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Let M, be the space of square matrices of order n, R — the real line, R* — the
positive halfline (closed), R™ — the negative halfline, A:R™ > M,, B:R™ - M,
locally integrable. For y € R" denote by ] y| the Euclidean norm of y and for Ce M,
put |C| = sup |cy.

Ivl=1
For y € R* let Z(7) be the set of such solutions x : R~ - R" of
dx
(1 & (i = a9 x0) + B0) (e~ 1)
that
(2) sup e”|x(f)] < o .

t<0

Obviously Z(7) is a linear manifold.

Theorem 1. Assume that |B|2 is locally integrable and that
(3) sup'[ |4(7)| dt < 0, supf |B(r)|> dt < o .
t=0

Then the dimension of Z(7) is finite. Moreover, there exists @ :(R*)® > R* such
that if

t t
(4) supJ IA(T)I dt £ a, supj |B(t)[2 dtr £ b2,
10 Jy—-1 t<0 Js—1
then
©) dim Z(y) < 6(a, b, 7). ’
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Note 1. ©(a, b, y) may be calculated (of course not the best one). Thus it may
be shown that

- (6) dim Z(y) £ n, if e"*V1 + 4e** max (1, b%)]"2 e < 1
(7 dimZ(y) s n+1, if e"*[1 + 4¢** max (1, b?)]"? e*b* < 1
(8) if eb21 and e€'(1 + ae)b > o,

then

(a, b, 7) ~ %g A1 + ae®)? b2

(i.e. to any & > O there exists such a ¢ > 0 that
|@(a, b,y) n*(2ne)"t e~ (1 + ae®)"2 b2 - 1| < ¢
provided that e’b = 1 and ¢’(1 + ae®) b 2 o.

Note 2. Theorem 1 is related to applications of Theory of Invariant Manifolds to
Delayed Differential Equations (cf. [1], [2], [3]). Let us review some results, which
may be obtained for (1). For this purpose extend A and B to R putting A(f) = 0 =
= B(f) for t > 0.

Proposition. Assume that A fulfils (4), that B instead of (3) and (4) fulfils

t
) sup '[ |B@)| dr < B
toJe-1
and that there exists L > O such that
(10) e(e®+L)P*b< L,
(11) (" + 1)(e*+ L)b< 1.

Denote by U a fundamental matrix of

(12) j_f (1) = A() x(2)

Then there exists Q: R —» M,, continuous, |Q(t)| < L for te R such that every
solution of

(13) 3—: (1) = (A(t) + B() [U(t - YUT'() + 2(9)]) ()

fulfils (1). Moreover, solutions of (13) belong to Z(y) with y = a + log[1 +
+ B(¢* + L)}, so that dim Z(y)  n.
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As iy |B(t)| dr < (fi-1 [B(r)|2)‘.2, Proposition may be applied if B fulfils (4)
and if (10) and (11) hold, B being replaced by b.

Fix a and choose L, e.g. L = ¢° Find such a b that (10) and (11) are fulfilled for g
being replaced by b and that the inequality in (6) is fulfilled with y 2 a + log [1 +
+ b(e® + L)]. Then it may be concluded that dim Z(y) = n (provided that 4 and B
fulfil (4)).

Theorem 1 will be deduced from Theorem 2, which will be formulated below.
If X, Yare linear spaces, X <Y the codimension of X with respect to Y will be denoted
by codim (X | Y) or codim X if no confusion can arise. If Y is a Hilbert space, then
{x, y» will be the scalar product of x, y € Y, “yl[ will be the normof yandif C: Y > Y

is linear and continuous, then ||C|| = sup |Cy|.
vl =1
Let H be a Hilbert space, k; integers, r; € R*, j = 0, 1, 2, ... such that

(14) limr; =0, 0=ky<k, <k,<..

Jj= oo

Denote by Q = Q<r°’ 1 T2 > the set of bounded linear operators Q : H - H

kOa kb kls LRE]
which fulfil the following condition:

(15)  there exist linear subspaces HY) of H such that H'® = H, HY o HY*D,
codim (HY | H) £ k; and || Qx| < rj|x| for xe H?, j = 0,1,2, ...

(Subspaces HY) may depend on Q € Q.)

Tos Ty P2y -..
kos ki, kay ...
show it, let H) be the linear subspaces of H which correspond to Taccording to (15).
Denote by YW the orthogonal complements of HY) and define a linear operator
UY :H - Hby Uy = Ty for ye YV, UYz = 0 for z e HY. By R(U) denote the
null-space of a linear operator U. Obviously R(U") > HY for | £ j and it may be
seen that the following conditions are fulfilled:

Note 3. If TeQ( ), then T is completely continuous. In order to

0) codim ([T R(U) 5 k.
(i) [L=v 57, j=0,12,..

Therefore T is completely continuous. On the other hand, if T: H — H is a linear
operator and if there exist finitedimensional operators UY : H - H such that

conditions (i), (i) are fulfilled, then Te (' T 72 ")
ko, kl’ kz, e

Note 4. If T: H — H is linear and completely continuous, then there exist k;, r,

fulfilling (14) such that Te Q(;"’ ;" ;2’ ) Qtherwise there exists ¢ > 0 such that
05> ™1 T2y w0
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for any linear subspace V = H such that codim (Vl H) < oo there exists veV,
Tvn = snv” > 0. By induction there exists a sequence v; € H, j = 1, 2, ... such that
vj” =1, lij" 2 ¢, (Tv;, To,) = 0 for j # k. Followingly |Tv; — Tv,| = ¢ for
Jj * k and Tis not completely continuous. _
Foro=z1,m=1,2,3,...findsthat k, <m < k;,, s =0,1,2,... and put

m Ky Jo—k ko= kg1 m—ks
S(e, m) = omrg' TR L TR

Obviously S(g, m) —» 0 with m — 0. Let §(¢) be the smallest (nonnegative) integer
such that S(g, 9(¢) + 1) < 1.

Let Q;eQfori = —1, —2, —3, ... Denote by Z(g), ¢ = 1 the set of such sequences
{x;}i 7%, x; € H that

(16) : Qix; = X344, Ii=—1,-2,...
(17) sup ¢ x| < oo

Z(g) is obviously a linear manifold.

Theorem 2. dim Z(g) < (o) for ¢ 2 1.

Corollary.
(18) if ero <
(19) if ero 2 1, ¢ rir, < 1 then (o) = ky, i.e. dim Z(g) < ky;

(20) if ky > ky + 1, @t rr 21, @M < L, then 9(0) = ky + 1, e
dim Z(g) < ky + 1 etc.

1, then Y(g) = 0, i.e. dim Z(g) = 0;

Let G : R™ — R™ be linear. Choose {e, ..., €,}, {f1, ..., fn} — orthonormal bases
in R™ and put

(21) ) ’(Gei’fj) =9,
ie. GY e, =Y (Yg;4)f; Itiseasy to see that det g; ; does not depend on the choice
i i j
of orthonormal bases {e,, ..., €,}, {f1, ..., fu}; put det G = det g, ;.
Lemma. Let G : R™ —» R™ be linear. Let V;,, i = 0, 1,2, ..., be linear subspaces

of R", R" =V, 2V, ... >V, codim (V;| R") = k;, r; 20,i=0,1,2,..., ] and
assume that

(22) lGx| = r,.|x[ for xeV,, i=0,1,2,..,1.
Then
(23) [det Gl < r':)' . r'{z—"' r’;L_lkl—] . rv‘n—k, .
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Proof. For u, ve R™ let (u, v) denote the scalar product. Find an orthonormal
basis ey, ..., e, € R"such that e, ,y, ..., ¢_, €V,fors =0,1,..., I Let G’ be adjoint
to G. Obviously det G = det G’ and — by the usual identification of R™ with its
adjoint — (det G)> = det G'G = det ((G'Ge,, ¢;)). ((G'Ge,, ¢))) is a positive semidefi-
nite matrix and by Hadamard inequality (cf. [4], I, (10,3) or [5], IX, §5)

det ((G'Ge,, ¢))) < H(G Ge,, e;) = [[(Ge;, Ge,) = rgtipie=ho | ppim=kn

i=1 i=1
and (23) holds.

Proof of Theorem 2. Take at first the special case ¢ = 1 and put m = 9(1) + 1.
If Theorem 2 is false, there exist {x{"}, ., € Z(1),j = 1, 2, ..., m linearly independent.
Ifx{,j = 1,2, ..., mare linearly dependent for some i < 0, then x', j = 1,2,....,m
are linearly dependent for any r = i with the same constants. Hence it can be shown
that there exists such a p < 0 that x!, j = 1,2, ..., m are linearly independent for
any i < p.

For i £ —1 let H{" be linear subspaces of H such that (15) is fulfilled (with
Q = Q,). Find ssuchthat k;, < m < k,, . Let V{®) be spanned by x\, j = 1,2, ..., m
i < p. Obviously dimV{” = m and codim (V®n H? |V*) <k, j=1,2,...
Choose linear spaces V{7, j = 1,2, ..., s such that VV™" o v v < VO ~ HY
and codim (V| Vi?) = k;, j = 1,2,..., 5. Qv maps V{* onto V{7 for i < p
and by Lemma and by the choice of m

|det (Qilyw))l = r’(‘)‘r’{r"‘ r;”_"s =x<1.

Let A;, i £ p be the simplex with the vertices 0, x{V, x{», ..., x{™ and let 4; be its
volume. Obv1ously Q{A;) = A;4, and therefore xA; = A;,,. Hence A; > oo with
i— —oo and this is impossible, as {x{”|j =1,2,..,m, i =0, —1,=2,...} is
a bounded set. Theorem 2 holds in the special case ¢ = 1.

If o> 1,put §;=0Q, F;=or; i=—1,-2,..,j=0,1,2,... and for § = 1
denote by Z(Q) the set of such sequences {%};5,, ¥;€ H that Qx = %;4, for
i=—1,-2,... i}ico € Z(0), put %; = ¢'x;, i =0, —1,

—2, ... Obviously {%; },>0 < Z(l) Therefore dim Z(g) = dim Z(1) and the proof of
Theorem 2 may be finished by applying Theorem 2 in case § = 1 to Z(l)

Proof of Theorem 1. For S = {(—1,0) Lebesgue measurable denote by |S| the
Lebesgue measure of S, let v,(S) = 1 if —1 €S, v,(S) = 0 otherwise, let v,(S) =
if 0€S, vy(S) =0 otherwise and put u(S) = |S| + vi(S) + va(S). Let H =
=L, ,({(=1,0) > R"), (i.e. elements of H are classes of p-equivalent square inte-
grable functions from (-1, 0) to R"). If u, v € R", let (u, v) be the scalar product of
u, v and for x, y € H define the scalar product by

5 vy = ((=1), ¥(=1)) + f " (0, (0) 81 + (x00) 50)
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Let U : R™ = R" be a fundamental matrix of
dx
— (1) = A(t) x(¢) .
. () = 4() x0)

Define U, : (=, —iy = M, by Uft) = U(t + i) U™(i), i =0, —1, =2, ... and

m)mmw=U@+gmwww+nfﬂxww@+m@-n@,

The estimate '

(25) |ur+1)|=e, [UL+ 1)U (o) £ e for i=—1,-2,..,
te(—-1,0), oe<0,t+ 1)

follows from (4): Keep o and i fixed and put L(t) = U(t) U; ‘(). Obviousiy L() =
=T+ [JA( + {)L(()d¢, I being the identity matrix and L(r) = lim Ly(t) with
Jjo @

Lo(t) =1, Lisy(z) = I+ [ A(i+0) L(¢) d¢, j=0,1,2,... Put ofc) = |f; |A(2)] d¢].
As II! = 1, we obtain by induction that IL,-(T)I < @ for te(—o0, —i) and
the second inequality in (25) holds. The first inequality in (25) is a special case of the
second one for ¢ = 0.

For xe€ Z(y), i = 0, —1, —2, ... define x; € H by x(f) = x(i + ) and put Px =
= {x;}i50- The following Lemma is easy to verify.

Lemma 3. P is a linear bijection of Z(y) onto Z(e").

In order to deduce Theorem 1 from Theorem 2 we have to find numbers r; € R*
and integers k;, j=0,1,2,... r; 2714y, limr; =0, 0=ky <k, <k, <...

Jj= o

To» T'1> ), i=—1,-2,-3,... r; and k; will dpend on a, b;

Koy Ky ..
we will denote the corresponding function § by 9, , and we shall put @(a, b, y) =
= 3, ,(¢"). Obviously

(26) lQu]* = OI* +

L.

UL1) y0) + j (1) U7 (o) Blo + 1) oo — 1) do

such that Q;e Q(

2
de +

Ut + 1) y(0) + J Ut + 1) UF(0) Bo + i) v(o — 1) do

2

+ for yeH.

Using (« + B)? < 2(a* + B*) we obtain from (25) and (26) that

@) 0l 5 YOI 1+ 46 + 46 [ y(e)do
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and hence we may put

(28) ro = [1 + 4e** max (1, b?)]"/2.

Define linear functionals ¢, : H - R*, k = 1,2, ... by
o) = ¥(0),

p(y) = f :U{‘(a) B(o + i) y(c — 1) do,

o) = @0,

0:) =2 (@) (Qeosants — ),
¢n+4y)=-¢zji;eaoo)ﬁn<m«s—-l)adt, s= 12,3,

Put H” = H, H” ={yeH|@(y)=0, 1 =1,2,..,2j =1}, j=1,2,... i =
= —1,2,...; therefore we may define
(29) ki =n(2j —1).

If y e HY, then

(&»m=j

0

t+

1Ui(z + 1)U (o) B(o + i) y(c — 1)do ;
hence [[Q,-yﬂ < e"b“y” and we may put
(30) r,=¢eb.

It follows from the Fourier expansion of Q;y that

G o> = T (ey)? for yeHP, j=2,3,.., i=—1,-2,..

1=2j

As (@) (—1) = 0 = (Q;y) (0) for y € H{, it follows that

1+

‘U,-(l + ) U7 Y0) B(c + i) y(o — 1)da cos 2n(s — 1) tdt =

~0
-1

o2) =2 | f

0

_ 57:(‘;/%7) :[B(i 140y FAG 1+ t)J:HUi(l + ) U (0) B(o + i)

.y(o—l)da']sinZn(s—-l)tdt, yeH®, s=23,..., i=-1,-2,..
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Hence (cf. (25))

lo24(y)| <

[t + aeb]y]

)

and similarly

I\

|<st+ 1(Y)| [1 + ae”] b”y” :

2n

V2
s —1)

It follows from (31) that

1 D0
-’ZS 1 a2b 2 -
[Qu]? = 5 [1 + ae'T* by ;( 7
! yeHY | j=3,4,..., i=—1-2,...

< m [1 + ae’]

and we may put (cf. (30))
(32) ry =é‘b, r,=%[l + ae’]b(j —2)"YV*, j=3,4,..

The assumptions of Theorem 2 are fulfilled and Theorem 1 is proved completely (cf.
Lemma 3).

(6) and (7) in Note 1 follow from (18) and (19) in Corollary and (28), (29), (30) and
(32). Let us indicate, how (8) may be obtained. For m = 1,2, 3, ... define the iteger

t(m) by
(33) (2(m) + )n < m < (2((m) + 3)n.

As e’b 2 1, it follows that S(e’, m) = 1 for m = ‘1, 2, ..., 5n, (cf. (28), (29), (30) and
(32)). S(e’, m) may be given the following form for m > 5n

(34) S m) = (611 + ae) B (L 4+ 4e max 1, B
(e*b)* . ((t(m) — 2))™" . (t(m) — 1)~ mm@rem+Dmi2

Let 1 be such an integer that
(35) S(enn) = 1> S(eh,n + 1).

It is easy to see that n = 6 and that 7 is unique. n = @(a, b, y) by definition of 9
and O.

Let ¢ be the smallest integer greater than 7~ 'e’(1 + ae®) b. Applying Stirling
formula (s! = (s/e)*. (2ns)"/2 ¥4(s), ¥4(s) = 1 with s - ) to (34) we obtain (cf.

236



(33)) that S(e?, ¢) > 1 so that
(36) nznte(l + ae”) b

(the right hand side in (36) being sufficiently large).
(34) implies that

S, m) ST n + 1) = (¢(n + 1) — 2)112 me (1 + ae’)"t b1
and by (35)
(37) I < S(e’,n) < (t(n + 1) = 2)" re (1 + ae’)~1p1t,
(36), (37) and (33) imply that
(38) (S(e",m)'" > 1 with e(1 + ae)b - o .
By Stirling formula (s!)'* = (sfe) y,(s), y,(s) > 1 with s — o0. Observe that

2ne 1/2

(39 ((m) - 27 = (7)

‘ﬁa(m) , Yi(m)>1 with m— oo

and (as 0 < m — (2(m) + 1) n < 2n)
(40) (((m) — ()~ m-Qem+Dmzm g o0 .
Obviously

(L +ae)™2 b7 < (1 + 4e* max (1, b2)) (1 + ae®)"2 b2 <
(1 +ae)b=eb>1

and
[((1 + ae®) b)= 1]t +amt 5 pmet

Therefore (cf. (36))
(L +ae)™ ' b~Y'" 5 1 with e(l + ae®) b >
and '

(41)  [(1 + 4e* max (1, %) (1 + ae®) "2 b~ 2]"21 o | with e(l + ae’) b > .

As (e + a)™! = eb(1 + ae®)"' b~! < 1, it may be shown (in a similar way as
(41)) that

(42) [e®b(1 + ae”)~! b™']*m 5 1 with el + ae’)b > oo .
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Substituting (34) in (38) and making use of the Stirling formula, (36), (39)—(42) we
obtain that

n~ el + ae’) b(2ne)'’* ™12 5 1 with €'(1 + ae’) b > o,

which is equivalent to (8).
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