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Cuoph pro péstovéni matematiky, ro&. 95 (1970), Praha

A NOTE TO THE CONSTRUCTION
OF A LINEAR DIFFERENTIAL EQUATION WITH GIVEN SOLUTIONS

Jikf JARNIK, Praha
(Received November 28, 1968)

0. Let be given n functions with continuous n-th derivative in the interval (a, b),
such that their Wronskian is different from zero in this interval. It is a well known
fact that then there exists a homogeneous linear differential equation of the n-th
order with continuous coefficients in the form

™+ a () x"V + .+ ay()x +a(t)x=0

such that the given functions form its fundamental system of solutions.

We shall show that a similar result holds even when the number of given functions
is k < n and if we know only that the k x n-matrix constructed from the given
functions and their derivatives in a similar way as the Wronski matrix has the maxi-
mum rank, i.e. k, at each point of the interval (a, b).

1. Let us denote by W(fy, f2, ..., fi) (f) the value of the Wronskian of functions
fl’fZ, --"_fk at t.

Theorem 1. Let a, b be real numbers, a < b, k positive integer. Let functions
xy(t), X(t), ..., xi(t) have continuous derivative of the k-th order in the interval
(a, b) and let the matrix

x((), x1), ..., x(t)
xi(1), xa(1), ..., xi(t)

.....................

(1), x3e), ..., xM()

be of the rank k for all t € (a, b).
Then there exists a function xi+1(t) with continuous k-th derivative in (a, b),
such that
W(x1, X20 s Xps Xs1) (1) £ 0
for all te(a, b).
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The assumptions of Theorem 1 obviously do not guarantee that the Wronskian of
functions x,(t), x,(?), ..., x,(t) is different from zero in (a, b). Nevertheless, the fol-
lowing lemma holds:

Lemma. Let a, b be real numbers, a < b, k, s positive integers, s = k. Let functions
x4(t), x2(1), ..., x4(t) have continuous derivative of the s-th order and let the matrix

. x,’(t)’ xlz(t), x;,,(t)
(1) xi(1), x3(t), ..., x(t)

.....................

x(1), x$A1), ..., x1)

be of the rank k for all t € (a, b).

Then there exists a set of numbers a,,, m =0, +1, +2,..,a<...<a_, < ...
.<a_;<0y<a;,<...<a,<...<b,

lima, =b, lima_,=a

such that the Wronskian W(x,, X, ..., %) (t) % 0 for all t € (a, b), t * a,, m integer.

Proof of the Lemma follows from Theorem 1 [1]. Denote by N the set of all
t € (a, b) such that W(x,, x,, ..., X;) (f) = 0 and assume that there is an accumulation
point ¢ of the set N, ¢ e (a, b). The continuity of W(x,, x,, ..., x;) (t) implies ce N
which is a contradiction with Theorem 1 [1].

Note that the assumptions of Theorem 1 are those of lemma with s = k.

Proof of Theorem 1. Let us choose numbers aj, i = 0, 1, 2, ..., k such that

xl(ao), xZ(ao), ceey xk(ao), ag
x'l(ao)’ xlz(ao)y ] 'x;’;(ao)’ a(l)

..............................

xO(ao), xP(ac), - xao),

and a function u(f) with continuous k-th derivative in (a_,, a,), u’(a) = ag for
i=0,1,2,..., k. ') Evidently there exists & > O such that W(x,, X, ..., X, u) (t) *
% Oforte{ay — &y ag + &). Put

+0

xk+ l(t) = u(t) for te <ao - 80, ao + Bo) .

Let us now suppose that the function x;+ ;(¢) has been already defined (and satisfies
Theorem 1) on {a_; — &, a; + &), ¢ > 0, j nonnegative integer.

1y We denote u(O(r) = u(r).
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Let us choose a function f(r) continuous on {a;, a;+,> and a function f_(t)
continuous on {a_;_;, a_;) such that

f{H) +0, f-{t) # 0 for tedaja;.,), tea_;_y,a_>,

respectively. Moreover, let

(2) f}(aj + 5) = W(Xl, X2y «eey Xy x,‘H) (aj + 8) N
f-faz; =€) = W(xy, Xz ..cr Xpo Xa1) (a-; — &)

(Since x,4,(t) is defined and satisfies Theorem 1 on {a-; — &, a; + &), the values of
the Wronskian on the righthand side of the last two equations are nonzero and hence
such functions fj, f_; exist.)

Let us consider differential equations

x,l(t), xrz(t), e x,:(t), ygt)
() xi(0), x5(), ..., x(), ¥(1) = 1),

.............................

x0(), xB@), ..., xP0), y(r)

J = +j. The coefficient at the highest derivative y*)(f) in these equations is
W(xy, X3, ..., X;) (1). Denote by Y, (1), Y_(r) the solution of the equation with J = j,
J = —j and with the initial condition

4 YO(a; + &) = x(2y(a; + &), YPa_; —¢) =x{2,(a_; —¢)

respectively, i = 0, 1,..., k — 1. Since W(xy, x,, ..., x,) (t) # 0 for te(a; a;.,) v
U (a_;-y, a_;), the functions Y, (), Y_(¢) are continuous and have continuous k-th
derivative in <a; + &, a;+1), (a;-1, a_; — &), respectively. Moreover, the inequa-
lities

W(Xys X25 oo X Y1) (8) £ 0, W(xy, X35 .00, X, Y2) (£) % 0

hold in the respective intervals.

Further, let us choose (analogously to the first part of the proof) the numbers
®4q, 0l ;_y, i = 0,1, ..., k such that the determinant

xl(aj+ l)’ X2(aj+ 1), ooy xk(aj+l), a?+1
S T{CTTRYNNE 21 () P C{CTT NP

.......................................

x(xk)(aﬁ 1): x(Zk)(aj+ 1), ceey x};k)(aﬁ 1): “’,"+1

as well as the determinant obtained by replacing the index j + 1 by —j — 1 are
different from zero. Let u;., ,(t), u_;,(t) be functions with continuous k-th derivative
in €a;, a;4,), <a-;_z a_;» respectively and u{)(a;y,) = ajsq, u¥)_4(a_;-y) =
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=al;_y fori=0,1,..,k (Such functions obviously exist.y From the continuity
of W(xy, X2, ... Xk #y41) (£) and W(x,, x5, ..., X, u_;_,) (t) there follows that

W(xl9 X25 o e Xks uj+ l) (t) F 0 9 W(xl, X2y ooy Xps u-j_. 1) (t) 4: 0

in some interval {a;,, — ¢, ajoq + &), (a
g >0.
In the interval <a;,, — ¢, a;,, + & put

Vis1(t) = Boujsi(t) + p;lﬂpx,,(t),

the constants By, By, - .., Bx being the solution of the linear system

—j-1 — &,a_;- + &) respectively,

. k .
Bouiii(aje1 — &) + ¥ Bxa;sy — &) = Y (ay0y — &),
v =

i=0,1,..., k. Since from the choice of u jH(t) and ¢’ there follows that the deter-
minant of this system is nonzero, there exists a unique solution B, By, ..., Bi.%)
Analogously put

v-j-1(t) = you-;-4(t) +p§k:17pxp(’)

in<a_;_y — &, a_;_, + &'); we obtain the constants yo, ¥y, .--, % as the (unique)
solution of the system

k
vouj1(a-j-1 + &) + T ypxa oy + &) =Y (a0 + ).
p=1

Let us now define

Y. (1) in the interval <a; + & a4, — &)
seni(t) = v;41(2) 1:n the %nterval (a1 — €, ’a,-H + &)

Y_(t) in the interval (a_;_, + &, a_; —¢&)

v_;_(t) intheinterval {a_;_; —¢&,a_;-; +¢&).

By this way it is evidently possible to define the function x; , 4(¢) on the whole interval

(a, b). It follows from the construction that x,4,(f) has all properties required by

the assertion of Theorem 1. It is just necessary to verify that the k-th derivative x{,(f)

is continuous at the points a; + ¢, a_; — &.
There is
W(xy, X2, ..o, X Yy) (a; + 8) = fi{a; + &) =
= W(xys X2y s Xp» Xg+1) (@5 + 8)

according to the choice of f,(t); moreover, Y, (¢) fulfils the initial conditions Y{"(a; +

2) Moreover, Bo &+ 0 since otherwise Wi(x, X3, ..., X, Y4) (a;44 — &) = 0; hence
W(xy, Xg5 «o0y X4 0541) (0) + O implies W(xy, X, ...y Xpo Uj41) (t) %= 0 and conversely.
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+¢&) =x{1,(a; +e)fori=0,1,..., k — 1, which implies immediately
Y®(a; + &) = xN4(a; + ¢)

(the derivative of Y, being taken from the right, the derivative of x,, from the left).
The continuity of the k-th derivative x,‘ﬂ(t) at a_; — ¢ is proved quite analogously.

2. In this article we shall generalize Theorem 1 assuming that the functions
Xys X3, ..., X; have continuous derivatives of the s-th order, s = k and that the matrix
from Theorem 1 has s + 1 rows. (For s = k we get Theorem 1.) We shall prove

Theorem 2. Let a, b be real numbers, a < b, k, s positive integers, s = k. Let
functions x,(t), x,(t), ..., x,(t) have continuous derivatives of the s-th order in the
interval (a, b) and let the matrix (1) be of the rank k for all t & (a, b).

Then there exists a function x, . (f) with continuous s-th derivative in (a, b) such
that the matrix

xi(6), x2(1), ..oy x(1), Xeaa(t)
X0 X0, o ) Xk

.............................

xP(8), x$A(t), ..., x$(t), x4(2)
is of the rank k + 1 for all t € (a, b).

Proof will follow the same lines as that of Theorem 1. If a,, m=0, +£1, £2,...
are the points from Lemma?®) then again W(xy, x,, ..., %) (¢) * 0 for all t €(a, b),
t+a, m=0, +1, +2, .... We start constructing X, +4(t) at a, again, choosing
numbers ab, i = 0,1,2, ..., s, a function u(t) and g, > 0 so that
(i) the matrix

x1(ao), x3(ao), .., xao)s
xi(ao), *x5(aq), ..., xi(ao)s

xP(ao), x$ (ao) s X ag), %
has the rank k + 1;

(ii) u(r) has continuous s-th derivative;
(i) uP(ap) = ap, i =0,1,2,...,5;
(iv) the matrix

x1(6), x3(t), ..., xu(t), u(t)
xi()), x3(), ..., xi(t), w(t)

<O, 0, ..., x0(t), ¥(1)

has the rank k + 1 for all t € {ay — &, ag + €.

3) Actually, the assumptions of Lemma are the same as those of Theorem 2.
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The functions x(f), x,(t), ..., x\(?), u(t) satisfy the assumptions of Lemma on
(a0 — €0, @o + &). Hence there is & > 0 such that W(xy, X3, ..., X, u) (t) + O for
all t % aq, teay — & ao + &) *); for t = a, we have (iv).

Put xy.((t) = u(f) for te<ao — &, ag + &). If x;,,(t) is defined (and satisfies
Theorem 2) for all te {a_; — ¢, a; + &),

3 W(X1, X25 2oy Xps Xg41) (1) £ 0

for t + a,, m=0, +1, +2,..., +j, let us consider again equation’ (3) where the
function f,(t), J = +j is defined in the following manner:

(') f; is defined and has continuous s-th derivative in the intervals <a; a;.+,),
{a-;-1, a_;) respectively;
(ii") f5(?) * O in its interval of definition;
(iii") the values f{?(a; + &), f¥)(a-; — &) are given so as to satisfy equations
di

r W(x15 Xz «oos Xio Xi4 1) (@ + €) = f1a; + &)

d! ;
oy W(xys Xy «es Xps Xiyq) (a=; — &) = fNa_; — &),

i=0,1,...,s — k(for i = 0, this equations are equivalent to (2)).)
The solutions Y,, Y_ with the corresponding initial condition (4) have then contin-
uous s-th derivative (since the same holds for x;, X, ..., X, f, ;) and, moreover,

YP(a; + &) = x{2,(a; +€), YO(a_; —¢) = x{),(a-; — ¢)
fori=0,1,2,...,s. Infact, fori = 0, 1, ..., k — 1 these relations coincide with the
initial conditions; for i = k, k + 1, ..., s we get them successively from (iii’).

Let us now choose numbers ,aj-ﬂ, pa"_j_l, i=012...,s,p=k+1,k+2,...
...,8 + 1 so that

Xy(@j41)s -es xk(aj+1)’ k+1“?+1’ ey s+1a§?+1
(5) ‘ X1(@j41) oo X@i01)s k1®ie1s oo sr1%en +0 °)

(s) s s
x(f)(ajﬂ), cees Xi (aj+l)’ k+1%j+1s <o s+1%j+1

and similarly for a_;_,. Let ju;.+4(t), p = k + 1,k + 2,..., s + 1 be functions that
fulfil:

(i") they have continuous s-th derivative in {a;, @;4,>, {a_;-2, a_;) respectively;

4) Otherwise a, would be an accumulation point of the zero points of the Wronskian which
contradicts Lemma.
5) This does not contradict (ii") since in particular W(xy, X3, ..., X4 1) (@; + &) =0 +

F Wixy, x35 000 X4 1) (@ ; — 2).
) This is possible since the rank of (1) fort=aj4qisk.
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(i) uS21(a41) = p2iers 4 D-t(acjoy) = pat;_y for i=0,1,2,...,s5, p=k +
+1L,k+2,..,5s+ 1.
Again there exists ¢’ > 0 such that
(6) W(X15 X2y e Xpp kb 18t 15 - oos s 1¥j41) () + 0

W(X1s X35 eees Xio ket 1¥mjmgs ooos s rt—j—qg) () ¥ O

holds for all ¢ from the interval <{a;.,; — €, a;,, + &), {a_j-1 — €, a_;-1 + &),
respectively.

Now put

k s+1
vje1() = X Box(t) + 3 By piua()
p=1 - p=k+1
the constants f,, p = 1,2, ..., s + 1 being the solution of the system
s+1

k
Zlﬁpxﬁ,‘)(aﬂ.l - 3’) + z":+ IBp puy-()- 1(aj+l - 8’) = Y.S.‘)(aj+l - 8') ’
p= p=

i =0,1,...,5") Since the determinant of the system is nonzero according to (6)
there exists a unique solution By, B,, ..., Bs+1. The constants .y, ..., Bs+ are not
simultaneously equal to zero. In fact, if :

Dj+ l(t) = p;klﬁpxp(t)

then also ‘

Yiaj41 — €) =p§=:1ﬁ,,xﬁ,"’(a,~“ - ¢)
i=0,1,2,...,s However, this means that

W(xy, Xy ooy X Ys) (aiH -&)=0

which is not possible according to the construction of Y, .
Further, the definition of g, implies that

Y-(i-i)(aj+1 - 3') = ”ff?u(aj“ - 8') s
i=012,...,s.

Analogously we define the function v_;_,(t) in the interval (a_;_; — &, a_;_, +
+ ¢’). (It may be necessary to make &’ smaller.)

7) We have here the derivatives from the left and from the right analogously to the proof of
Theorem 1.
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Let us now put
Y.(f) intheinterval {a; + ¢ a;.; — &)
sennlt) = v;+,(f) inthe %nterval ajoy — €, 8544 + &)
k1 Y_(f) intheinterval <a_;_, +¢,a_; — &)
v_j_4(t)in the interval {a_;_; —¢&,a_;_; +&).

Continuing like that we can define x;,(f) for all 1€ (a, b). It is evident that all
assertions of Theorem 2 hold, in particular the continuity of the s-th derivative of
Xy +1(t). Moreover, it is evident that even

W(Xy, X35 ..o Xi4q) (1) £ 0

forall te(a,b), t + a,, m=0, £1, +2,...
3. From the both Theorems there follows

Corollary. Let be given functions x,(t), x(t), ..., x,(t) with continuous derivative
of n-th order in (a, b), k < n. Let the matrix

x,(1),  xy(1), e X(1)
xi(1),  x5(1), e Xi1)

.............................

xPO(), x70(), .., xTU(0)
have the rank k for all t € (a, b).
Then there exists a differential equation

M+ oa,()x"V + o+ a, ()X +a()x=0

with continuous coefficients a|(t),i = 1,2, ..., n such that the functions x(t), x,(t), ...
...s X}(t) are its solutions on (a, b).

Proof. Completing the system of functions x,(t), x,(¢), ..., x,(f) according to
Theorem 2 (n — k)-times we get a system X,(¢), x,(t), ..., x,(t) with the Wronskian
different from zero for all t € (a, b). The functions x; (1), ..., x,(f) have continuous
derivatives of the (n — 1)-st order-

To be able to write the required differential equation, it is sufficient to use Lemma 6
[2, p. 76]. According to this Lemma, to any function x(f) with continuous k-th
derivative in (a, b) and to an arbitrary sequence of numbers ¢, >0, p=0,1,..,,
lim ¢, = 0, there exists a function &(t) analytic in (a, b) and such that for the difference

40 = 0 = £0)

there is 49(f) < €, i =0,1,. .,k for te(a,a_,) U <a, b). It is evident that by
a proper choice of numbers ¢, it is possible to keep — after replacing x,,+q(t) by
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&gt 4 =1,2,...,n — g — the inequality for the Wronskian, viz. W(x,, X5, ...
cvos Xi» Exa 15 -+ &a) (1) #+ 0. Now the required equation can be written in the form

W(xl, x2, ceey x,,, ék+l’ ceey é", x) (l) = 0

whose all coefficients are continuous in (a, b) and the coefficient at x™ is different
from zero since it is equal to W(xy, X2, ..., Xp» Exr 15 -5 &) (1)

Author’s Note. The paper being already in print, the author’s attention was drawn to the
paper by Ascoli, G.: Sulla decomposizione degli operatori differenziali lineari. Revista (Univ.
Nac. Tucuman), Ser. A, 1(1940), pp. 189—215, where (p. 210) a theorem identical to Corollary
of the present paper is proved. However, the method of Ascoli yields just one equation (uniquely
determined by the given functions) which has the required properties.
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