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ALTERNATING CONNECTIVITY OF TOURNAMENTS

BOHDAN ZELINKA, Liberec

(Received February 2, 1970)

This paper continues to investigate the concepts introduced in [2] in the case of
tournaments. A tournament is a digraph in which any two different vertices u, v are
. . . . —— —_ . .
joined exactly by one directed edge (either uv, or vu) and no loops exist. The concepts
of (+ —)-path, (— +)-path, (+ —)-connectivity, (— +)-connectivity and alternating
connectivity were defined in [2].

Theorem 1. Let a tournament T with the vertex set V have a source u and no sink.
Then T is (+ —)-connected, but not (— +)-connected. The equivalence classes of
the relation of being (— +)-connected are {u} and V = {u}.

Remark. A tournament can have at most one source and at most one sink.

Proof. Let v, w be two vertices of T. As T has no sink, there exist vertices v’, w’
so that oo, ww' are edges of T. As u is a source, there exist edges uv’, uw'. Thus
P = [v, 00, v, Vu, u, uw', w', ww, w) is a (+ —)-path between v and w. As the ver-
tices v, w were chosen arbitrarily, the tournament T'is (+ —) connected. The source u
forms an equivalence class of the relation of being (— +)-connected, because it
cannot be joined by a (— +)-path with any other vertex; the first edge of such a path
would be incoming into v which is impossible. If v, w are two vertices of T both
different from u, then there exist edges uv, uw and P’ = [v, vu, u, uw, w] is a (— +)-
path between v and w. Thus V = {u} is an equivalence class of the relation of being
(— +)-connected.

Theorem 1'. Let a tournament T with the vertex set V have a sink u and no source.
Then T is (— +)-connected, but not (+ —)-connected. The equivalence classes of
the relation of being (+ —)-connected are {u} and V = {u}.

Proof is dual to that of Theorem 1.

Theorem 2. Let a tournament T with the vertex setV have a source u and a sink v.
Then the equivalence classes of the relation of being (+ —)-connected are {v} and
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V = {v} and the equivalence classes of the relation of being (- +)-connected are {u}
and V ~ {u}. ,

Proof is analogous to the proof of Theorem 1.

Theorem 3. Let T be a tournament without a sink which is not strongly connected.
Then T is (+ —)-connected.

Proof. The reduced graph R [1] of the tournament T is evidently an acyclic tour-
nament. An acyclic tournament is evidently also transitive. Thus the vertices of R,
i.e. the quasicomponents of T, are totally ordered so that for two quasicomponents
04, 0, we have Q, < Q, if and only if Q, + Q, and there exists and edge in T
outgoing from a vertex of Q, and incoming into a vertex of Q,. (As T'is a tournament,
from any vertex of Q, an edge goes into any vertex of Q,.) Assume that there exists
no greatest element in this ordering and consider two vertices u and v of T. Let Q,
and Q, be the quasicomponent of T containing u and v respectively. There exists
a quasicomponent Q, such that Q; < @3, @, < Q3. Choose a vertex w of Q. There
exist edges uw, vw and P = [v, vw, w, wu, u] is a (+ —)-path between u and v. Now
assume that the above defined order has the greatest element; let this quasicomponent
be Q,. Consider again two vertices u and v. If none of them is in Q,, the proof is the
same as in the preceding case. Let u be in @, and v in some @; + Q,. If Q, consists
of a single vertex, this vertex is a sink; this is excluded by the assumption. Thus Q, is
a strongly connected subtournament of T with more than one vertex; therefore there
exists an edge uw such that w is contained also in Q. As Q; + Q,, we have @, < Q,
and there exists also the edge yw. Then P = [u, uw, w, wo, v] is a (+ —)-path
between u and v. Now let both u and v be in Q,. As @, is a strongly connected sub-
tournament of T, there exist vertices w, x in @, such that uw, vx are edges of T.
If w = x, the proof is finished. If w + x, we choose a vertex y not belonging to Q,.
There exist edges yw, yx in T and P = [u, uw, w, wy, ¥, yX, X, Xv, v] is a (+ —)-path
between u and v.

Theorem 3'. Let T be a tournament without a source which is not strongly con-
nected. Then T is (— +)-connected.

Proof is dual to that of Theorem 3.
Before presenting the last theorem we shall prove some lemmas.

Lemma 1. Let T be a tournament which is not acyclic. Then T contains at least
one cycle of the length three.

Proof. As Tis not acyclic, we may choose a cycle C, in it. If the length of C, is
three, the proof is finished. Assume that this length is I, > 3. Let u,, ..., u;, be the
vertices of C; and uu 4y fori =1, ..., 1, — 1 and u,u, be the edges of C,. Consider
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the vertices u, and u;. As Tis a tournament, it contains either the edge uu3, or the
edge usu;. In the second case the vertices uy, u,, u; with the edges u iz, U U3, Uz
form a cycle of the length three. In the first case there exists a cycle C, of the length
I, = 1; — 1 with the vertices u,, us, ..., 4,. If I, = 3, the proof is finished; if not,
we repeat the procedure with C, instead of C;. In this manner we proceed until we

obtain a cycle of the length three, which occurs after at most I, — 3 steps.

Lemma 2. Let T be a tournament with the vertex set V without sources and sinks.
Let u €V be such a vertex that {u},V = {u} are equivalence classes of the relation of
being (+ —)-connected. Then the outdegree of u in T is 1 and the indegree of the
vertex v such that uv is in Tis also 1. The equivalence classes of the relation of being
(= +)-connected are {v}, V = {v}.

Proof. The outdegree of u cannot be zero, because T does not contain sinks.
Assume that there exist two vertices v,, v, such that v, + v, and uv; and uv, are
edges of T. As T is a tournament, the vertices v, and v, must be joined by an edge.
Without any loss of generality let this edge be v;v,. Let w be an arbitrary vertex of
V = {u}. As the set V = {u} is an equivalence class of the relation of being (+ —)-
connected, the vertices v, and w are (+ —)—connected. There exists a (+ —)—path
P =[vy,...,w] between v, and w. The path P, = [u, uvy, v, 050y, vy, ..., W] is
a (+ —)-path between u and w and the vertices u and w are (+ — )-connected, which
is a-contradiction with the assumption that {u} and ¥ = {u} are the equivalence
classes of the relation of being (+ —)-connected. We have proved that the outdegree
of u must be one. Let v be the terminal vertex of the unique edge outgoing from u.
Assume that there exists a vertex x eV = {u} such that Xv is in T. Then Py =
= [u, uv, v, vx, x] is a (+ —)-path between u and x and x is (+ — )-connected with u,
which is again a contradiction. Thus also the indegree of v must be one. The vertex v
is (— +)-connected with no vertex except itself, because any (— +)-path from v can
only have the form [v, vu, u, U, v, ..., v]. Thus {v} is an equivalence class of the
relation of being (+ —)-connected. Now let a, b be two vertices of V= {v}. As T
is without sinks, there exist vertices a’, b’ of V such that a'a, b b'b are edges of T.
If a’ = u or b’ = v, then according to the above proved a = v or b = v respectively,
which was excluded. Thus a’eV = {u}, b’eV = {u} and these two vertices are
(+- )—connected Let P, = [d’,...,b"] be a (+ —)-path between a’ and b'. Then
Py =[a,ad’,a,..., b, b'b, b] is a (—+)-path between a and b and these two
vertices are (— +)-connected As a, b were chosen arbitrarily from V = {u}, this set
is an equivalence class of the relation of being (— +)-connected in T.

Lemma 2'. Let T be a tournament with the vertex set V without sources and sinks.
Let v €V be such a vertex that {v},V ~ {v} are equivalence classes of the relation of
being (— +)-connected Then the indegree of u in T is 1 and the outdegree of the

vertex u such that uv is in T is also 1. The equivalence classes of the relation of
being (+ —)-connected are {u}, V = {u}.
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Lemma 3. Let T be a tournament with the vertex set V with at least four vertices
without sources and sinks. Let u, v be two of its vertices such that {u}, V ~ {u}are
equivalence classes of the relation of being (+ —)-connected and {v}, V = {v} are
equivalence classes of the relation of being (— +)-connected in T. Let T, a be tourna-
ment obtained from T by adding a new vertex w and joining it by exactly one
directed edge with any vertex of V so that w is neither a source nor a sink in T,.
Then either T, is alternatingly connected or {u}, (VU {w}) = {u} are equivalence
classes of the relation of being (+ —)-connected and {v}, (VU {w}) = {v} are
equivalence classes of the relation of being (— +)-connected in T;.

Proof. According to Lemmas 2 and 2’ the outdegree of u and the indegree of v
are equal to 1 and uv is an edge of T. At first assume that wu and vw are edges of Tj.
Then the outdegree of u and the indegree of v also in T are equal to one. Analogously
as in the preceding lemmas we can prove that {u} is an equivalence class of the rela-
tion of being (+ —)-connected and {v} is an equivalence class of the relation of being
(— +)-connected also in T;. Any two vertices of ¥ = {u} remain (+ —)-connected
also in T;. Now let x €V = {u}. If x + v, then xu is in T and also in T}. The path
Py =[x, xu, u, uw, w] is a (+—)-path in T, and therefore x and w are (+—)-
connected in T;. If x = r, then for any x' eV = {u} the edge xx' is in T. We have
x’ # v, thus x" € ¥V = {u}. The vertex u is also in ¥ = {v} and the edge wu is in T;.
The vertices x’ and u are therefore (— +)-connected and there exists a (— +)-path
P, =[x,...,u] in T and also in T,. The path Py = [v, vx", X', ..., u, uw, w] is
a (+ —)-path in T; and therefore v and w are (+ —)-connected in T,. We have proved
that (V'L {w}) = {u} is an equivalence class of the relation of being (+ —)-connected
in T;. Dually we prove that (V' u {w}) = {v} is an an equivalence class of the relation of
being (— +)- connected in T;. Now assume that uw is an edge of T,. If yw is also in T},
then P, = [u, uw, w, vw, v] is a (+ —)-path in T, and the vertices u, v are (+-)
connected. Now let x be a vertex of V such that wx is in Tl, such a vertex must exist
because w is not a sink. We have x + u, x % v. The edge vx is also in T, thus P, =
= [w, wx, x, ¥v, v] is a (+ —)-path in T} and the vertices v and w are also (+ —)-
connected. As ¥ = {u} is an equivalence class of the relation of being (+ —)-con-
nected in T and the vertices u and w are both (+ —)-connected with the vertex
veV = {u}, the set VU {w} is an equivalence class of the relation of being (+ —)-
connected in T; and the tournament T, is (+ —)-connected. According to [2] it is
also (— +)-conneéted and thus it is alternatingly connected. If wo is in T, the path

= [u, uv, v, ow, w] is a (+ —)-path in T; and therefore u and w are (+ —)-con-
nected in T;. Let x € V = {u; v}; there exists the edge vx. If wx is in T}, then P, =
= [, vx, x, Xw, w] is a (4 —)-path in T, between v and w and these vertices are
(+ —)-connected. If xw is in T}, then Py = [u, uw, w, wx, x] is a (+ —)-path between
u and x and these vertices are (+ —)-connected. This means that either u or w is
(+ —)-connected with some vertex of ¥ ~ {u}. As V = {u} is an equivalence class of
the relation of being (+ —)-connected, we see that one of the vertices u, w is (+ —)-
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connected with all vertices of ¥ = {u} and so is the other, because u and w are (+ —)-
connected. Thus the tournament T, is (+ —)-connected and also alternatingly
connected.

Lemma 4. Let T be an alternatingly connected tournament with the vertex set V.
Let T, be a tournament obtained from T by adding a new vertex w and joining it by
exactly one directed edge with any vertex of V so that w is neither a source nor
a sink in T,. Then T, is also alternatingly connected.

Proof. It suffices to prove that w is (+ —)-connected in T, with an arbitrary
vertex u of T. Both u and w are not sinks; thus there exist vertices u’, w’ in V such
that uu’, ww’ are edges of T}. The vertices u’ and w’ are (— +)-connected in T and
also in T,. Thus there exists a path P, = [w,...,w]. The path P, = [u,uu’, u', ...
ces W, Ww, w] is a (+ —)-path between u and w in T;.

Lemma 5. Let {T.},<, be a transfinite sequence of alternatingly connected tour-
naments of the limit ordinal number o such that for « < x < a the tournament T,
is a proper subtournament of T,. Then the tournament T, = \J T, is alternatingly
connected. e

Proof. Let u, v be two vertices of T,. According to the definition there exist ordinal
numbers ¢, x less than « such that 4 is in 7, and v is in T,. Let A = max (L, x). The
vertices u, v are both contained in T, and are (+ —)-connected in it. Therefore they
are (+ —)-connected also in T, whose subtournament T} is.

Lemma 6. Let {T‘}K, be a transfinite sequence of tournaments without sources
and sinks of the limit ordinal number o such that for ¢ < » < o the tournament T,
is a proper subtournament of T,. Let u, v be such vertices of T, that for any ¢« < a
the equivalence classes of the relation of being (+ —)-connected in T, are {u},
V, = {u} and the equivalence classes of the relation of being (— +)-connected in T,
are {v}, V, = {v} whereV, is the vertex set of T,. Then in the tournament T, = U T,

the equivalence classes of the relation of being (+ —)-connected are {u}, V, — {u}
and the equivalence classes of the relation of being (— +)-connected are {v},
V, = {v} whereV, is the vertex set of T,

Proof. If x, y are two vertices of ¥, -~ {u}, we prove analogously to the proof of
Lemma 5 that they are (+ —)-connected. Now assume that u and some vertex
x €V, are (+ —)-connected in T,. There exists a (+ —)-path P between u and x in T,
Let V(P) be the set of vertices of P and for a given y eV, let f(y) be the least ordinal
number such that y e Vp,); such a number must exist because cf the well-ordering of
the set of ordinal numbers less than a. Let B(P) = max ﬁ(y) As V(P) is a finite set,

this maximum exists. The path Pis contained in T,(P, and therefore Typ) is (+ ~-)-
connected, which is a contradiction. The rest of the assertion can be proved dually.
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Theorem 4. Let T be a tournament with three vertices. Then only two cases can
occur:

(1) Tis a cycle of the length 3 (Fig. 1a). Then any equivalence class of the relation
of being (+ —)-connected, as well as of the relation of being (— +)-connected,
consists only of one vertex.

(2) Tis acyclic (Fig. 1b). Then if u, v, w are vertices of Tand u < v < w, then the
equivalence classes of the relation of being (+ —)-connected are {u}, {v, w} and
the equivalence classes of the relation of being (— +)-connected are {u, v},
{w}.

The assertion is evident.

v

>

e hl u- o 4

Fig. la. Fig. 1b.

Theorem 5. Let T be a strongly connected tournament with at least four vertices
Then either T is alternatingly connected, or there exist two vertices u, v in T such
that the equivalence classes of the relation of being (+ —)-connected are {u},
V = {u} and the equivalence classes of the relation of being (= +)-connected are
{v}, V = {v} whereV is the vertex set of T.

Proof. We shall carry out the proof by the method of transfinite induction. At
first we shall investigate tournaments with four vertices. Let T be such a tournament.
If a tournament is strongly connected, it is not acyclic. Therefore according to
Lemma 1 it contains a cycle of the length 3. Consider the vertex of T not belonging
to this cycle. It is neither a source nor a sink, because of the strong connectivity of T.
Thus either its indegree is 1 and its outdegree is 2, or its indegree is 2 and its outdegree
is 1. We see that in both these cases we obtain a tournament isomorphic to the
tournament on Fig. 2. In this tournament the equivalence classes of the relation of
being (+ —)-connected are {u}, V = {u} and the equivalence classes of the relation
of being (— +)-connected are {v}, V = {v} which can be easily verified. Now let T
be a strongly connected tournament with more than four vertices. It contains a cycle C
of the length three; let a, b, ¢ be its vertices, ab, be, ca its edges. If C does not belong
to any subgraph of T isomorphic to the graph on Fig. 2, then for any vertex x of T
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not belonging to C either the edges ax, bx, cx or the edges xa, xb, xc exist. If for
each vertex x not belonging to C the edges ax, bx, cx exist, the circuit C is a quasi-
component of T, which is a contradiction with the assumption that T is strongly
connected. The same holds if for each vertex x not belonging to C the edges xa, }-5, xc

v

Fig. 2.

exist. Therefore, if X is the set of all vertices x of T not belonging to C such that the
edges ax, bx, cx exist and Y is the set of all vertices y of T not belonging to C such
that the edges }7&, }—I;,}_E exist, then both X and Y are non-empty. As T is strongly
connected, there exists at least one x € X and y € Y such that xy is in T. Thus a, x, y
form a cycle in T and the edges @b, bx, yb exist. The subgraph of T induced by the
vertices a, b, x, y is isomorphic to the graph on Fig. 2. We have proved that such
a graph is a subgraph of every strongly connected tournament with more than four
vertices. Thus we use the transfinite induction according to the number of vertices;
this proof follows from Lemmas 3, 4, 5, 6. Obviously if we consider infinite tourna-
ments, the Axiom of Choice is used.
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