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This article deals with the problem posed in [1], Using Luzin's theorem the following 
result can be easily derived: Let/(x) be a measurable function defined on J = <0, 1>, 
then there exists countably many disjoint closed sets An fulfilling /i(J — UAi„) = 0 

n 

(where JJ, denotes Lebesgue measure) such that the restrictions of/ on An are continu­
ous for every n. In view of the well-known theorem about the extension of continuous 
functions there exist continuous functions fjx) which are defined on the whole 
J = <0, 1> such that/(x) = fjx) on An. Generally, J — \JAn 4= 0. There arises the 

n 

problem, whether — by another method — it can be obtained J = \JAn. 
n 

Now we shall formulate the above mentioned problem more precisely [1]. 
Consider the class of functions f fulfilling the following conditions: 
i) / is real, finite and defined on (0, 1), 

ii) there exist Lebesgue measurable sets At and continuous functions ft defined 
00 

on (0, 1), i = 1,2,... 50 that\J Ai = (0, 1) andft = /on A(. 
i = i 

Investigate the properties of the class. Does every measurable function belong to 
the class? 

It will be proved that the last question has the answer in negative even in the stron­
ger form: A function f(x) exists which is defined and measurable on J such that 
there does not exist countably many disjoint sets An (which need not be measurable) 
fulfilling J = \JAn such that the restriction of/ on An is continuous for every n. 

R 

Several lemmas for the construction and proof will be needed. 
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Lemma 1. There exists a discontinuum A, A a J, 0 e A, 1 e A and a function f(x) 
which is defined on A and 0 ^ f(x) <L 1 such that the graph of f is not Lebesgue 
measurable. „ 

Proof. With respect to [2] there exists a functionf*(x) with nonmeasurable graph. 
Using elementary modifications and transformations we can assume that the 
domain D of definition of f*(x) fulfils D cz J and 0 ^ f*(x) ^ 1. If we extend the 
domain of definition of f*(x) on the whole J putting f*(x) = 0 on J - D, then the 
graph of f*(x) remains nonmeasurable. Let \ie and \i% denote the outer and inner 
Lebesgue measure, respectively. Let Gr {f} denote the graph of the function f. 
For every function f 

(1) . / i i(Gr{/}) = 0 

holds. This can be easily proved using Fubini's theorem on every compact subset 
o fGr{ f} . 

Since Gr {f*} is nonmeasurable we have /^(Gr {f*}) > 0. We choose the discon­
tinuum A such that A a J, 0 e A, 1 e A and fi(J — A) ^ /xc(Gr {f*})/2. The required 
function f(x) is defined as follows: f(x) = f*(x) for x e A. 

Obviously Gr {f*} c= Gr {f} 4- (J — A) x J, since the values of f* lie in J. 
With respect to that we obtain 

fie(GT {f}) = iijGr {f*}) - »(J - A) = fie(GT {f*})/2 > 0 . 

As (1) is valid for our f the last inequality also implies that the graph of f is non-
measurable. 

Lemma 2. Let A, B be discontinuums fulfilling A a J, B c J, O e A n B , l e 
6 A n By then there exists a homeomorphism cp : J --> J which maps A on B. 

Proof. It is well-known that a homeomorphism exists which maps A on B and 
which fulfils 

(2) - cp(xx) < <p(x2) for xx < x2 . 

This homeomorphism can be extended on the whole J. Denote G = J — A, H = J — 
— B. The open set G consists of countably many open intervals G(n) = (p(n), g(n)), 
p(n) e A, q(n) e A. Intervals (<p(p(n)), <p(q(n))) belong to H. Really, if y e B n (<p(p(n)), 
<p(q(n)))9 then there exists x e A such that <p(x) = y. With respect to (2) we obtain 
p(n) < x < q(n) which is a contradiction with the fact that G(n) is a subset of G. 
Since the same is valid for the inverse transformation cp~1(y), the sum of these inter­
vals covers H. We extend cp such that it is a linear transformation on every G(n). The 
previous considerations imply that cp maps G onto H and is continuous on G (G is 
open). It remains to prove that the extension remains continuous on A. 
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First it will be proved that inequality (2) is valid for all x t, x2, 0 g xx g 1, o g 
= x2 = 1. If xu x2 are in the same G(n), then (2) follows from the fact that cp is 
linear on G(n). If x t G G(k), x2 e G(,) we take into consideration the points q<k\ pV\ 
As inequality (2) is valid for pairs xif qik); q(k), pil); pil), x2 it is valid also for xu x2. 
The cases when xxe A, x2eG and x 1 6G,x 2 e .4 are similar. 

Let x0 G A and xn G J, xn -• x0 for n -> oo. The sequence xn can be divided into 
two parts: 

i) xn G A, then <p(x„) -» <p(x0). 
ii) xB G G, then there exist indices kn such that xn e G(fcn). By definition G(kn) = 

= (P(*n\ qikn)) and we conclude easily that p{kn)
9 q{kn) -• x0 which means q>(pikn)) ~> 

-> cp(x0) and (p(q(*n)) -> <p(x0). As cp(x) is linear on G(*n) we obtain that <p(xn) -> <p(x0). 
The lemma is proved. 

Lemma 3. Let D be a subset of J (it need not be measurable) andf(x) be a function 
defined and continuous on D, then the graph of the function f(x) is measurable, 
i.e. /i(Gr {/}) = 0. 

Proof. Choose a positive fixed number e. Since f(x) is continuous on D there 
exists <5(x) > 0 for every xe D such that | j; — xj ^ S(x) implies \f(y) — /(x)| g £. 
For all x e D we shall consider the set of closed subintervals of <x — <5(x), x -f <5(x)> 
which have their center at x. Denote by S the set of all such intervals. With respect 
to Vitali theorem there exists a subset of countably many intervals /„ such that 
n(D — \JIn) — 0. Let #(x) be the function with the domain of definition D — \JIn 

n n 

which is defined by #(x) = f(x) on D — (JIn. Obviously 
n 

Gr {/} c lj[IB x </(a.) - s,f(a„) + e>] + Gr {g} 
n 

where an are centers of In. Hence follows 

He(GT {/}) ^ 2e Y>(/„) + /..(Gr {g}) . 

As \JIn c J, In are disjoint and the graph of g is measurable we obtain /ie(Gr {/}) g 
n 

_ 2e. Since the number e was arbitrary Lemma 3 is proved. 
We pass to the solution of our problem. Let/(x) be the function which is determined 

in Lemma 1. We define f(x) = f(x) for x G A and f(x) = 0 for x G J — A. The func­
tion /(x) has the nonmeasurable graph again and it may be nonzero only on A. 
Let B be the Cantor discontinuum on J. In view of Lemma 2 there exists a homeo-
morphism cp from J onto J such that B is transformed on A Put 

(3) r(*)=j>(*))-

Statement. The function F(x) which is defined by (3) is measurable and defined 
on J and there do not exist countable number of disjoint sets Cn fulfilling J = (JCn 

such that the restrictions of F(x) on Cn are continuous for every n. n 
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Proof. Notice that F(x) is measurable since fi(B) = 0 and F(x) = 0 for xe 
e J — B. Assume that such sets exist. Put Fn(x) = F(x) on Cn. Obviously Fn(x) are 
continuous functions. Further denote Dn = <p(Cn). As cp is strictly monotone and 
maps J onto J the sets Dn are disjoint and J = \JDn. Let Jn(y) = Fn(cp'1(y)) for 

yeDn where ^""^y) is the inverse function to cp(x). Since (p~i(y) transforms con­
tinuously Dn onto Cn and Fn are continuous on Cn, functions fn(y) are continuous 
on Dn. With respect to (3) we obtain 

Jiy)~m on Dn. 
Evidently Gr {/} = (J Gr {/n}. With regard to Lemma 3 functions /„ have the graphs 

n 

with measure zero so that ne(Gi {/}) = 0. However, the function/(x) was constructed 
so that it has nonmeasurable graph. This contradiction implies that Statement is true. 

The construction of the function F(x) is only a partial solution of the given problem 
and there is still a very interesting question. Supposing that the sets At are Borel sets, 
then the function f(x) is a Baire function. It means that under the additional as­
sumption about At the investigated class of functions is a subset of the class of Baire 
functions. The question hinted above is if these two classes are equal or not. 

References 

[1] K. Kartdk: Problem 2, Cas. pSst. mat. 91 (1966), p. 104. 
[2] W. Sierpinski: Sur un probleme concernant les ensembles mesurables superficielment. Fun-

damenta Mathematicae, T. I, 1920, 112—115. 

Author's address: Praha 1, 2itna 25 (Matematicky ustav CSAV v Praze). 

228 


		webmaster@dml.cz
	2012-05-12T03:51:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




