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Časopis pro pěstování matematiky., roC. 95 (1970), Praha 

M-POLARS IN LATTICES 

JÁN JAKUBÍK, Košice 

(Received October 13, 1968) 

R. D. BYRD [2] introduced the concept of the M-disjointness for lattice ordered 
groups and studied the properties of M-polars. One of the main results of the paper 
[2] is the following theorem: 

(B) Let M be a convex 1-subgroup of a lattice ordered group G. The system P of 
all M-polars of G partially ordered by the set-inclusion is a complete Boolean 
algebra. 

The theorem (B) generalizes the well-known results on polars in K-spaces (KANTO-
ROVIC-VULICH-PINSKER [7]) and in lattice-ordered groups (SIK [8]). The aim of this 
note is to show that the theorem (B) is a corollary of a more general theorem that is 
valid for any lattice. 

We shall use the standard notations for partially ordered sets and partially ordered 
groups (cf. [1]). Let G be a lattice ordered group. For S c G w e put S+ = {x e S : 
: 5 jf£ 0}. S is said to be convex, if from su s2e S9xeG9sl ^ x ^ s2 it follows x e S. 
Let M be a convex /-subgroup of G, S c G. Denote (cf. [2]) 

1) p(S, M) = {xeG: \x\ A \s\eM for any se S} . 

The set p(S, M) is the M-polar (of S). Let P(M) be the system of all M-polars (partially 
ordered by the set-inclusion). For any set S c: G+ we put 

(2) p0(S, M+) = {x eG+ : x A S e M+ for any s e S} . 

Let P0(M
+) be the system of all sets p0(S, M+); this system is partly ordered by the 

set-inclusion. 

1. The mapping (p(p(S, M)) = p(S, M)+ is an isomorphism of the partially 
ordered set P(M) onto P0(M

+). 

Proof. From (1) and (2) it follows that p(S,M)+ = p0(S',M+), where S' = 
= {\s\ : s 6 S}. Hence <p is a mapping of the system P(M) onto P0(M

+). If P(Sl5 M) a 
c p(S2,M), then, clearly, p{St, M)+ ^ p(S29M)+. According to (1) p(S, M) = 
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= p(S\ M) for any S c G. Let S t , S2 c G, p(St, M)+ c p(S2, M)+ . Then for 
x e p(Si9 M) we have |x| e p0(S[9 M+ ) , hence |x| e p0(S29 M + ) and this implies by (l) 
and (2) x 6 p(S29 M), hence p(Sl9 M) c p(S29 M). Since the /-subgroup p(S9 M) is 
generated by p(S9 M) + , the mapping q> is one-to-one. This shows that <p is an iso
morphism. 

Now let Lbe any lattice and let M be an ideal of L. We shall call M a regular ideal, 
if there exists a congruence relation <P on the lattice L such that M is a class of the 
corresponding partition of the set L(i.e., if for any me M, x e L the equivalence 
x -= m(<P) ox eM holds). For each subset S <= Llet us put 

p0(S9 M) = {xeL'.x A s e M for any s G S} . 

Let M be a regular ideal of L and let #(M) be the least congruence relation on L 
such that M is a class of the corresponding partition of the set L. Let L = L/$(M) 
be the factor lattice and for x e L denote by x the class of all elements of L that are 
congruent to x mod $(M). If S c L, let S = {s : seS}. Clearly M is the least 
element of the partially ordered set L. For each S cz L denote 

p0(S) = {x e L: x A s = M for any s e 5} . 

Let P0(M) and &0(M) be the system of all sets p0(S9 M), or p0(S)9 respectively; the 
systems P0(M) and 0>O(M) are partially ordered by the set inclusion. 

2. Let M be a regular ideal of the lattice Land S c L. Then 

x ep0(S9 M)oxep0(S). 

Proof. Let x epQ(S9 M), seS. Then there exists stes n S and for this element 
x A Sj = m e M holds, hence X A S = X A S 1 = X A S 1 = M , and therefore x 6 
G p0(S). Conversely, let x e p0(5)> seS. Then we have seS9 hence X A S = X A S = 
= M, thus x A 5 G M and x e p0(S9 M). 

3. Let M be a regular ideal of the lattice L. The mapping 

<p(p0(S9 M)) = p0(S) 

is an isomorphism of the partially ordered set Po(M) onto @0(M). 

Proof. Clearly q> is a mapping from P0(M) onto &0(M). Let Sl9 S2 c L, 
p0(Sl9 M) c: p0(S29 M) and let x e p0(Sl). According to 2 we then have x G p0(Su M), 
hence x e p0(S2i M) and x G p0(^2); therefore Po(^i) <= Po(52)- I n a similar manner 
we can prove that from p0(Sx) a p0(S2) it follows p0(S1, M) c: p0(S2, M). 

Let x e PO(SIJ M), x £ p0(
S2> M); hence x e p0(St). If x G p0(S2), then according 

to 2 x G po(S2, M), which is a contradiction; therefore <p is one-to-one and thus <p 
is an isomorphism. 
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^* 0*o(A-f) is a complete Boolean algebra. 

This follows from the Theorem 7, [5] and from the fact that {Po(^) :X cz £} *= 
= {Po(Po(¥)) : F c I } (since obviously p0(p0(Po(%))) = Po(-?) f o r anY % <z £ 
holds). 

From 3 and 4 we obtain: 

5. Theorem. Let M be a regular ideal of a lattice L. Then P0(M) is a complete 
Boolean algebra. 

6. Each ideal of a distributive lattice is regular. 

This is well-known (cf., e.g., [6], Lemma 1 and Remark 3 on the p. 252). 

If G is a lattice ordered group, then the lattice (G; ^ ) is distributive (cf. Birkhoff 
[1]). Let M be a convex J-subgroup of G. Then M + is an ideal of the lattice (G+ ; g ) , 
hence according to 5 and 6 P0(M

+) is a complete Boolean algebra, and therefore 
by 1 P(M) is a complete Boolean algebra, too. Hence we have proved the theorem (B). 

By studying the structure of lattice ordered groups the concept of a carrier (JAFFARD 

[4]) is very useful. It is defined by means of disjointness as follows: let G be a lattice 
ordered group, ae G+; then the carrier aA of the element a is the set of all elements 
b e G+ such that for any x e G+ the equivalence 

b A x = O o a A x = 0 

is valid. 

Obviously the concept of the carrier can be used for elements of any lattice with 
zero element (cf. [5]) and, analogously as in the case of M-polars, it can be generalized 
as follows: 

Let M be an ideal of the lattice L. For any a e L let a A(M) (the M-carrier of a) be 
the set of all elements b e L satisfying 

bAxeMoaAxeM 

for each x e L. Let E(M) be the system of all M-carriers of elements of L. Similarly as 
in the case of carriers (cf. [4]) we define the partial order g in the set E(M) by the 
rule: aA(M) ^ bA(M) if and only if a A X e M implies b A X e M for any x e L. 

7. Theorem. Let M be an ideal of a distributive lattice L. The partially ordered 
set E(M) is isomorphic to the partially ordered set of all carriers of the factor 
lattice L = LI<P(M). 

Proof. Let x, y e L. From 2 it follows (by putting S = {y}) 

(3) x A j > e M < = > x A j r = M . 
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The equivalence (3) implies (since M is the least element of L) 

aл(M) = a' 

for each a e L. Hence the function <p : aA(M) -* aA(M) is a mapping of the set E(M) 
on the set E consisting of all carriers of the lattice L. Moreover by (3) 

aA(M) ^ bA(M)oaA ^ BA 

holds and this shows that <p is an isomorphism. 

References 

[1] G. Birkhoff: Lattice theory, revised edition, Amer. Math. Soc. Colloquium Publ. Vol. 25 
(1948). 

[2] R. D. Byrd: M-polars in lattice ordered groups. Czechosl. Math. Journal 18 (93) (1968), 
230-239. 

[3] L. Fuchs: Partially ordered algebraic systems. Oxford—London—New York—Paris, 1963. 
[4] P. Jaffard: Theorie des filets dans les groupes reticules. C R. Acad. Sci. Paris 230 (1950), 

1631-1632. 
[5] J. Jakubik: Ober ein Problem von Paul Jaffard. Archiv der Mathematik 14 (1963), 16—21. 
[6] J. Jakubik: CHCTCMM OTHouieHHH KOHrpyaHTHocin B CTpyKTypax. HexocJioB. MareM. »cypHaji 

4 (79), (1954), 248—273. 
[7] JI. B. Kawnopoew, E. 3. ByAux H A. F. IIuHCKep: <DvHKUHOHaJibHbiH aHajiH3 B nonyynopHAO-

neHHMX npocTpaHCTBax. MocKBa 1950. 
[8] F. Sik: K TeopHH cTpyKTypHO ynopHfloneHKbix rpynn, HexocnoB. MaTeM. McypHaJi 6 (81) (1956), 

1—25. 

Author's address: KoSice, N^m. Febru£rov6ho vffazstva 9 (Vysokd §kola technickd). 

255 


		webmaster@dml.cz
	2012-05-12T03:14:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




