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Časopis pro pěstování matematiky, roč. 96 (1971), Praha 

ON SOLUTIONS OF NONAUTONOMOUS LINEAR DELAYED 
DIFFERENTIAL EQUATIONS, WHICH ARE DEFINED 

AND EXPONENTIALLY BOUNDED FOR t -> - c o 
f 

JAROSLAV KURZWEIL, Praha 

(Received October 22, 1970) 

Dedicated to the memory of my teacher Prof. VOJTMCH JARNIK 

Let Mn be the space of square matrices of order n, R - the real line, R+ — the 
positive halfline (closed), R" — the negative halfline, A : R~ -> Mn, B : R~ -> Mn 

locally integrable. For y e Rn denote by |>;| the Euclidean norm of y and for C e Mn 

put \C\ = sup \Cy\. 
\y\*i 

For y e R+ let 2f(y) be the set of such solutions x : R~ -> R" of 

(1) ^(t)=A(t)X(t) + B(t)X(t-l) 
at 

that 

(2) sup eyt\x(t)\ < oo . 
t^o 

Obviously 2?(y) is a linear manifold. 

Theorem 1. Assume that \B\2 is locally integrable and that 

(3) sup \A(x)\ dT < oo , sup |-B(T)|2 dT < oo . 

Then the dimension of 2?(y) is finite. Moreover, there exists O : (R+)3 -> R+ such 
that if 

(4) sup f \A(r)\ dr S a , sup f | B ( T ) | 2 dT = fc2, 

(5) dim 2(y) ^ 0(a9 b9y). * 
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Note 1. &(a, b, y) may be calculated (of course not the best one). Thus it may 
be shown that 

• (6) dim 2(y) £n, if e{n+1)y\l + 4e2a max (1, b2)J'2 eab < 1 

(7) dim 2(y) ^ n + 1, if e(B+2)y[l + 4e2a max (1, b2)]n/2 e2ab2 < 1 

(8) if eab = 1 and ey(l + aea) b -> oo , 

then 

G(a,b,y)*^e2y(l + aea)2b2 

(i.e. to any e > 0 there exists such a Q > 0 that 

|0(a, fr, 7) n2(2ne)~l e~2y(l + aea)~2 b"2 - l| £ « 

provided that eab = 1 and ey(l + aea) b ^ Q. 

Note 2. Theorem 1 is related to applications of Theory of Invariant Manifolds to 
Delayed Differential Equations (cf. [1], [2], [3]). Let us review some results, which 
may be obtained for (l). For this purpose extend A and B to R putting A(t) = 0 = 
= B(t) for t > 0. 

Proposition. Assume that A fulfils (4), that B instead of (3) and (4) fulfils 

(9) s u p f (B(T)|dr = /? 
* Jt-i 

and that there exists L > 0 such that 

(10) ea(ea + L)2 b = L, 

(11) ea(ea + l)(ea + L)b < 1. 

Denote by U a fundamental matrix of 

(12) d^(t) = A(t)x(t). 
at 

Then there exists Q : R -> Mn, continuous, \Q(t)\ ;= L for teR such that every 
solution of 

(13) £ (t) = (A(t) + B(t) [U(t - 1) V~\t) + 6(.)]) *(f) 
at 

/u^fis (1). Moreover, solutions of (13) belong to %(y) with y = a + log [1 + 
+ J8(ea + L)], so that dim -2T(y) ^ n. 
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As /;_! \B(r)\dr ^ ( j ; _ t ^ ( T ) ) 2 ) 1 . 2 , Proposition may be applied if B fulfils (4) 

and if (10) and (11) hold, ft being replaced by b. 

Fix a and choose L, e.g. L = ea. Find such a b that (10) and (11) are fulfilled for /? 

being replaced by b and that the inequality in (6) is fulfilled with y _• a 4- log [ l + 

+ fe(ea + L)]. Then it may be concluded that dim &(y) = n (provided that A and B 

fulfil (4)). 

Theorem 1 will be deduced from Theorem 2, which will be formulated below. 

If X, Yare linear spaces, X <=Ythe codimension of X with respect to Y will be denoted 

by codim (X | Y) or codim X if no confusion can arise. If Y is a Hilbert space, then 

<x, y) will be the scalar product of x, y e Y, 
is linear and continuous, then | | c | | = sup 

IMI-S-
Let H be a Hilbert space, kj integers, ry e R + , j = 0, 1, 2, ... such that 

\y\\ will be the norm of y and if C : Y-> Y 

(14) lim Гjř = 0 , 0 = fc0 < fci < fc2 < 

Г 0 > Г l > Г 2 ? 
Denote by Q =. Q I , , , ' " ) the set of bounded linear operators Q:H -> H 

\/c0, ku k2, .../ 

which fulfil the following condition: 

(15) there exist linear subspaces HU) of H such that H(0) = H, HU) 3 Hu + i), 

codim (I/ 0 ) | H) = fcy and ||Qx|| = r7||x|| for x e HiJ\ j = 0, 1, 2, ... 

(Subspaces H ( j ) may depend on Q e .Q.) 

N o t e 3. If TeQ\°' \ u ^ 2 ? ' " ) , then T is completely continuous. In order to 
\/c0, ku k2, ...y 

show it, let HU) be the linear subspaces of H which correspond to Taccording to (15). 

Denote by YU) the orthogonal complements of HU) and define a linear operator 

UU) : H -> H by Ua)y = I> for >! e YU), UU)z = 0 for z e HU). By 9l(U) denote the 

null-space of a linear operator U. Obviously 9t(U(0) ID H(J) for / g j and it may be 

seen that the following conditions are fulfilled: 

(i) codim (n«(^(0))-Sfcy, 
1 = 0 

(") | |1 - C ! ° i I _ r y , ; = 0,1,2, . . . 

Therefore T is completely continuous. On the other hand, if T : H -> H is a linear 
operator and if there exist finitedimensional operators UU) : H -+ H such that 

conditions (i), (ii) are fulfilled, then Te Q (r* r u j " 2 ' • • • ) . 
\fc0, ki, fc2,.../ 

N o t e 4. If T : H -^ H is linear and completely continuous, then there exist kj9 ry 

fulfilling (14) such that TeQ[ !*0' ^ ' ^ 2 ' " ) . Qtherwise there exists e > 0 such that 
\fc0, fcj, k29.../ 
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for any linear subspace V a H such that codim (V | H) < oo there exists v e V, 
Tb| = e||t?|| > 0. By induction there exists a sequence VjE H, j = 1,2,... such that 

Vj\\ = 1, [JT ÎI = e, (Tvj, Tvk) = 0 for j * fc. Followingly \\Tvj - Tvk\\ = s for 
j =4= fc and Tis not completely continuous. 

For Q — 1, m = 1, 2, 3, ... find 5 that ks < m ^ fcs+ x s = 0, 1, 2 , . . . and put 

S(Q, m) = O^r*2-*1 ... rJ'.V-1^"*' . 

Obviously 5(0, m) -» 0 with m -> oo. Let #(o) be the smallest (nonnegative) integer 
such that 5(0, % ) + 1) < 1. 

Let QteQ for i = — 1, — 2, — 3, ... Denote by Z(0), £ = 1 the set of such sequences 
{ x J r = - , x . e H t h a t 

(16) • Q.Xi = xi+l, i = - l , - 2 , ... 

(17) supe'||x,|| < oo. 

Z(0) is obviously a linear manifold. 

Theorem 2. dim Z(0) ^ % ) / o r o = 1. 

Corollary. 

(18) i/* 0r0 < 1, then % ) = 0, i.e. dim Zfe) = 0; 

(19) if Qr0 = 1, Qkl + 1rk
0
ir1 < 1 then S(Q) = kl5 i.e. dim Z(Q) ^ fc^ 

(20) if k2 > fc. + 1, Qkl + 1r*0
lri = 1, Qkl + 2f\lrl < 1, fhen % ) = fct + 1, i.e. 

dim Z(.O) g k! + 1 efe. 

Let G : Rm -» #m be linear. Choose {e!, ..., em}, {/1? . . . , /m} — orthonormal bases 
in JRm and put 

(21) § (Ge t,/,) = ^ , f 

i.e. G ̂ A£^£ = X(E^i,^»)//-1* *s e a s y t 0 s e e t^ i a t det ^j,i does n o t ^pend on the choice 
» i J 

of orthonormal bases {ex,..., em}, {/1? . . . , / m } ; put det G = det g} f. 

Lemma. Let G : Rm -+ Rm be linear. Let Vi9 i = 0, 1, 2 , . . . , / fee Zinear subspaces 
ofRm

9 Rm = V0 3 V! => ... => V„ codim (7- | Km) = fc„ rf = 0, i = 0, 1, 2, ..., / and 
assume that 

(22) i G x I ^ r ^ l for xeVi9 i = 0, 1, 2, ..., / . 

Then 

(23) |det G| = rk
0
l . r*2"*" ... i* -*" 1 . rm"*'. 
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Proof. For u, ve Rm let (w, v) denote the scalar product. Find an orthonormal 
basis el5..., eme Rm such that eks+u ..., eks + t eVsfor s = 0, 1, ..., /. Let Gr be adjoint 
to G. Obviously det G = det G' and - by the usual identification of Rm with its 
adjoint - (det G)2 = det GG = det ((G'Geh ej)). ((G'Geh ej)) is a positive semidefi-
nite matrix and by Hadamard inequality (cf. [4], II, (10,3) or [5], IX, §5) 

m m 

det ((G'G*(, ej)) =S X[(GGeh e,) = Y\(Geh Ge) = - ? ' - ? * - ' » ... -?""*'> 
1 = 1 i = 1 

and (23) holds. 

Proof of Theorem 2. Take at first the special case 0 = 1 and put m = #(1) + 1. 
If Theorem 2 is false, there exist { x ^ } , - ^ e Z(l) , j = 1, 2, ..., m linearly independent. 
Jfx\J),j = 1,2,..., m are linearly dependent for some i < 0, then xr

J),j == 1, 2, ..., m 
are linearly dependent for any r _ i with the same constants. Hence it can be shown 
that there exists such a p = 0 that x\J), j = 1, 2, ..., m are linearly independent for 
any i = p. 

For i ^ — 1 let H|.7) be linear subspaces of H such that (15) is fulfilled (with 
Q = gf). Find 5 such that ks< m <, ks+1. Let V/0) be spanned by x^ \ 7 = 1,2,..., m, 
i = p. Obviously dim V/0) = m and codim (V/0)n H\J) | V/0)) = fcy, j = 1,2,... 
Choose linear spaces VP, j = 1, 2, ..., :s such that VjJ'l) => V/J), VP c V/0) n H(/> 
and codim (V\J) \ V\0)) = fc,, j = 1, 2, ..., s. Q\ViW maps V/0) onto V$\ for i-< p 
and by Lemma and by the choice of m 

|det (e,-|K<o))| = - W * 1 ... rs
m"fc* = x < 1 . 

Let At., i = /? be the simplex with the vertices 0, x\l), x-2 ) , . . . , x(m) and let Xt be its 
volume. Obviously Qi(At) = Ai+l and therefore xXt ^ Ai+1. Hence Xx -> oo with 
i _> —oo and this is impossible, as {x^} |7 = 1, 2, ..., m, i = 0, — 1, — 2, ...} is 
a bounded set. Theorem 2 holds in the special case Q = 1. 

If o > 1, put g f = eg,-, fy = or,., i = - 1 , - 2 , ..., 7 = 0, 1,2, ... and for Q = 1 
denote by Z(£) the set of such sequences { x | } ^ 0 , xf e H that 6iX,- = x i + 1 for 
i = —1, —2, ... and sup ^£||xt-|| < oo. If ( x j ^ o e Z(O), put xf = Qlxh i = 0, —1, 

— 2, ... Obviously { x j ^ o = Z(l). Therefore dim Z(O) = dim Z(\) and the proof of 
Theorem 2 may be finished by applying Theorem 2 in case Q = 1 to Z(l). 

P roof of Theorem 1. For S a < —1, 0> Lebesgue measurable denote by |S| the 
Lebesgue measure of S, let vx(S) = 1 if — 1 e S, vt(S) = 0 otherwise, let v2(S) = 1 
if OeS , v2(S) = 0 otherwise and put fi(S) = \s\ + vx(S) + v2(S). Let H = 
= L 2 M ( < —1, 0> -> Kw), (i.e. elements of H are classes of ^-equivalent square inte-
grable functions from < — 1, 0> to Rn). If w, v e Rn, let (w, v) be the scalar product of 
w, v and for x, y e H define the scalar product by 

<x,y> = ( x ( - l ) , y ( - l ) ) + f (x(t),y(i))At + (x(0),y(0)). 
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Let U : R -* Rn be a fundamental matrix of 

% (0 - 40 *(<) • 
df 

Define U( : (-00, - i> -• M„ by U,(f) = U(f + i) U_1(i), i = 0, - 1 , - 2 , ... and 
Q( : H -> H by 

(24) (6..V) (0 = U{t + 1) y(0) + U{t + 1) f'+ Ur » B(<r + i) y(<r - 1) d«r. ^ 

The estimate 

(25) (U f̂ + 1)| = e«, |Uf(r+ l ) U r » | Sea for i = - 1 , - 2 , . . . , 

f e < - l , 0 > , (7e<0,f + l> 

follows from (4): Keep a and i fixed and put L(T) = U^r) UJl(a). Obviously L(T) = 
= J + H A(i + C) L(C) dC, I being the identity matrix and L(T) = lim LJ(T) with 

L0(T) = I, Lj+ x(x) = / + £ AL(i + C) L/C) dC, I = 0, 1, 2, ... Put a(T) = ] £ |A(C)| dC|. 
As |I| = 1, we obtain by induction that |L7(T)| ^ ea(r) for Te( — oo, — i> and 
the second inequality in (25) holds. The first inequality in (25) is a special case of the 
second one for (7 = 0. 

For x e 3?(y), i = 0, — 1, —2, ... define ^ e i f b y xf(f) = x(i + f) and put Px = 
= {x^izo. The following Lemma is easy to verify. 

Lemma 3, P is a linear bisection of 3£(y) onto Z(ey). 

In order to deduce Theorem 1 from Theorem 2 we have to find numbers r}e R + 

and integers kj9 j = 0, 1, 2, ... rj ^ rJ + 1, lim r7 = 0, 0 = k0 < kx < k2 < ... 
y-*oo 

such that Q.-efi( ,0 ' *' ' ] , i = —1, —2, —3, ... r,- and kj will dpend on a, b\ 

we will denote the corresponding function 9 by 9ab and we shall put &(a, b, y) = 
= Kb{e7)- Obviously 

(26) «e,y«2 = ly(o)|2 + 

+ f \ut(t + 1) y(0) + f+ 1U^ + 1) U;\a) B(a + i) y(a - l) da 

i r1 2 

+ Uf(l) ><0) + U*(l) Ur» B(<r + 0 y((7 - 1) da for yeH. 
I J o 

Using (a + p)2 S 2(a2 + p2) we obtain from (25) and (26) that 

(27) \\Qiy\\
2

 = |j;(0)|2 (1 + 4e2a) + 4e2*f>2 f° y2(a) da 
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and hence we may put 

(28) r0 = [1 + 4e2tt max (1, fr2)]1'2 . 

Define linear functionals <pk: H -> R", k = 1,2,... by 

<Pi(y) = y(o), 

9z(y) = C UT » B(* + 0 y(° - i ) d * -

PsOO = f° (Q^Wdt, 

<?2S(y) = V2 C (G*) (0 c o s (2<s ~ l)0dt > 

<pzs+ i(y) = V2 C (fi'JO (0 s i n ( 2 7 t ( s - -) 0 d t . s = I, 2 ,3 , . . . 

Put tf<0) = tf, tf<j) = {ye#!<?,(>>) = 0, J = 1, 2,.. . , 2/ - 1}, j = 1, 2, . . . i = 
= —1,2,...; therefore we may define 

(29) *y = » ( 2 / - 1). 

If y eH\l\ then 

(Gi.v) (t) = P t!.(t + 1) Uj\a) B(a + i) y(a -\)da; 

hence \Qtf\ ^ ^ IMI a n d w e m a y Pu t 

(30) r. = e"i>. 

It follows from the Fourier expansion of Qty that 

(31) |Gty | 2-- t(<Ply)Y for yefll",• j = 2,3, . . . , i = - l , - 2 , . . . 
1 = 2 J 

As (Q^) (-1) = 0 = (e^) (0) for y e H?\ it follows that 

(•0 pi +1 

<Pis(y) = V2 tl,<l + 0 t l i ~ » (̂̂  + 0 y(<* - 1) dff cos 2n(s - 1) t dt = 

_ - V 2 

£ - ľ ° [ в 0 + - + 0 ЯO + 4 i + 1 + 0 Г'UÁI + 0 UŢҚO) ß(* + 0 • 

y(a - 1) da sin 2я(s - 1) í dř, y є Я ţ 2 ) , s = 2,3,. . . , í = - l , - 2 , . . . 
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Hence (cf. (25)) 

and similarly 

MJOI š ^ ^ [1 + «<] b\\y\\ 

\<Pu+i{y)\ѓ-^—Лl + ae^bІy\\. 
2к[s — 1j 

It follows from (31) that 

1 r. „п, . „ . „ . £ 1 lle^ii2 _ - _ . f i + aeai2b||y 2 2 Y — - — < 
II ^ 1 1 - 2 / r 2 L J ||J'II ^ . ( / _ 1 ) 2 -

= ~ ^ ; [* + < | 2 fcIM|2 * ^ H f , 7 = 3 ,4 , . . . , i = - 1 , - 2 , . . . 
7r2(j - 2) 

and we may put (cf. (30)) 

(32) r2 = eab, r} = ± [1 + a<| b(j - 2)~1 / 2 , j = 3 ,4 , . . . 

The assumptions of Theorem 2 are fulfilled and Theorem 1 is proved completely (cf. 
Lemma 3). 

(6) and (7) in Note 1 follow from (18) and (19) in Corollary and (28), (29), (30) and 
(32). Let us indicate, how (8) may be obtained. For m = 1, 2, 3, ... define the iteger 
t(m) by 

(33) (2*(m) + 1) n < m _ (2t(m) + 3) n . 

As eab _ 1, it follows that S(ey, m) _ 1 for m = 1, 2, ..., 5M, (cf. (28), (29), (30) and 
(32)). S(ey, m) may be given the following form for m > 5n 

(34) S(ey, m) = (;T V ( l + aea) b)m~5n. e5ny(l + 4e2a max (1, b2))M/2 . 

. (eab)4n. ((t(m) - 2)!)"n . (t(m) - i)-(—(2t(«) + i)»)/2 . 

Let rj be such an integer that 

(35) S(ey, tj) _ 1 > S(e", ij + 1) . 

It is easy to see that rj _ 6 and that f/ is unique. r\ = <9(a, b, y) by definition of 9 
and 0. 

Let <p be the smallest integer greater than 7r~"V(l + aea)b. Applying Stirling 
formula (s! = (sje)s. (2ns)1J2 ij/^s), xj/^s) -* 1 with s -» oo) to (34) we obtain (cf. 
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m -+ oo 

(33)) that S(e\ <p) > 1 so that 

(36) f} = Jr_V(l + aea)6 

(the right hand side in (36) being sufficiently large). 

(34) implies that 

S(e\ n) S~l(e\ ) , + ! ) - (t(n + l) - 2)1'2 ««-"(! + ae*)'1 / T 1 

and by (35) 

(37) J < S(e', n) < (t(v + 1) - 2)1'2 ne-%1 + ae")-1 b'1 . 

(36), (37) and (33) imply that 

(38) (S(e\ ri))11" - 1 with e"(l + ae") b - oo . 

By Stirling formula (5!)1" = (sje) ^ ( s ) , ^ ( s ) _» j w i t h s ^ ^ Q b s e r v e t h a t 

(39) ((t(m)-2)!)-»/- = ^ y / V 3 ( m ) , *3(„)-, 1 with 

and (as 0 < m - (2t(m) + 1) n <; 2n) 

(40) « m ) - l)-(".-(2.(m) + 1)„)/2m _> t w k h m _̂  ^ 

Obviously 

(t + ae")"2 fe"2 g (1 +4e2"max(l ,fe2))( l + aea)~2 b'2 <\ 

(1 + ae") b = e°fo = 1 

and 
[((1 + ae") fc)-i]«i+«")•)-« = e-«-« 

Therefore (cf. (36)) 

((1 + ae")"1 fc-i)i/» _ 1 with ev(, + ae„) b _ „, 

and 

(41) [ ( l+4e 2 a max ( t , f e 2 ) ) ( l + a e
a ) - 2 6 - 2 ] » ^ - > i with e'(l + ae") b - 00. 

As (e-fl + a)"1 = e"b(l + ae")-1 b'1 ^ 1, it may be shown (in a similar way as 
(41)) that v 

(42) [ ^ ( l + a e r ^ - T ^ - l with e'(l + ae") b -* 00 . 
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Substituting (34) in (38) and making use of the Stirling formula, (36), (39)-(42) we 
obtain that 

n~xel{\ + aea) b(2ne)112 n~xl2 -> 1 with ey(l + aea) b -» oo , 

which is equivalent to (8). 
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