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FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS
IN BANACH SPACES AND ITS APPLICATIONS TO DIFFERENTIAL
AND INTEGRAL EQUATIONS

SvaropLuk Fucik, Praha

(Received March 23, 1970)

1. INTRODUCTION

This paper deals with the 'solution of nonlinear operator equations in Banach
spaces and with the nonlinear generalization of the Fredholm alternative. Theorems
of the following type are obtained: If T'is an operator (generally nonlinear) defined
on a real Banach space X with values in a real Banach space Y, then T(X) =Y
provided that the equation Tx = 0y has the solution x = 04 only and X, Y, T satisfy
some additional conditions.

Similar results were obtained by S. I. PocHOZAJEV [15] for real Banach spaces
and for homogeneous operators and, by J. NECAs [11], for complex Banach spaces
and for operators which are “near to homogeneous” ones. M. KUCERA [20] proved
a result similar to that in [11] for the real space, his conditions concerning “being
near to homogeneity” bzing stronger than those in [11]. Preceding papers discourse
only on the operators the domain of which is a Banach space X, the range being in its
dual space X*. Hence, the integral operators defined on L,(Q) (p # 2) with values
in L,(€) are not included in the abstract theory established in [11], [15], [20]. Such
a problem is solved in Section 7 on the base of Section 3.

We generalize the preceding results for the case of the operators “near to homo-
geneous”, acting from a real Banach space to another real Banach space. The main
result is obtained in the third section of the paper. In Sections 4 and 5 we investigate
the notion of the approximation scheme and the A-operator, given in Section 3.
These notions are a slight modification of those introduced by W. V. PETRYSHYN
[12, 13,14], S.1. PocHoZAsev [15], D. G. DE FIGUEIREDO [5, 6, 7] and F. E. BROWDER -
W. V. PETRYSHYN [2]. '

Section 6 deals with the set of eigenvalues of homogeneous operators. The hypo-
theses of Theorem 6.1 are very difficult to verify in infinite dimensional Banach space.
Theorem 6.2 can be used to “‘near to linear” operators only.
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Finally, in the last section, we apply the abstract Fredholm alternative to the
Dirichlet problem for partial differential equations and to some integral equations.
In these applications it is necessary to know that the corresponding Banach spaces
have a Schauder basis. This concerns particularly the space W®(Q)(p * 2). This
fact is proved in Section 4 for 2 < E;. Unfortunately, we do not know the cor-
responding proof in the case of E, (n = 2). But if this is true, then our main result
can be directly applied to more general partial differential equations, such as in [1 1].

2. TERMINOLOGY, NOTATION AND DEFINITIONS

Let X bz a real Banach space with the norm " . " x> Oy its zero element; then X*
denotes the adjoint (dual) space of all bounded linear functionals on X. The pairing
between x* € X* and x € X is denoted by (x*, x). We shall use the symbols “—",
“=>" to denote respectively the strong and the weak convergences in X. For a finite
dimensional space X, dim X denotes the dimension of X.

Let M be a subset of X, M its closure in X, 6M its boundary in X. M is said to be
compact (weakly compact) if for any sequence {x,}, x,€ M there exists a sub-
sequence {x,,} and an element x, € X such that x,, — X, (x,, & x,) with k - co.

The following assertion will be referred to as Eberlein-Smuljan Theorem: 4 Banach
space X is reflexive if and only if every bounded subset of X is weakly compact.

Let T be a mapping (nonlinear, in general) with the domain M < X and the range
in the Banach space Y (we write T: M — Y). Then

(1) Tis said to be continuous on M if x, — x, in X implies Tx, — Tx, in Y for all
Xy Xo € M.

(2) Tis said to be demicontinuous on M if x, - X, in X implies Tx, o> Tx, in Y
for x,, xo € M.

(3) Tis said to be strongly continuous on M if x, & x, in X implies Tx, — Tx,
in Yfor x,, x, € M.

(4) Tis said to be weakly continuous on M if x, & x, in X implies Tx, o> Tx, in Y
for x,, xo € M.

(5) Tis said to be strongly closed on M if x, & x in X and Tx, — y in Y implies
Txo = Y. ‘ :

(6) T is said to be completely continuous on M if T is continuous on M and for
each bounded subset D = M, T(D) is a compact set in Y.

(7) Tis said to be contractive with the constant a € <0, 1) on M, if " Tx — Ty",, <
< afx — y||x for all x, y e M.

(8) T:X - Yis said to be regularly surjective from X onto Y if T(X) = Y and
for any R > 0 there exists r > 0 such that |x|x < r for all x e X with | Tx|, < R.
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3. MAIN THEOREMS

Definition 3.1. Let K > 0 be a real number, X and Y Banach spaces, {X,} and {¥,}
two sequences of finite dimensional subspaces such that X, < X, Y, < Y. For each
positive integer n let Q, : Y — Y be a bounded linear operator from Y onto Y, Q=
= Q, (i.e. linear projection).

We shall say that the couple (X,Y) has an approximation scheme [{X,}, {Y.},
{Q.}]x for the operators from X into ¥ (briefly speaking, <X, Y) has an approxima-
tion scheme [{X,}, {Y,}, {Q.}]x) if the following conditions are satisfied:

MX,eX,c...cX,c X,y ...,
(2) Y cY, c...c¥, Yy ..,

(3) UX, =X,
n=1
(4) dim X, = dimY,,

(5) || Q,,”(y.,y) < K, where (Y - Y) is the space of all bounded linear operators
from Yinto Y,

(6) Q,y » yinYforeach yeY.

Definition 3.2. Let X and Y be two Banach spaces, let (X, Y) have an approximation
scheme [{X,}, {Y,}, {Q,}]xand T: X - Y.

(a) Tis said to be an A-operator with respect to a given approximation scheme
[{X.}, {1.}, {Q.} 1k (briefly speaking, Tis an A-operator) if for any sequence {n;} of
positive integers satisfying n; — oo and a bounded sequence {x, J}, Xn, € X,, such
that Q, Tx,, — y € Yin Y for some y €Y, there exists an infinite subsequence {n jm}

and x, € X such that x,,, — xoin X and Tx, = y.

(b) Let T be an A-operator. T'is said to be an A*-operator if the following condition
is satisfied: Let R > 0, h € Y. If for some a > 0and a sequence {k;} of positive integers
satisfying k; = o0, ||Qy,Tu — tQ h|ly 2 « holds for ueX,, |u|x = R and any
t € (0, 1), then there exists xy € X, on ” x = R such that Tx, = h.

Lemma 3.1. Let X and Y be two Banach spaces such that X is a reflexive space
and {X,Y) has an approximation scheme [{X,}, {Y,}, {Q,}]x- Let T: X — Y be an
A-operator, h €Y, R > 0. Suppose that for all u€ X, |u|x = R and any te<0, 1)
there is " Tu — th”y > 0.

Then there exist « > 0 and a sequence {k;} of positive integers, k; = oo such
that |Q,,Tu — t Qy |y = « for any kj, all u€ X, |u|x = R and t€ €0, 1).

Proof. To prove the assertion, let us suppose the contrary. Then u, €X,,
[#n,lx = R and t,,€<0,1) with ||Q,, Tu,, — t,, @, h|ly = 0 (as n; — o) exist.
According to the compactness of <0,1) and to Eberlein-Smuljan Theorem the
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subsequences {t,,,,} < {t.,} and {u,,, } = {u, } suchthat t, . —t, u, ©u,eX
in X can be chosen. Since @, h — h by Definition 3.2.a) there is {u,,,..} ={u,,.}
such that u, s - 4o in X and Tug = h. Thus |[ue|x = R, | Tu ~ toh]}, = 0. This
is a contradiction with our assumptions.

Theorem 3.1. Let X and Y be two Banach spaces, let X be a reflexive space and let
<X, Y) have an approximation scheme. Let T: X — Y be an A*-operator satisfying
lim |Tully = +o0.

[l x—o0

Then T is regularly surjective from X onto Y.

Proof. For h € Y there exists R > 0 such that || Tu||y > |[h]xforallu e X, ||u|y =
= R. Thus for any t€ 0,1y and all u e X itis |Tu — th|y = |Tuly — t|h|, > 0.
By Lemma 3.1 and Definition 3.2b there is x, € X, |xo[x < R such that Tx, = h,
hence T(X) =Y.

It can be easily shown that T'is regularly surjective.

Proposition 3.1. Let X be a reflexive Banach space, Y a Banach space, let (X,Y)
have an approximation scheme. Let T: X — Y be an A-operator and let S : X - Y
be completely continuous.

Then T + S is an A-operator.

Proof. Let {n;} be a sequence of positive integers, n; > o0, {x,,} a bounded
sequence with x, €X, such that Q,(T + S)x,, — yeY in Y. Eberlein-Smuljan
Theorem and the complete continuity of the operator S imply that there is a sub-
sequence {x, .} < {x,} such that x,,, ©>x,€X in X and Sx,,, »>weYin Y.
The uniform boundedness of {Q,} implies Q,,,,Sx,,,, in Y since |Q, ., Sx
- w"Y s K"Sx,u(k) - w"" + ” Qnjo¥ — w”Y' Thus Q,,Txy;,, = y = win Y and
by Definition 3.2a there is a subsequence of {x,,,,} (we denote it by {x,,,,} again)
such that x,,, — xp in X, Txg = y — w and Sx,,, — Sx,. This implies Tx, +
+ Sx, = y, and the proof is complete.

nigy

nj(k)

Proposition 3.2. Let X and Y be two Banach spaces, let (X, Y) have an approxima-
tion scheme. Let A % 0 be a real number and T: X — Y an A-operator.
Then AT is an A-operator.

The proof follows immediately from Definition 3.2.

Lemma 3.2. Let X and Y be two finite dimensional spaces, dim X = dim Y. Denote
Kg = {x;x€X, |x|x < R}, Sg = 0Kx.

Let heY and f :Kg — Y be a continuous mapping such that f(—x) = —f(x)
for arbitrary x eKg and | f(x) — th|ly > 0 for each t €0, 1) and all x € Sg.

Then there exists xo € Kg such that f(x,) = h.
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Proof. Let E be a linear homeomorphism Y — X. Then for the Brouwer degree d
of mappings Ef — Eh and Ef on the set Ky with respect to the point 05 the relation

d[Ef — Eh; Kg, 0] = d[Ef; Kz, 05] + 0

holds. (See [3], [8].) This property of the degree of the mapping Ef — Eh implies the
existence of x, € Kg such that Ef(x,) = Eh and thus f(x,) = h.

Proposition 3.3. Let X and Y be two Banach spaces, X reflexive, T: X — Y such
that T(—x) = —T(x) for arbitrary x € X (the so called odd mapping). Let (X,Y)
have an approximation scheme and let T be a demicontinuous A-operator.

Then T is an A*-operator.

Proof. Let R > Oand h €Y. Let for some & > 0 and some sequence {kj} of positive
integers, k; — oo
10k, Tu — 1 Qush|ly 2 «

hold for each 1€ <0, 1> and all u € X, , |[u|x = R.

Lemma 3.2 implies that there is a sequence {u,}, uy,€ Xy, [lu,|x < R with
Qx, Tuy, = Q4 ;h. According to Eberlein-Smuljan Theorem we can suppose Uy, DUy €
€ X in X. Since @y ,h - hin Y we have Q,, Tu,, — hin Y. By Definition 3.2a there is
a subsequence {uy, } < {u,} such that u,,  — uoin X, Tug = h and thus Tis an
A*-operator.

Corollary 3.1. Let X and Y be two Banach spaces, X reflexive and let {<X,Y) have
an approximation scheme. Suppose that T: X — Y is an odd demicontinuous A-
operator with

lim | Tuly = +o.

[lullx— o0

Then T is regularly surjective from X onto Y.

_ Definition 3.3. Let X and Y be two Banach spaces, T: X - Y, T, : X - Y and
a > 0 a real number. '

(a) T, is said to be a-homogeneous if Ty(tu) = 1° Ty(u) holds for each 1 2 0 and
allueX. :

(b) Let T, be an a-homogeneous operator. T is said to be a-quasihomogeneous
with respect to T, if t, ~0 (i.e. t;, 21, >... 21, > 0 are real numbers and
limt, = 0), u, & u, in X, 12 T(u,[t,) = g € Yin Y, then Tou, = g.

n— o0

(c) Tis said to be a-strongly quasihomogeneous with respect to T,, if t, \ O,

u, = ug in X imply £ T(u,[t,) = Touo in Y.
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Proposition 3.4. Let X and Y be two Banach spaces, T: X - Y, T, : X - Y.

(a) If T is a-homogeneous and strongly closed, then T is a-quasihomogeneous
with respect to T.

(b) If T is a-homogeneous and strongly continuous, then T is a-strongly quasi-
homogeneous with respect to T.

(¢) If Tis a-strongly homogeneous with respect to Ty, then T, is a -homogeneous.
Proposition 3.5. Let X and Y be two Banach spaces, S : X - Y, So: X - Y. Let S

be an a-strongly quasihomogeneous operator with respect to S,,.
Then S, is strongly continuous.

Proof. ForueXitis 11m t° S(u/t) = Sou in Y. Suppose that there exists a sequence

{u,}, u,eX ande >0 such that u, & u, in X and |Sou, — Soue|y = . For each n
there exists t,, 0 < t, < 1/n such that

14
Sou, — ;S < -
° ( ) 4’
Then
¢ < |Sotts — Sottally < | Soun - t:S(“—"> ¥ ‘lt" S(“—) — Soua| S
tn Y tn Y

=

Souo - t: S (ﬁ>
t’l

Letting n tend to infinity we obtain & < 4e. This is a contradiction proving the
proposition.

&
-+
4 Y

Definition 3.4. Let X and Y be two Banach spaces, Ty, : X - Y, So: X - Y a-
homogeneous operators and A = 0 a real number.

A is said to be an eigenvalue for the couple (To, So) if there exists uy € X, uo = 0y
such that ATyu, — Souoe = 0y.

Lemma 3.3. Let X and Y be two reflexive Banach spaces T: X - Y, T, : X = Yan
a-homogeneous operator, S:X - Y and Sy:X — Y. Let T be an a-quasihomo-
geneous operator with respect to T, and let S be an a-strongly quasihomogeneous
operator with respect to S,. Suppose that there exists a constant ¢ > 0 such that

| Tuly = clu%
holds for each u € X. )
Let A #+ 0 be a real number. If A is not an eigenvalue for the couple (To, So), then

lim [|ATu — Suly = .

lullx—o
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Proof. Let us assume the contrary. Then there exist a sequence {“n}! u,€ X and
a real number K > 0so that "u""x — o0 and ").Tu,, - Su,,",, < K. Setv, = u,./”u,,"x.
By Eberlein-Smuljan Theorem we can suppose that ATu, — Su, =g €Y in Y and
v, = Vo € X in X. We have

ATl ) = S(lualx ) =g

and

BT Tl o) = o Sl ) 0 in 7.
[ "xs("“ ulx ) = Sovo in ¥

and
}“” "xT("“ ol|x Un) = Sovp in Y.

Definition 3.3b implies ATyv, = Syve and the proof will be complete if vy += 0. It
is clear that

|| fufp, T -

—= | Tualy 2 ¢|2] > 0.
x

Hence Syvy #+ 0y and vy + 0y.

Theorem 3.2. Let X and Y be two reflexive Banach spaces, let {(X,Y) have an
approximation scheme, T:X — Y let be an odd operator, T, : X — Y an a-homo-
geneous operator, S : X — Y an odd completely continuous operator, S5 : X — Y.
Suppose that T is demicontinuous and a-quasihomogeneous with respect to T,
A-operator, and S is a-strongly quasihomogeneous operator with respect to S,.

Suppose that there exists a constant ¢ > Q such that "Tu”, = c"u”} holds for
allueX.
Let A + 0 be a real number which is not an eigenvalue for the couple (T,, So).

Then the operator AT — S is regularly surjective from X onto Y.

Proof. See Lemma 3.3, Propositions 3.1 and 3.2 and Corollary 3.1.

Theorem 3.3. (This theorem is a generalization of the results in [15] for the case
Y % X*. The proof is analogous to that in [15].) Let X and Y be two reflexive Banach
spaces, let (X, Y) have an approximation scheme [{X,}, {Y,}, {Qu}]x- Let T: X - Y
be an odd a-homogeneous and continuous A-operator. Let S :X — Y be an odd
completely continuous a-homogeneous operator. Let A & 0 be a real number such
that A is not an eigenvalue for the couple (T, S). Then the operator AT — S is
regularly surjective from X onto'Y.
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exist & > 0 and a sequence {k;} of positive integers, k; = o such that
1001 - 00,50l 2 4

holds for each k; and all ueX,, |ulx =
exist u, € X, , u,, — o in X and we have

s [rour(pe) - o8 Qﬁ:‘u})

+ |4 Qe Tug — Q4,Suoly +
< K|,1| “ —J—-) Tug
l“lu”x

for k; = oo. Hence ”A Tuy — Suolly =
thus, for arbitrary u € X there is

y +

l Qk, ( ) - Qk,Tuo
s, |
0., <_u_1_> Q.S
o, | x

+ K “ ('—‘L“> - SuO
lu"J”X Y

- K||A Tug — Suolly

Y

+ K||A Tug — Sue|y -

X = 1, and

|2 Tu = Sully 2 |ufy =

By the previous statementitis lim |2 Tu — Su|y = oo and according to Corollary
ll#]l x>

3.1, the proof is complete.

4. APPROXIMATION SCHEME

Proposition 4.1. Let X be a reflexive Banach space and let {X, X) have an ap-
proximation scheme [{X,}, {X,}, {Q.}]x and Qps1Qn = QuQnss-
Then {X, X*» has an approximation scheme.

Proof. For each integer n let QF : X* — X* be the operator adjoint to Q, and set
Y, = Qx(X*). Then dim X, = dim ¥,

XicX,c...cX,c X,y <.,

Y <Y, c...cY, <Y,y ©...,

and [[Q}|xe=xv = |@ulix-x) < K. To show that [{X,}, {¥,}, {Q¥}]« is an ap-
proximation scheme for (X, X*) we must prove that for each x* € X* it is Qyx* —

— x*in X*. It is easy to show that QFx* > x* in X* (i.e. U Y, is weakly dense in X*)

n=1
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= —_——

and Q¥x* e J Y,. The set J Y, is a convex one and by the well-known theorem {J Y,

n=1 n=1 n=1

-]

is weakly closed. Hence |J Y, = X*. For each x* € U Y, there is an integer n, such

n=1 n=1

that x*eY, for n = ny and x* = Qfx* = Qrx* Thus Qyx* - x* in X* for all

o ) -
x*eUY,U

n=1 n=1
Theorem (see [4]) the proof is complete.

Y, = X* and ” o ”(xo—~x0) < K and according to Uniform Boundedness

Proposition 4.2. Let X and Y be two infinite dimensional Banach spaces. Suppose
that X is a separable space and <Y, Y) has an approximation scheme [{Y,}, {Y,},

{Qu}]x-

Then {(X,Y) has an approximation scheme.

(This Proposition shows that whether the couple <X, Y) has an approximation
scheme depends only on the space Y.)

Proof. Let x,, Xz, ... be a dense sequence in X. Let X, be the linear hull of {x4, ...
..., X,}. Then there exists a subsequence {X,,}such that [{X,.,}, {Y.}, {Q.}]x is an
approximation scheme for the couple <X, Y).

Definition 4.1 ([1], [5], [6], [7]). Let K = 1. A separable Banach space X is said
to have Property (my) if there exists a sequence of finite dimensional subspaces X, = X
such that

@X,cX,c...eX,cXpyy <.

“ey

(b) Ux, =X,

(c) each X, is the range of continuous linear projection Q, : X — X with the norm
K.

IIA

Definition 4.2 ([4]). A separable Banach space X is said to have Schauder basis

{e.}, en€ X if for each x € X there exists a unique sequence {a,, a,,...} of real
n

numbers such that ) a,x; - x in X (with n —»-00).
i=1

Proposition 4.3. A Banach space with a Schauder basis has Property (ny) for
some K.

Proof. See [7].

Proposition 4.4. Let X be a Banach space with Property (ny).
Then {X, X) has an approximation scheme.
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Proposition 4.5. Let X be an infinite dimensional Banach space with a Schauder
basis. Then the couple {X, X) has an approximation scheme.

Moreover, if Y is a separable infinite dimensional Banach space, then (Y, X) has
an approximation scheme.

If X is a reflexive Banach space with a Schauder basis, then {X, X*) has an
approximation scheme.

Proposition 4.6. Let X be a Banach space with Property (n,), such that dim X, = n.
Then X has a Schauder basis.

Proof. See [10].

Remark 4.1. A separable Hilbert space, C[0, 1], L,[0, 1], CX([0, 1), C*([0, 1]")
(see [17]) all have an approximation scheme (they have a Schauder basis).

Remark 4.2. Let Q be a bounded open subset of the Euclidean N-space Ey. Then
L,(Q) s linearly homeomorphic to L,[0, meas Q], where meas  is the N-dimensional
Lebesgue measure of 2 (see [9, Chapter II, § 12]). Hence L,() has a Schauder basis.

Remark 4.3. Let X be a Banach space with Schauder basis {e,, e2, ...}.ForxeX
there exists a unique sequence {a,} of real numbers such that x = Z ae;. Set g; =

= a(x). Then o, € X*. i=

Definition 4.3. Let I = (0, 1), k = 1 integer and p > 1 real number. By Sobolev
space W(I) we mean the set of all functions f such that f and its derivatives f® up
to the order k — 1 are absolutely continuous functions in I and the derivative of the
order k (which exists almost everywhere) belongs to L,(I). The norm in W (1) is

k
17w 00 = (ig 1712, ) -
We set ’
w0 =

= (S WPWD.S(0) = £0) = ... = F*0(0) = (1) = .. = f4(1) = 0}

Proposition 4.7. W*(I) has a Schauder basis.

Proof. We prove the proposition by induction with respect to k. Suppose that
{f*} is a Schauder basis in W®(I) and {«;} is a sequence of continuous linear func-

tionals such that for each fe W®(I) there is f = i o«f(f) X (see Remark 4.3). Set
n=1
') =1, o 1(f) = £(0)
() = f T, &) = abo(f)
0
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for n =2, xel, fe W(k+1)(1) Then f**!e W(k+1)(1) For arbitrary fe W(k+l)(l)
I = 1 we have

i 1
17 = b A e = |
n= (]

dx +

1) =10 - £ [ e

-1 -1
- =1a:(fl)fk”Wp(k)(I) = 2“f’ n;“ﬁ(f’)f:”fy,m(,,

and hence

i
lim |f = ¥ o () 3 wyecr vy = 0.
- © n=1
Let

1
lim || 3 cafs ™ |w s 0y = 0
170 n=1

for some sequence {c,,} of real numbers, i.e.

0= limj ¢y + ZC"If" () dt
-0 Jo

1
0=lm|Y Cafm-1llw 000 -
10 n=2

dx

and

Since {5} is a Schauder basis in W(I) we have c, = Ofor n 2 2and lim {3 |c,[r dx ~
1=+

= 0, i.e. ¢, = 0 for each positive integer n. We obtain that the sequence { f.'.‘“} is
a Schauder basis in W **'(I) and, since for k = 0 the space L(I) = W,°(I) has
a Schauder basis (see Remark 4.1), we proved our assertion.

Proposition 4.8. WV(I) has a Schauder basis.

Proof. Let us construct the basis {f, } in W¢')(I) from the basis {f;} in LP(I) as
m Proposition 4.7 where {f;} is a Haar orthogonal system in L,(I). Set fr = e
() = o44(f) for each positive integer n and all fe W{(I). Then f; e WI(I),
{ f } is a Schauder basis in W¢"(I) and {a,} are functionals coresponding to {f,'}.

5. A-OPERATORS

Definition 5.1. A Banach space X is said to be strictly convex if for each x, y € X,
x %y, ”x"X = "y"x = 1 and all t €(0, 1) there is "tx +(1 -1 y“x < 1.

Definition 5.2. A Banach space X is said to have Property (H)if X is strictly convex
and if x, > x, in X and "x,,"x - ”x(,”x implies x, = x, in X.
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Remark 5.1. L,(2), 1,(p > 1), Hilbert spaces all have Property (H).

Propositior5.1. Let X be a reflexive Banach space, Y a Banach space, T: X - Y,
S:X-Y, f:X>E, ®:X - Y* Let {X,Y) have an approximation scheme
[{X.}, {Ya}, {Qa}Ik- Let S be a completely continuous operator, let f be a weakly
upper semi-continuous functional (i.e. x, = x, in X implies lim sup f(x,) < f(xo)),
f(8x) = 0 and let ® be a weakly continuous operator, (0y) = 0y,.

Suppose that y, ¢ are continuous real valued strictly increasing functions on
<0, ) such that y(0) = 0.

Let y1: (0, ) x X — (0, 00) and suppose that Q ®(x) = ®(x) for each positive
integer n and all x € X,

Then Tis an A-operator provided that one of the following conditions is satisfied:

(5.1) Tis continuous and
(@(x — y), Tx = Ty) + f(x — y) 2 3(|x = y]x)
for each x, y e X.
(5.2) Tis continuous and
(®(x — ¥), Tx — Ty) + (¥(x — ), Sx — Sy) + f(x — y) = ¥(|x — ¥|x)
for each x, ye X.

(5.3) T is demicontinuous, ®(X) = Y*, ®(tw) = u(t, w) ®(w) for t > 0 and all
weX and
(@ = ), Tx = Ty) 2 %} = »]x)

for each x, ye X.
(5.4) T is demicontinuous, @ is the same as in (5.3) and
(®(x — y), Tx = Ty) + (8(x — y), Sx — Sy) 2 7(|x = ¥[)
for each x,yeX.
(5.5) X has Property (H), T is demicontinuous, ® is the same as in (5.3) and
(00x = . x = 1) 2 (ollxls) = e(ls1) (s = 51

for each x, y € X.

(5.6) X has Property (H), T is demicontinuous, ® is the same as in (5.3) and
(@(x — y), Tx — Ty) + (®(x — y), Sx — Sy) 2

2 (o(xl0) = oy lx) (xllx = 1]

for each x, y e X.
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Proof. Let x, € X, , x,, &= Xo in X, @, Tx,, =y in Y. Then for x € X,,, we have

(B(x,, — %), Qu,Tx, — Qn,Tx) = (P(x, ~ x), Tx,, — Tx).
Let condition (5.1) be satisfied. Then for x € X,, n; = I there is

y(ux"j - XHX) = ((D(x,,j - x)’ Q"ij"l - Q"JTx) + f(x".l - x)
and
lim sup (|| x,, — x[|x) < (®(xo — %), y = Tx) + f(xo — x).

The last inequality holds for each x € X. Set x = x,. We obtain 0 < lim sup y(|x,, —
- XOHX) é 0 and nj= o

1Qn, Txn, = Txoly < K| Tx,, — Txo|ly + [|@s,Txo = oy -

Thus Tx, = y and x,,, = X, in X.
Let condition (5.3) be satisfied. We obtain x,, > xo in X and 0 < (®(x, — x), y —
— Tx) for each x € X. Set x, = xo — tw for t > 0 and w € X. Then

0.5 (8(tw), y — T(xo — W) = u(t, ) (B(w), y = T(xg — W),
0 < (B(w), y — T(xo — tw)).
Letting ¢ tend to zero we obtain
0 < (D(w), y — Tx,)

for each we X and 4—5()-(—) = Y* implies y = Tx,.

Let condition (5.5) be satisfied. Then Hx,,jﬂx - ”xc.[{x and x,, = x, in X. Hence
X,, = Xo in X and 0 < (H(x, — x), y — Tx) for each x € X and similarly as in the
previous part one obtains y = Tx,.

Let condition (5.2) or (5.4) or (5.6) be satisfied. Then the assertion is a consequence
of Proposition 3.1 and condition (5.1) or (5.3) or (5.5) respectively.

Remark 5.2. Let X be a reflexive Banach space and let the couple <X, X*) have an
approximation scheme. We identify X with X** and set Y = X* and @ the identity
operator on X. Then @ satisfies the assumptions of Proposition 5.1.

Definition 5.3. a) A gauge function is a real-valued continuous function p defined
on the interval <0, o) such that

(1) #(0) =0,
(2) lim p(t) = oo,

t—= o0

(3) u is strictly increasing.
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b) The duality mapping in X with a gauge function p is a mapping J from X
into the set 2*° of all subsets of X* such that

Jx = {{Ox.} » X =0y,

{x*, x* e X*, (x*, x) = |x|x [|x* x*|xe = pu(|x[x)}, x =i=‘ Oy .

X*

For next two remarks see [1], [5], [6] and [7].

Remark 5.3. a) The set Jx is non-empty.

b) Let X be a Banach space with a strictly convex dual space X*. Let J be the
duality mapping in X with the gauge function u. Then the set Jx consists of precisely
one point,

c) Let X be a Banach space with a strictly convex dual space X*. Let J : X — X*
be the duality mapping with the gauge function p and ¢ > 0.Then J(tw) = B(t, w). Jw
where B is a positive function on (0, ©) x X.

d) Let X* be a strictly convex Banach space, J : X — X* the duality mapping in X
with the gauge function p and [{X,}, {X,}, {Q.}]x an approximation scheme for
(X, X). Then QF Jx = Jx for each x € X, and all positive integers n.

Remark 5.4. Let X be a Banach space with a strictly convex dual space X*, J : X —
— X* the weakly continuous duality mapping in X with the gauge function p (for
example, there exist a gauge function y and the duality mapping J which is weakly
continuous in the spaces /,, 1 < p < ). Set Y = X and & = J. Then & satisfies the
assumptions of Proposition 5.1.

Proposition 5.2. Let X be a Banach space, [{X,}, {X,}, {Q.}]x an approximation
scheme of (X,X)», T: X - X, T=1 — S wherel is the identity operator and S is
a contraction mapping with the constant a € <0, 1). Let aK < 1.

Then T is an A-operator.

Proof. According to Banach Contraction Mapping Fixed Point Theorem there
exists one and only one x, € X for each y € Ysuch that Tx, = y.

Let R > 0, x,, €X,,, [|x,,[x S R, @, Tx», = ¥ = Txo in X. Then
(1 = aK) ||x,, = QuXolx S [|[%s, = CuXollx = [|@n,S%n, = @0, SQuxo|x <
= "Qn,Txnl - Qn,TQanOHX =<
s “Q,,,Tx,,j - )’“x + ”Txd - QMTQ".ixOHX s
< "Qn;Tan - }’”x + K”Txo - TQn,xo"x + ”Qn,Txo - Txo”x -0.

Thus x,, — Q, xo = 0xin X and x,, — x in X.
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Corollary 5.1. Let X, S, K, a satisfy the assumptions of Proposition 5.2. If X is
a reflexive Banach space and U : X — X is a completely continuous operator,
then T=1 — S — U is an A-operator.

Proof. See Propos‘tions 5.1 and 3.1.

6. THE SET OF EIGENVALUES

Definition 6.1. Let X be a Banach space, Ty : X — X*, S, : X — X* two potential
operators (i.e. there exist functionals f, g such that T, = grad f, S, = grad g in the
Gateaux sense — see [18]). Let f(x) = 0 iff x = 0, and set ¢(x) = g(x)/f(x) for
X * Oy.

uo € X, uy # 0y is said to be an R-eigenvector of (Ty, So) if De(uq, h) = 0 for
each he X. (Dg(uo, h) is the linear differential Gateaux at the point u,). Ao =
= @(u,) is said to be an R-eigenvalue.

Proposition 6.1. Let X be a Banach space, Ty : X - X* and S, : X - X* two
a-homogeneous potential operators. Suppose that there exists a constant ¢ > 0
such that

(Tox %) 2 clx]s”
for each x e X.

Then every eigenvalue of the couple (Ty, So) is an R-eigenvalue.

Proof. There is
f(x) = (Tox, x) -

1
s x) = (Spx, x) .
a+1 o(x) (So )a+1

Let 4, % 0 be an eigenvalue of (Tp, So), i.¢. there exists u, + 04 such that A, Toug —
— Sottp = Oxa.
Thus
Ao(Touos h) = (Seuq, h)
for each h € X so that
Ay = (Soum “o) )
(Toum Uo)
Hence

(So“o, uo) (Touo, h) - (Touo, uo) (Souo, h) =0
(To“o, “o)z

for each h € X, i.e. D ¢(uo, h) = 0 where

0 = (Sou, u) _ g(u_)
o(u) (Tou, u)  f(u)
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Lemma 6.1. Let X be a separable and reflexive Banach space, G = X an open
subset, f : G —» E, a functional of the class C™ (i.e. there exists the Fréchet deriva-
tive D’ f(x) up to the order m which is continuous — see [18]). Let the following
conditions be satisfied:

(6.1) supdim Ker D*f(x) =1 < o
xeG

where Ker D? f(x) = {h; he X, (D? f(x) h, w) = 0 for each w e X},
(6.2) m 2 max(l,2),
(6.3) D?f(x)(X) is closed subset of the space (X — X*) for each x€ G.

Set M = {x; x € G, Df(x, h) =0 for each he X}.
Then meas f(M) = 0. (For proof see [16)].

Proposition 6.2. Let X be a reflexive and separable Banach space, T, : X - X*,
So : X = X* be two potential operators. Let the functional ¢ (see Definition 6.1)
satisfy the assumptions of Lemma 6.1.

Then the set of R-eigenvalues of the couple (To, So) has the Lebesgue measure
zero.

Theorem 6.1. Let X be a reflexive Banach space such that (X, X*) has an ap-
proximation scheme. Let T:X — X* be an odd A-operator, Ty : X —» X* an a-
homogeneous operator, S : X — X* an odd completely continuous operator and
So : X = X*. Suppose that T is an a-quasihomogeneous operator with respect to T,
and S is an a-strongly quasihomogeneous operator with respect to S,. Suppose that
there exists a constant ¢ > 0 such that

” Tu

xe Z cfulx
and

(Tou, u) = cffulx™
for each u € X.
Let T, =grad f, S, = grad g and set ¢(u) = g(u)[f(u) for u % 0x. Suppose

that the functional ¢ satisfies the assumptions of Lemma 6.1 on some neighborhood
of the unit sphere in X.

Then there exists a set N < E,, meas N = 0 such that (AT — S) X = X* for
eachAeE, — N. :

Lemma 6.2. Let X and Y be two Banach spaces, Ty : X - Y, Sy : X = Y be linear
operators such that T, is continuous, S, is completely continuous, T,X = Y. Suppose
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that there exists a constant ¢ > 0 such that

| Tox] 2 e]x]x
for each x € X.

Then the set of eigenvalues for the couple (To, So) is at most denumerable and if
it has a limit point A, then A = 0.

Proof. For the problem Al — Ty 'S, we have well-known theorems (see [4])
about the set of eigenvalues. 4 is an eigenvalue for (T, So) iff A is an eigenvalue for
(I, Ty 'S,) (I is the identity operator in X).

Theorem 6.2. Let X and Y be two reflexive Banach spaces such that {X,Y) has an
approximation scheme. Let T: X — Y be a demicontinuous and odd A-operator,
S : X — Y be a completely continuous and odd operator, Sy : X - Yand Ty: X - Y
linear operators. Suppose that T is an 1-quasihomogeneous operator with respect
to T, and S is an 1-strongly quasihomogeneous operator with respect to S,. Suppose
that there exists a constant ¢ > 0 such that

[Tuly = cflulx
and

v

| Toullv 2 cfu]la

for each u e X.
Let T,X =Y.

Then there exists a set N = E,, N is at most denumerable and if N has a limit
point A, then 2 = 0 and N is such that (AT — S) X = Y for each A€ E; — N.

7. APPLICATIONS

a) Let Q be a bounded domain in Ey and W§"(R) the Sobolev space (for definition
see [19, Chapter 1]). The space W{!(Q) is a Hilbert separable space. Denote 4 the
Laplace operator. We seek the weak solution of the Dirichlet problem

—).Au—u’—‘i=f (s >0)
1+|u|’
u=0 on 9Q

for f € (WED(Q))*, i.e. we seek ue W§D(Q) such that for each v e W§"(Q) the identity

N I s
}.J Za—uﬂdx—J‘ —Mfuvdx=vadx
Q2 Q2

i=1 0x; 0x; 1+ uf
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holds. This equation has a solution for each f € (W{V(Q))* if the equation

N
}.J. Z ﬁﬂdx——'[‘uvdx=0
2

i=1 0x; 0x; Q

-

(for all ve W§(R)) has zero solution only (see Theorem 3.2), i.e. for A + 13,
where {4,} is the spectrum of the Dirichlet problem for the equation

—Adu — Au=0.

b) Let Q be an open bounded subset of Ey. It is known (see [7]) that (L),
L,(R)> has an approximation scheme with K = 1.

Let p > 1 and let hu be Némyckij’s operator (for the definition and properties see
[18]) generated by the function f(x) (u3/(1 + u?)) where f € L (). Let 4 € (L,(2) —»
— L,(Q)) with the norm ||A||.,-1,) Suppose that there exists a constant m such
that |f(x)| < m almost everywhere in Q and

o= ”A”(Ln-'l-p)' m.g<1.

Then the operator U = Ahu is a contraction with a constant & < 1 and moreover,
U is 1-quasihomogeneous with respect to Ugu = Ahou where hyu is Némyckij’s
operator generated by the function f(x)u. By Propositions 5.2, 3.2 and 3.3 the
operator T =1 — U is an A*-operator which is 1-quasihomogeneous with respect
to the operator T, = I — U,,.

Let K(x, y), L(x, y) be continuous functions on & x @ and s = 0. Set

s

J' L(x, y) u(y)dy
[ e uoyar

2

Su =

: j K(x, ) u(y) dy
1+ @

The operator S is strongly continuous and 1-strongly quasihomogeneous with
respect to the operator

Sou = I K(x, y) u(y)dy .
2
By Theorem 3.2 the equation
(1) ‘ Mu(x) — Ahu) — Su = F(x)
has a solution u € L(R2) for arbitrary F e L,(£2) provided the equation
() Mu(x) — Ahgu) — Sou =0

has the trivial solution only.
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According to Theorem 6.2 there exists a set N = E,, N being at most denumerable
and if A is a limit point of N, then 4 = 0 and N is such that (1) has a solution u €
€ L(Q) for each Fe L(Q)and all A€ E, — N.

REMARKS

1. Preliminary communication was published in Comment. Math. Univ. Carolinae
11, 1970, 271 —284.

2. W. V. Petryshyn (Arch. Rat. Mech. Anal. 30, 1968, 270—284 and same Arch.
33,1969, 331 —338) solved this problem for the linear operators using similar methods.

3. When the preliminary communication had been published the author obtained
areprint of the paper by W. V. Petryshyn: Nonlinear Equations involving Noncompact
Operators, Proc. Symp. Pure Math., Nonlinear Functional Analysis, Vol. XVIII,
Part 1, 1970, Providence, Rhode Island, pp. 206 —233. W. V. Petryshyn dealt with
the same problem and his Theorem 1.4 on the p. 216 is essentially the same as Theorem
3.3 in this paper.

4. Author is very much indebted to the reviewer for his advice and comments.
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