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ON SOME NEW PROPERTIES OF THE CANTOR SET

Sr1 SacHI BHUSAN SEN GUPTA, Kalyani

(Received September 16, 1969)

Introduction and notations. Suppose that the real number x is expressed in the
Scale g (g is a positive integer >1)

(1) x =) —02(:) TGO
g g g"
0=<cfx)<g,i=1,2,... and that the digit b, 0 < b < g — 1 occurs n, times in
the first n places of the expression (1) for x.
If lim ny/n exists and equal to f then we say that the digit b has frequency B.

n-wo

[See HARDY and WRiGHT [9]].

We say that x is simply normal in the scale g if lim n,/n = 1/g, for each of the
(9 — 1) possible values of b [See [9]]. e
Let : :

(2 Ydy=d +d, +ds+...+d, + ...
n=1

_be an infinite series and let {k,} be an ascending sequence of positive integers; then
the series

(3) Yd, =d +di, + ...+ d, + -
n=1

is called a subseries of the series (2).

Let each number of the interval (0, 1] be expressed in the scale 2 with infinitely
many digits equal to 1.

Hence, if x € (0, 1], then

Caal) el sl
4) x_.k=l e 2+22+...

where (x) = 0 or 1, and ¢(x) = 1, for infinitely many k.
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We have correspondingly an infinite series

o)

() (x) =Y &(x) dx,

k=1
which is a subseries of (2).
Also every subseries (3) of the series (2) can be obtained from (5), [by putting
g(x)=1,n=1,2,...and g(x) = Owhen k + k,,n = 1,2,...].
Hence all subseries of (2) can be mapped onto (0, 1]. We say that certain property P
is valid for almost all subseries of (2), if the corresponding set {x}, x € (0, 1], has the

Lebesgue measure 1. For instance, we know that almost all subseries of a divergent
series are divergent. [See [8]].

Let (5) be a subseries of the series (2), and let p(n, x) = ¥ ¢,(x). Then the numbers
k=1

pi(x) = lim inf p(m. %) pa(x) = lim sup 2% x)
n

n— o n n- o

are called lower and upper asymptotic density respectively of the subseries (5) in the
series (2).
If the limit p(x) = lim (p(n, x)/n) (= lim (p(n, x)/n) = Iim (p(n, x)/n)) exists, then

we call this number asymptotic density of (5) in (2). Obviously p,(x), pa(x), p(x) €

€[0, 1] [See [12]].

Theorem 1. For almost all points (x) =Y, (26(x)/3*) = Y. (ci(x)/3") of the Cantor
k=1 k=1
set C, each of the digits 0, 2 has the frequency .

[That is almost all points of C have nearly equal number of twos and zeros in the
first n digits, where n is sufficiently large and each point is expressed in the ternary
scale. ]

Proof. We know the Theorem that almost all numbers are simply normal in any
given scale g [See [9]].

It follows that almost all numbers of (0, 1] are simply normal in the scale 2 (i.e.
g =2).
That is, if x =) ((x)/2*) € (0, 1], &(x) =0 or 1 and g(x) = 1, for infinitely

k=1
many k and if the digit 1 (or 0), (i.e. b = 1 or 0), occurs n, times among the first n
numbers &,(x), &;(X), ..., &(x), then

(6) lim ”

b
n-o N

, for almostall xe(0,1].

N
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Now consider the Cantor series 23 + 2[3* + ... + 2/3" + ... we form the Cantor
point

-

k=1 k=1

It follows from (6) that the digit 2 (and also 0) has the frequency 4 in the expression
for (x), for almost all (x) € C.

Hence the theorem.

Note 1. For any Cantor point x = -61 = -6022 ... (Scale 3), (which is the left
hand end point of an interval complementary to the Cantor set C, and ¢ is a finite
complex of 0’s and 2's), we have

lim 22 =1, lim2 =9

n-o N n-o N

(ny is the number of b’s in the first n digits of -61, b = 2, 0). For the Cantor point
x = -8, which is the right hand end point of a contiguous interval, lim (n,/n) = 0
and lim (ne/n) = 1. n= oo

n— oo

Note 2. If we represent the numbers in (0, 1] in the ternary scale as

= cl(x) cz(x) + ...+ M + where c¢(x) =0,1,2
32 3 e ; ) 1,

and N,(r, x) as the number of ¢,(x) in the first n terms, each having the integral value
r (=0, 1, 2), then we know that lim (N,(r, x)/n) = 4, for almost all x in (0, 1], [9].

If we denote this set of simply normal numbers (of measure 1) by N5, then we know
that the set N is of First Category [See [13]].

Also, if we denote the derived set of the sequence

M) e M) )

1 ’ 2 T n n

by {N,(r, x)[n},, it has been shown by TiBor SALAT [13] that, for all xe (0, 1],
except for a set of the first Category (F.C.), [including N,]

P o, o ch 1(=0,12).

n
If we now consider the perfect set C (the Cantor set) instead of the whole interval
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[0, 1], where each point (in the scale 3) x is given as x = Z (28k(x)/3*) afx) =0,1,
we have seen above in Theorem 1 that

lim N___,,(r, x) = -,
n— o n 2
for each r (=0 or 2) for almost all x e C.

We can, therefore, say that ‘Almost all numbers belonging to Cantor set C are
simply normal’ (with respect to C). We denote the set of such numbers by N ,. (It
should be noticed that none of Cantor points can be simply normal with reference to
the whole interval [0, 1] and the scale 3, as none of the Cantor points contain the
digit 1, as x = 1/3 = 03 + 2/3% + 2/3®> + ..., and so on.)

The question now arises, whether the other two properties mentioned above hold
good for the Cantor set as well: That is

(i) Is the set N5 , (= the set of simply normal numbers of Cantor set C, as defined
above) of first category with respect to C?

(i) Isit true that except for a set of first category (with respect to (,:) including N ,,
for other points x € C, which form a residual set (with respect to C),

{N"—(”l)}'=[o, 1] for r=0,2?

n

Since C is mapped onto [0, 1], that the answers to both the above questions are
in the affirmative may be conjectured from Tibor Salat’s Theorem [13]:

For all x € (0, 1],

[x -3 alx) &(x) = 0, 1] {N (': x)} =[o,1],

k=1 2F

with the exception of a set of the first category, for each r (=0, 1).

We give below a formal theorem:

Theorem 2. For all x € C, with the exception of points of a set of the first category

in C
{N(; N -pn =0y

holds.

Proof. The proof of this theorem follows as a Corollary to the following theorem
of P. Kostyrko [10]:
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Let

a,>0, A=Ya,<+0,a,>R, =Y a4, (n=1,2,..).
k=1

n=1

@
Let W denote the set of all numbers x of the form x = ) ¢,a,, where g, = 1 or —1
n=1

(n =1,2,...). Let f(n, x) denote the number of k’s, k < n, for which ¢ = 1. Then
for all x € W with the exception of points of a set of the first category we have,

{f (r ")}' =[0,1].

n n

If we now put a, = 1/3"(n = 1, 2, ...), the conditions a, > 0, A = Y a, and a, >
> R, (=1/2.3") are all satisfied. In view of the fact that the Cantor set C is obtained
by a translation of W(C = W+ A = W + 1/2,since A = Y (1/3") = 1/2), the above
theorem follows from P. Kostyrko’s result [10].

Theorem 3. Almost all points of the Cantor set C have each an asymptotic density
in the Cantor series

2
+ .o+ -+

+2 3k

Wi N
W

Proof. Let x be a point of (0, 1] given by
- &lx)
A x = 2\
( ) kgl 2k

where g(x) = 0 or 1 and g(x) = 1, for infinitely many k’s.

We have correspondingly the Cantor point

(8) (x)=38—13("—)+-2f§§-"-)+...+3fg—£"—)+...

which is a subseries of Y (2/3%).
k=1

Now, number of twos in the first n terms of (B) in the right hand side is the same as
n

Zlek(x) =p(n,x)=n,, (b=1).

Hence

im P08 %) _ i M

n— oo n n—o hH
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Since by Theorem 148 page 125 [9], lim (n/n) = 4 (b = 1, 0), for almost all

n— oo
x € (0, 1], it follows that lim (p(n, x)/n) = 4, for almost all (x) e C. Hence the theo-
rem. e
We know from Randolph’s Theorem [11] that every point € [0, 1] lies midway
between a pair of Cantor points. BosE MAJUMDER [See [6]] gave an alternative proof
of this theorem. He further showed that almost all points of [0, 1] are each midway
between a continuum number of pairs of Cantor points [6].

We now prove the following

Theorem 4. Each point 1 of (0, 1) is the midpoint of a unique pair of Cantor
points if and only if A itself is a Cantor point.

Proof. It has already been seen [6] that, taking

5 0
£, 6 =<1y, if de[-1,1],
3 5

we get

Generally this representation is unique. But if 4d (and hence A — %) has more than
one such representation, then there are only two such representations and 4d (and
hence 1 — 1) is given by,

d {-vlvz...vk_l(—l)lll...

2 ViV oo v—(0) (1) (= 1) (=1) ...
or else by |
-1
AL TS I
2 ViV e Vemq(1) (=) (-1 (-1)... 1
Now since
Q2 _ Q2B ) ¢ 2B &2
d = G T AT o ST — =y -X,
";1 Y= 3 i§1 3! iz'l 3 y
where
yeC, xeC



By choosing
a( = 1 N ﬂi = 0 lf vi = ""1

{“‘=° or {“"=1 if v, =0.
ﬁi=0 ﬁt=1

Hence d = Y (2v,/3’)is uniquely representableasd = y — x, y € C, x € C, if and only
i=1

and either

if no v, is a zero, i.e. if and only if no §;is an 1, that is if and only if (= (d + 1)[2)

is a Cantor point. And in thiscase y —x =dory—x=2A—1lor21l=y+

+ (1 = x) or 24 = y + x’ where y € C, x’ € C (as the Cantor set C is symmetrical).
Hence the theorem.

Corollary. Each Cantor point is the arithmetic mean of a unique pair of Cantor
points.

We know that the set N3 of simply normal numbers in [0, 1] in the scale 3 has the
measure 1 [9] and also the set T, of numbers d € [0, 1], each being the difference of
continuum number c of pairs of elements of the Cantor set C has the measure 1 [See
Boas [1] and Bose Masumper [5]].

Hence the set E = N3 n T, is also of measure 1 [See Bose MAJUMDER and DAs
GupTA [7]]. We thus have the theorem:

Theorem 5. Excepting possibly for a set of measure zero, every point in [0, 1]
which is expressible as the difference of a pair of Cantor points in continuum
number of ways is necessarily a simply normal number in the scale 3 and vice
versa.

Note 1. That the two sets are not identical can be seen from the fact that there
exists d € [0, 1] which belongs to T, but does not belong to N;. For instance, let
d = -5 (scale 3), where 6 is a complex containing a finite number of zeros and twos
and thus ending with a 2. This represents the right hand end point of a contiguous
interval of the Cantor set C. As this representation of d does not contain any 1, it
follows that this can not be a simply normal number. But it is known that [See [2],
[31] this d can be expressed as the difference of a pair of Cantor points in continuum
number of ways. Hence 0 € T,, but -6 € N,.

Note 2. Though T, and N, are each of measure 1, it is interesting to note that T,
is a residual set [See [4]], but N, is a set of the first category [See [13]].

In conclusion, I offer my sincere gratitude to Dr. N. C. Bose MAJUMDER of
Calcutta University for his kind help and guidance in the preparation of the paper.
I am also thankful to the Reviewer for his kind suggestions to improve this paper.
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