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Časopis pro pěstování matematiky, roč. 96 (1971), Praha 

AN INEQUALITY FOR UNIVALENT FUNCTIONS DUE TO DVORAK1) 

MAXWELL O. READE, Ann Arbor and TOSHIO UMEZAWA, Urawa 

(Received May 21, 1969) 

1. In a recent note DVORAK established the following result [1]. 

Theorem A. Let f(z) = z + a2z
2 + ... be analytic and univalent in the unit 

disc D. Thenf(z) satisfies the inequality 

( 0 R e V ( / ( z ) / - ) > i 

for |Z| < r 0 where r'0 is the smallest positive root of the equation 

i l + r *> r log = 2 . 
1 - r 

A computation shows 

(2) r 0 = 0*83355... 

In this note we obtain the exact value of r0. 

Theorem B. Let f(z) = Z + a2z
2 + ... be analytic and univalent in the unit 

disc D. Then f(z) satisfies (l) for |Z| < r 0 where r 0 is the smallest positive root of 
the equation 

where S~1(x) and E~x(x) are the inverse of S(x) = [x/sinx] and E(x) = xe~x 

respectively. This result is sharp. A computation shows 

(4) r 0 = 0-83559... 

Proof. It is easy to see that the condition (1) is equivalent to the inequality 

(5) \J(zlf(z)) - l\ < 1 . 

Now GRUNSKY has shown that for normalized univalent functions in the unit disc we 
must have the sharp inequality 

Izl 
(6) |log(/(z)/z) + l o g ( l - | z | 2 ) | š l o g ^ - ± -

' ) ' This research was supported in part by funds received under NSF-GP 8355. 
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for all z in D [3; p. 113]- From (6) we obtain 

(7) - [log V(~//00) - i log (1 - H2)| < \ log i ± M . 
1 r l 

We now set w = log ../(*//(-)). -4 = i log (1 - |z|2), B = \ log [(1 + |z|)/(l - |z|)] 
in (5) and (7) to obtain 

(8) |«" - 1| < 1 

and 

(9) |w - A\ < B , 

respectively. 
We are now going to show how A and B must be related in order that the inequality 

(8) should hold subject to the condition (9). We set W = ew = Reie in (8) and (9) to 
obtain 

(10) R < 2 cos G 

and 

(11) (log* - A)2 + G2 < B 2 , 

respectively. The relations (10) and (11) define domains in the JV— plane that cor­
respond to the domains defined by (8) and (9) in the w - plane. If |z| = r is small, it 
is clear that the domain (11) lies in the domain (10). As |z| = r increases, the boundary 
of (11) eventually makes contact with that of (10) before r reaches 1. 

Let us consider this first point of contact. At such a point we must have 

(12) log R ^ log (2 cos 9) = A + ^(B2 - G2) 

and 

(13) — = ^-2 sin G = — eA+^B2-°2). 
v de j^-e2) 
If we eliminate G from (12) and (13), then we obtain 

(14) \BeA = V(B2 - G2) e~^B2~e2). 

Now (13) and (14) yield 

(15) - * - = B . 
sin 0 

If we let £_1(x) and S-»(x) denote the inverse of £(x) = xe~x and S(x) = x/sin x, 
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respectively, then (14) and (15) yield 

[E-^Be*)]2 + [S~l(B)Y = B2 , 

from which we obtain (3). 
This result is sharp because the relations (6) and (7) are sharp. This completes our 

proof. 
We note that our result (4) is at variance with another recent result due to Dvorak 

[2; p. 180]. 

2. Dvorak also obtained the following result [2; p. 187]. 

Theorem C. If g(z) = z + a3z
3 + ... is an analytic univalent odd function in 

the unit disc I), then 

(16) Re(g(z)jz) > { 

holds for jz| < r[, where r[ is the smallest positive root of the equation 

V(r)logi±4 = 2. 
l - V r 

A computation shows that 
r[= 0-913... 

We obtain the following sharp result. 

Theorem D. Let g(z) = z + a3z
3 + ... be analytic, univalent and odd in the 

unit disc D. Then the inequality (16) holds for |z| < r1? where rY is the smallest 
positive root of the equation 

This result is sharp. Moreover, a computation shows that 

r t =0-914 . . . 

Proof. If we getf(z2) = [#(z)]2, thenf(z) is analytic and univalent in the unit 
disc D. We then apply Theorem B. This completes the proof. 
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