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Časopis pro pěstování matematiky, roč. 96 (1971), Praha 

A NOTE ON SYMMETRICALLY CONTINUOUS FUNCTIONS 

DAVID PREISS, Praha 

(Received January 26, 1971) 

Dedicated to the memory c/Prof. VOJTECH JARNIK 

A function / defined on the real line R is called symmetrically continuous (on R) 
if for every xe R 

lim(/(x + h)-/(x-h)) = 0. 
Ji-0 

H. FRIED [1] proved that every symmetrically continuous function is continuous 
at every point of a dense subset of R. In the present paper it is proved that such 
a function must be continuous almost everywhere. 

Lemma. Let E a Rbe a measurable set, let 0 be a point of density of E (see [2]). 
Then there exists e > 0 such that for every x e (0, e) there exists teEn (^x, |x) 
such that It e E, to - x e E. 

Proof. We denote |Al| the measure of A, 2A = {y e R; y = 2z, z e A}, A — a = 
= {y e R; y = z — a, z e A}. Let e be such a positive number that for every h e (0, e) 
it is \E n (0, h)\ > ±§h. Let x e (0, e). We set E1 = E n (|x, |x), E2 = (2Et) n £, 
£3 = [(2-E2) — x] n £. Now an easy calculation shows \Et\ > ^ x , Ex c (Jx, Jx), 
l ^ l > |x , 2Et fc ($x, x), |JB n ($x, x)| > |x, |E2| = J£ n (2£x) n (|x, x)| > ix -
- 2(ix - ix) = £*, |2E2| > £x, |(2£2) - x| = \2E2\ > ±x, E3 cz (ix, x), |F3| > 
> i* - (1* - ~ x + | x - ~x) = 0. Therefore £ 3 * 0 . Then there exists t3 e £3, 
t3 = 2f2 — x, f2 e £2, hence t2 = 2t, te Ex and f is the required point. 

Theorem. Let f be a symmetrically continuous function. Then f is continuous 
almost everywhere. 

Proof. We put 

osc/(x) = limsup {|/(*i) - f(x2)\; \xt - x| < h, |x2 - x| < h} , 
A-+0 + 

<p(x) = min (osc/(x), 1) . 
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The function / is continuous at x e R if and only if cp(x) = 0. According to the 
Fried's result <p(x) = 0 at every point of a dense subset of R. 

At first we prove that <p is symmetrically continuous. Let x e R. Let e be an 
arbitrary positive number, let 3 > 0 be such that for every h, 0 < \h\ < 3 it is 
| /(x + h) - f(x - h)| < le. If 0 < |h0 | < 3, K < osc/(x + h0), then there exist 
x*, x2 such that 

x + h0 = lim xl
n = lim x2

n , \f(xl
n) - /(xn

2)| > K . 
n-* + oo n-* + oo 

We set v* = 2x — x*, y2
n = 2x — x2

n. Then x — h0 = lim y\ = lim y2
n. For large n 

it is \f(x\) - / ( ^ ) | < ie, | /(x2) - / (y 2 ) | < is, and it follows that o°°sc/(x - h0) = 

^ K — e. From this fact it is easy to deduce that (p is symmetrically continuous. 
Now cp is measurable. Suppose at there exists oc > 0 such that cp(x) > a in a set A 

of positive measure. Let P c A be a perfect set, |P| > 0. 

For x e P we choose <5(x) > 0 such that for 0 < |h | < <5(x) it is \cp(x + h) — 
00 

- (p(x - h)\ < £a. Let Ak = {x e P, 3(x) > 1/k}. From the fact that P = \J Ak it 

follows that there exists k0 such that |Afeo| > 0. Let x0 be a point of density of Pt = 
= Ako. We can suppose that x0 = 0. We choose 0 < e < min (l/k0, ^<5(0)) according 
to the lemma (where E = Px). Let XJL 6 (0, e) such that <p(xj) = 0. Then there exists 
f e P! n (Jxj, ixx) such that s = 2t e Pu x2 = At — x t e Px. We set d = | ( x t - x2). 
Let u e AkQ n (£x1? ±x,), |u - t| < min (i^(d), iS(0)). We put s t = 2u - s. It is 

|sx | = \2u - 2*| < 3(d), \d - Si\ < \d\ + | S l | < 3(0), 

\cp(Si + d) - <p(5l - d)| ^ 

g |<p(d + s,) - cp(d - Sl)\ + \<p(d - 5 l) - <p(-(d - S l)) | < ioc, 

|*i - a| < — < S(u), |x2 - u\ < — < 3(u), 
ko ko 

sx — d = u — (xx — u) , Sl + d = u — (x2 — u) 

|<KX0 - <H5i ~ d)\ = \(p(u + (Xi - u)) - <p(u - (xt - u))\ < ioc 

\<p(x2) - cp(Sl + d)\ =- \<p(u + (x2 - u)) - <p(u - (x2 - u))\ < ioc 

|<K*i) - <P(X2)) = |<Kxi) ~ <p(st - d)| + \<p(st - d) - <H>i + d)| + 

+ \cp(Sl + d) - <p(x2)| < f a . 

But (p(xx) = 0, <p(x2) > a which is a contractidion. Hence it follows that cp(x) = 0 
a.e., therefore / i s continuous almost everywhere. 

The following example shows that the set of points at which a symmetrically 
continuous function is not continuous can be uncountable. 
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Example . It is well known that there exists such a trigonometrical series 

0 0 QO 

Ze„cos(nx - an) that Z k » c o s ( n x - a„)| = +oo a.e. 
n = 1 n = 1 

and 
CO 

Z \Q„ COS (nx - a„)| < + oo 
n = i 

at every point of an uncountable set. We set 

00 00 

f(x) = (1 + £ \Q„ COS (nx - a„) |)-1 if Z \Q„ cos (nx - an)| < + oo , 
n = l n = l 

oo 

f(x) = 0 if Z k«cos («* - °0| = + °° • 
n = 1 

If /(*o) = 0, then / is continuous at x0. If / (x 0 ) > 0, then we use the following 
inequalities 

lift, cos [n(x0 + h) - a j | - \Q„ cos [n(x0 - h) - a j | | g 2|ft, cos (nx0 - aw)| 

H^cos [n(x0 + ft) - a j | - |oncos [n(x0 - h) - a j | | g 2|ft,| |sin nh\ . 

From the first formula it follows that if / (x 0 + h) = 0 then / (x 0 — h) = 0. If 
/ (x 0 + h) > 0 then for every N 

| / (x0 + h) - / ( x 0 - ft)| g £ ||gn cos [n(x0 + ft) - a j | - \Q„ cos [n(x0 - ft) - a j | | g 
n = 1 

N oo 

-S Z 2k»| | s i n H + Z k» cos (nx0 - aB)| . 
n = l n = H + l 

It follows easily that / is symmetrically continuous. Obviously / is not continuous at 
every point where it is positive. 
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