestD F e 3tf(D) 
and suppose that the constant functions are harmonic on D. If real numbers u, v 
do not belong to F(D*) and satisfy the inequalities 

min F(D*) < u <v < max F(D*), 

then the system S of all components of 

Duv = {z :zeD, u< F(z) < v} 

is finite. 

Proof. Denote by du the distance of u from Ev = {v} u F(D*). Similarly, let dv 

denote the distance of v from Eu = {u} u F(D*). With each x e Duv we associate an 
open neighborhood Dx as follows. If x e Duv then Dx is the component of Duv con-

89 



taining x. If x e Dut> then Dx will be an open set containing x such that the diameter 
of F(D n Dx) is less than \ min (du9 dv). The system 

(3) {Dx;xeDuv} 

must contain a finite subcover 

(4) A.. . . . . .D-, 

of the compact Duv. Suppose that there is a component C of Duv such that F(C*) n 
n {u, t;} = 0. Then C is closed in D and, consequently, C = D = DUV9 which is im­
possible, because the inequalities min F(D*) < u9v < max F(D*) guarantee that Duv 

is a proper subset of D. 
We have thus 

F(C*) n {u, v} * 0 

for every C e S . Consider now an arbitrary C e S and suppose, for definiteness, that 
v e F(C*) (the case u e F(C*) may be settled by a symmetric argument). Since 
F(C) c F(DUV) CZ {a; ae R1, a < V}9 F cannot be constant on C and the minimum 
principle together with the inclusions F(C*) cz {w, v} u F(Z)*) imply F(C*) n Fu # 0. 
C being connected we conclude that there is a z e C with 

\F(z)-v\ = idv. 

If x e D^c D* u{y;ye D9 F(y) = u or F(j) = v})9 then F(x) 6 {i>} u Eu and 
|F(x) — F(z)| ^ idp, so that z £ Z)x. We see that C is the only element of (3) con­
taining z. Thus C must occur in (4) and S e {Dxi9..., D^}. 

4. Lemma. JEi?erj> regular domain (considered as a subspace of X) has a countable 
basis. 

Proof. Let D b e a regular domain. Then there is a (strictly) positive h0e^(D) 
which is harmonic on D. Employing the harmonic continuation (see (C)) we get an 
h e 3f(X) with Rest^ h = h0. There is a domain D1 z> D such that h remains positive 
on Dx. Passing from the Brelot space (Dl9 Restj^ Jf) to the new space whose 
harmonic functions are obtained by the standard procedure of dividing the original 
harmonic functions by h9 we get a connected Brelot space enjoying (C) on which 
constant functions are harmonic; besides that, D is again a regular domain in the 
new space. This consideration shows that we may assume for the proof of our lemma 
that the constant functions are harmonic on X. We know from lemma 2 that D* = 
= {xj,..., x j is finite. 

With each n-tuple of rational numbers [ri9..., rB] = r we associate an Fr e <£(D) 
which is harmonic on D and satisfies 

Fr(*j) = rj » ! -̂  J = n • 
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If, besides that, the rational numbers w, v satisfy the conditions 

(5) min rs < u < v < max r,-, 
J J 

(6) {w, v} n{ri9...9rn} = 0, 

then we denote by Sr
uv the system of all components of {z; z e D, w < Fr(z) < v}. 

In view lemma 3, Sr
uv is finite, so that the system 

s = us.,, 
(where r = [r1?..., r„] runs over all n-tuples of rational numbers and w, v run over 
all pairs of rational numbers satisfying the corresponding conditions (5), (6)) is 
countable. We are going to prove that S is a basis of D. Let z be an arbitrary point 
in D and let U be an arbitrary regular domain such that zeU cz U cz D. According 
to lemmas 1 and 2, U* = {yl9..., ys}, where 2 g s ^ n. Define g e #(U*) by 

g(yi) = i , g(yk) = 0 for 2 = fc = s . 

Then 

0 < Hu(z) < 1 , 

because constants are harmonic on D ZD U. Fix e > 0 small enough to secure 

2e < Hv
g(z) < 1 - 2e 

and apply harmonic continuation to get an fee ^(D) with RestD h e 3f(D) and 
Rest-j /i = Hv

g. Noting that h = H% on 5 and making use of the fact that the values 
attained by H® at the points yl9 ...9ys9z depend continuously onf e %>(D*)9 we choose 
rational numbers r} approximating the values h(x3) (1 = j' <L n) in such a way that 
the following inequalities hold for Fr corresponding to r = [rl9..., rn]: 

\FJiz)-H?(z)\<e9 \Fr(yk)-g(yk)\<s, l ^ k ^ s . 

Then 

(7) F ^ i ) > 1 - e > Fr(z) > a > max {Fr(^); 2 = k = s} . 

Further choose rational numbers w, i? satisfying (6) and 

(8) e < w < Fr(z) < v < 1 - e, 

so that w, v e Fr(Z>) = {a; a e R1, min rj = a^ max ry}. Let C be the component 
j J 

of {w; w e D9 u < Fr(w) < v} containing z. In view of (7), (8), Fr(U*) does not meet 
Fr(C) cz {a; ae R1, u < a < v}. Consequently, U* n C = 0 and C c: U, because 
zeC r\U. We have thus found a Ce S with z e C c l / , which shows that S is 
a basis. 
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5. Lemma. If Dl9 D2 are arbitrary domains contained in a regular domain, then 

D! c D2=> n(D*) g n(D%). 

Proof. Suppose that n(D*) > n(D2) for a couple of domains D1 <=. D2 contained 
in a regular domain D. Let D* = {zl9..., zs}9 choose an (s + l)-tuple of points 
xl9..., xs+1 e D\ and associate with every^i a connected neighborhood Vt of xt such 
that Vl9..., Vs+1 are mutually disjoint. Further choose yt e Vt n D t (i = 1, . . . , s + 1) 
and consider the compact K = { j 1 ? . . . , ys+ x}. By lemma 2, I) is contained in a Brelot 
space carrying a positive potential. This permits us to apply proposition 7.1 of R. M. 
HERVE [4] guaranteeing the existence of a regular domain D0 with K c D0, D0 a Dx. 
In view of lemma 2, n(D0) < oo. Since every Vt meets both D0 (note that yte 
eVtn D0) and its complement (note that xt e Vt \ Dx)9 we conclude that V, n D* -j= 0 
so that DJ must contain at lest s + 1 different points ul9 ..., us+1. 

Define ft e <£(D*) by 

flud = l, fi(D*o-{ui}) = {0} 

and apply harmonic continuation (see (C)) to Hf° so as to obtain an ht e 3f(X) with 
Restjr,0*ftj = / • (i = 1, . . . , s + 1). Since D* contains only s elements, we may fix real 
constants al9..., as+l9 not all zero, such that 

h = a1h1 + ... + a s + 1 h s + 1 

vanishes identically on D*. By the minimum principle (which is applicable, because 
D2 c D and D is regular) we conclude that h = 0 on D2. In particular, 0 = h(uj) = 
= af (i = 1, . . . , s + 1), which is a contradiction. 

Now we are in position to prove the following 

6. Proposition. If the space X is connected and the Brelot space (X9 Jf7) satisfies 
n 

(C), then every xeX has a neighborhood of the form (J Ci9 where n ^ 2 and 
i = i 

Cl9..., C„ are arcs in X (whose number depends on the choice of x eX) such that 

(9) Ci n Cj = {x} whenever 1 ^ i < j ^ n . 

Proof. Consider an arbitrary point xeX and fix a regular domain Dj a x . It 
follows easily from lemma 5 that there is a regular domain D with x e D c D c= Dj 
such that n(D0) = n(D*) for every domain D0 satisfying x e D 0 c D. In view of 
lemma 4, D is a metrizable continuum. Let j be an arbitrary point in D* and let D2 

be an arbitrary regular domain containing y. Since n(D*) + n(D*) < oo, the bound­
ary of D n D2 in the space D is finite. We see that y has in D arbitrarily small 
neighbourhoods with a finite boundary, whence it follows (see [6], p. 209) that D is 
locally connected at y. Thus D is a locally connected metrizable continuum such that 
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every sufficiently small neighborhood of x in D has at least n = n(D*) ^ 2 boundary 
points. Employing the so-called "n-Beinsatz" of K. MENGER (cf. [6], p. 203) we con­
clude that there are arcs Cl9 ..., Cn in D satisfying (9). Denote by yt the end-point 
of Ci different from x and choose a domain U c D containing x such that 

Un{yi,...,yn} = 0. 

Order Ci naturally from x to yt and denote by xt the first point on C{ belonging to 
n n 

Ci \ U (/ = 1,..., n). Assuming U \ (J C, =j= 0 we fix x0 e U \ (J Cx and choose an 
i = l i = l 

arc C0 connecting x and x0 in U; this is possible, because U is arc-wise connected 
(see [6], § 45, pp. 182, 184). Let 0 be the component of U\{x0} containing x and 
denote by Cj the component of Cy \ {xy} containing x (0 g j ^ n). Then 

ijCjczO 

; = o 

and {x0, xl9..., xw} c 0"*, which contradicts lemma 5, because the domain 0 c D 
n n 

cannot have more than n boundary points. Thus U cz (J C. and (J Cf is a neighbor­
ly 1 i=l 

hood of x. 
Now it is easy to present a proof of the theorem. Applying proposition 6 locally 

one immediately obtains the "only if" part of the theorem. In order to prove the 
"if" part of the theorem consider an arbitrary point xe X and fix the arcs Cl9 ..., Cn 

n 
satisfying (9) such that (J Ct is a neighborhood of x. We may clearly suppose that the 

i = i 
n 

interior D of (J Ct is a regular domain; the proof will be complete if we show that 
i=l 

every h0 e Jf(D0) defined on a subdomain D0 => D can be harmonically continued 
so as to yield an h e J^(D). This is celar if x e D0, because then C( = C£ n D \ {x} 
are one-dimensional manifolds and, by [5] (see lemma 1.21), h0 can be continued 
harmonically from Ct n D0\ {x} onto Ct for i = 1,..., n. If x $ D0, then D0 can 
meet only one of the arcs, say Cl9 and we may continue h0 harmonically onto Ct. 
Let C| \ D = {xj (i = 1,..., n) and define f0,fx e #(D*) by 

fx(D*) = {1} = f0(D* \ {xj) , f^x,) = 0 . 

Then H/0(x) > 0 and Hf0, Hft are easily seen to be linearly independent on Ct. 
Consequently, one may choose real constants al9 a2 such that h0 = fliH/0 + 
+ a2Hfx on C! (see [5], lemma 1.6) and atHf0 + a2H^t yields the required extension 
of ft0. 

Corollary. In order that a Brelot space (X9 3#*) possess the following property 
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UCP: every xeX is contained in a domain D cz X such that for every subdomain 
D0 a D and every h0 e Jf(D0) there exists a uniquely determined h e 3^(D) 
with Rest^ ft = h0, 

it is necessary and sufficient thatX be a one-dimensional manifold. 

Proof. It is known that Brelot spaces defined on one-dimensional manifolds 
possess UCP (see [5], lemma 1.21). If (X, 3tf) is a Brelot space enjoying UCP then, 

n 

by the above theorem, every x e X has a neighborhood of the form (J Ci9 where 

n ^ 2 and Cu ..., Cn are arcs in X satisfying (9). We have to show that n = 2. We 
n 

may clearly suppose that the interior D of U Ct is a regular domain. Let Ct \ D = 
£ = 1 __ 

= {xj, 1 ^ j ^ n. Assume that n > 2 and define functions h, g e #(D) harmonic 
on D by the boundary conditions 

h(xx) == 0 = h(x2), h(xj) = 1 for 2 <j ^n9 

g(xt) = 0 , g(x2) = 1 , ^(x,.) = D for 2 < j ^ n . 

Then h(x) > 0 and if we put / = (g(x)jh(x)) h, we get f(xt) = 0 = g(xx), f(x) = 
== g(x), so that f — g on Ĉ  = Cx \ {x, x j . Since f(x2) = 0 4- g(x2) we see that 
UCP is violated, because the restriction of g to Ct has two different harmonic exten­
sions to D. 

Remark. Consider a Brelot space (X, 30) possessing CP. The above corollary 
shows that X must be a one-dimensional manifold provided harmonic functions 
satisfy the condition of quasi-analycity of A. DE LA PRADELLE [3]. 
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