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PARALLEL DISPLACEMENT OF VECTORS 
IN A RHEONOMOUS RIEMANNIAN SPACE 

BRUNO BUDINSKY, Praha 

(Received July 1, 1967) 
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In this paper we shall study some generalizations of the parallel displacement of 
vectors in a Riemannian space for the case of a rheonomous Riemannian space. 
A simple physical application will be shown at the end of this paper. We shall follow 
mostly the terminology and notations of [4]. Latin indices always take all positive 
integral values from 1 to m, m > 1. The symbol Rm denotes the arithmetical space of 
ordered sets of m real numbers, with natural topology. We shall denote {xa} or 
{xa, t} a current point of the space Rm or Rm+l respectively. 

Let Wm+1 be a differentiable variety of (m + 1) dimensions. Let us denote [xa, t] 
a current point of this variety the coordinates of which are xa, t. For the sake of 
simplicity we shall suppose that there exists a one-to-one mapping [xa, t] -> {xa, t} 
of the variety Wm+1 on some domain Q cz JRm+1 where Q = O x I, O e Rm, 
I c Rt. 

Definition. A variety Wm+ x is said to be a rheonomous Riemannian space r — Vm(t) 
whenever the following suppositions are fulfilled: 

1, All admissible transformations of the parameters xa, t of the variety Wm+l are 
described by all possible functions of the third class 

(1) xa~xa(xb)9 xbeO, 

(2) I = t + C , tel, C = const., 

which realize a one-to-one mapping of the domain 0 or the interval I on a domain 
from JROT or an interval from Rt respectively. 

2. There are given m 2 functions of the second class 

(3) 9ij = 9u(xa,t), {xa,t}eQ, 
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which define, at every point of the variety Vw(*o) <= Wm+i, t0el9 described by the 
equation t = t0 = const., the covariant coordinates of the positively definite metric 
tensor. 

Remark. Let Vm be a Riemannian space and 0 the domain of its parameters. 
According to the preceding definition we may consider the cartesian product Vm x I 
as a rheonomous Riemannian space. We shall call it a stationary space r — Vm(t). 

Let us agree that a tangent space or a tensor or a connection defined at the point 
[xa, t] of a space Vm(t) will be said to be the tangent space or tensor or the connection 
at the point [xa, t] of the rheonomous Riemannian space r — Vm(t) respectively. 
Similarly, we may consider a tensor field of a rheonomous space r — Vm(t) and define 
the covariant derivative of this field. If, for example, the functions of the first class 

(4) va = va(x\ t) , {x\ t}eQ9 

define a vector field in r — Vm(t)9 then the covariant derivative of this field is defined 
by the relation 

<5> D--a£+{."*}'• 
where J I are the so-called Christoifel symbols. 

1-fcj 
Definition. A curve in the rheonomous space r — Vm(t) is said to be a trajectory 

whenever its parametric equations may be written in the form 

(6) xa = xa(T), t=T9 TeJal, 

where xa(T) are functions of the first class and / an open interval. A trajectory 
described by the parametric equationes 

xa = xa
0 = const., t = T, Tel 

is called a parametric t-curve. 

The notion of the parametric f-curve is evidently invariant with repsect to the 
admissible transformations (l), (2). Likewise, the length s of .the trajectory (6) 
between its two points [xa(Tx)9 T j , [xa(T2)9 T2], defined by the relation 

is an invariant notion with respect to these transformations. If the trajectory (6) is 
a parametric f-curve then s = 0. The tangent vector of the trajectory (6) at its point 
[xa(T), T] is meant to be the vector with the contravariant coordinates dxa(T)jdT. 
If this vector is non-zero for all Te J then the trajectory is said to be regular. 
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We may define the absolute derivative of the tensor field along the trajectory (6) 
in the usual way. In the case of the vector field (4) this derivative is defined by the 
relation 

/o \ * r^ a dva ( a) k dxc 

(8) DTva = — + \ \vk — . 
dT \c fcj dt 

We shall denote by Dtv
a the absolute derivative of the vector field (6) along the para­

metric f-curve. Evidently, we may write 

dxc 

DTva = Dcv
a~ + D,vfl. 

dT 

We may show that the absolute derivative of the sum or the difference or the product 
of two tensor fields are given by the same rule as in ordinary differentiation. 

Definition. We shall say that the vectors defined in the rheonomous space r — Vm(t) 
at the points of the trajectory (6) by means of functions of the first class 

(9) va = va(T) , Te J 

are pseudoparallel whenever the relation 

(10) D rv
f l = 0 , 

holds for all T e / . 

Definition. The trajectory (6) is said to be a pseudogedesic whenever the condition 

/ t 1 > _ dxa dx*dx' 
(11) D ^ = ° ' ^ ^ + ° ' 

holds for all T e J . 

The system of equations (10) may be interpreted as a system of m differential 
equations of the first order for m unknown functions va(T). From writing out this 
system in Cauchy's canonical form 

\ž> c\ d Г 

dt>" r - "* A~b 

áT 

there follows the unique existence of the solution of the system for initial conditions 
v% =s va(T0), where T0 e l . We also say that the vector va

0 undergoes a pseudoparallel 
displacement along the trajectory (6) uniquely. Similarly, by means of (11) we may 
verify the unique local existence of a geodesic which goes through a given point of 
the rheonomous Riemannian space and which possesses a given nonvanishing tangent 
vector at this point. 
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Theorem. The scalar product of two vectors which undergo a pseudoparallel 
displacement along the trajectory (6) is generally not constant. 

Proof. Let us denote Gab = Dtgab. Evidently, at all points of the trajectory (6) 
the following equation holds 

dxc 

(12) DTgab = Dcgab — + Dtgab = Gab. 
aT 

Let two fields of pseudoparallel vectors be defined along the trajectory (6) by means 
of functions va(T), wb(T)9 Te J. Then 

(13) Drv
fl = 0 , DTwb=-0. 

Let us investigate if the function/(T) = Gabv
awb is a constant on J. From (12) and (13) 

we have 

*L~Gabv
awb. 

dT 

Now it is easy to see that in a general case/ 4- const. So the theorem is proved. 

Remark. In a stationary rheonomous Riemannian space is Gab = 0 and / -= 
= const., in accordance with the well-known case of parallel displacement of vectors 
in a Riemannian space. 

In a rheonomous space r — Vjt), let us consider all regular trajectories that go 
through two different points [xa

9 T_] and [xfl, T2] and let us find among them 

a trajectory of extreme length, i.e. a trajectory along which the functional (7) attains 
its extreme value. If there exists such regular trajectory then the corresponding 
functions xa(T) satisfy the system of Euler's differential equations 

(i4) ^ _ A _ _ . = 0 , 
v ' dxc dTdxc 

where 

/ dxa 

F = J{gttbi"ib) * 0, * • - - £ = . 
dT 

We calculate easily that 

3F __ 8cgabx
axb 

ôxc 2Ғ 

jì_ 
dT 

dF _ d gacx' _ fd 1 \ . _ ! / , _ . . .b . .„ „,ч 

eř " ďr ~Г ~ Vďr F)9°^ + F {b9ac t íac 9ac } * 
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Using the last two equations and (8) for the modification of the system (14) we obtain 
the following form of Euler's equations: 

/,c\ T-. <*xa ^fldx* dxa d t If dx>dxc\ „ 
(15) DT +Ga

b _ - — - _ In lgbe— — \ = 0. 
dT dT d T d T V \ dT dT/ 

If we call the (evidently regular) trajectory which is the solution of the system (15) 
an E-geodesic then we may assert that every regular trajectory which is a trajectory 
of extreme length in a rheonomous space r — Vm(i) is also an Is-geodesic. 

Euler's equations (15) form a system of differential equations of the second order 
in which the second derivatives are not explicitly expressed. Let us find their explicit 
expressions. If we write, for brevity sake, 

^ dxfl
 a dxa 

D r = za, = va 

dT dT 
and denote by the symbol Qa the sum of terms which are on the right-hand side of 
the a-th equation and do not contain the unknown za then we may write (15) in the 
form 

(16) za-±~vavbz
b = Qa. 

F2 

By a rather longer calculation we may find out that the determinant of the system 
(16) is zero. Therefore, in the system od Euler's equations (15) we cannot express 
explicit second derivatives uniquely and transform the system into the equivalent 
canonical form. But that means that the usual initial conditions secure neither the 
uniqueness nor even the existence of an Is-geodesic. Further, in a general case, the 
pseudogeodesic is not a trajectory of extreme lenght. 

Let us suposse that the vector field (9) consits wholly of nonvanishing vectors. The 
set of all directions which are defined by these vectors will be called shortly the 
direction field (9). If there exists a function /(T), Te J, f(T) 4= 0 every where in J, 
and such that the vector field defined by the functions 

(17) wa=f(T)va(T) 

is composed of pseudoparallel vectors then we say that the direction field (9) is 
pseudo parallel. 

Theorem. The direction field (9) is pseudoparallel exactly in that case when there 
exists such a function k(T)9 Te / that for all Te J the equation 

(18) DTva = k(T)va 

holds. 
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Proof. Let us suppose that the direction field (9) is pseudoparallel. Then there 
exists such a function f(T), non-vanishing everywhere in J, that for all Te J 

(19) D r(/(T) va) = 0 

holds. 
Using the notation 

VrfJT) _ k(T) 
f(T) -k{T)' 

we arrange (19) easily into the form (18). Conversely, it is easy to show that (19) 
follows from (18) and thus complete the proof. 

We shall use the preceding considerations to introduce another generalization of 
the parallel displacement. 

Definition. Vector field (9), defined along the trajectory (6), is said to be a d-parallel 
field whenever it satisfies the following conditions: 

1. The direction field (9) is pseudoparallel. 
2. The magnitude of all vectors of the given field is a non-zero constant. 
Vector field (9) which consists of non-zero vectors only is <5-parallel exactly in that 

case when there exists such a function k(T) that 

(20) DTva = k(T) va 

and 

(21) DT(gflftvV) = 0 . 

If we put (12) and (20) into the equation (21) then we calculate easily the function k(T) 
and find out that equation (20) may be written in the form 

(22) DTv" + I ^ L V = 0 
2gbcv

bvc 

or, conveniently, in short form 

(23) 5Tva = 0 . 

Conversely, it is obvious that a vector field which satisfies the condition (22) or (23) 
is a 5-parallel field. By means of (22) we may easily verify that under usual initial 
conditions the <5-parallel displacement of a vector along a trajectory may be realized 
uniquely. It may be shown that a <5-parallel displacement does not generally preserves 
the scalar product of two vectors which undergo the displacement. The system of 
differential equations 

dxa 

(24) 8 r — = 0 V ; dT 
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describes a trajectory which we shall call a 8-geodesic. From the writing out of the 
system (24) into Cauchy's canonical form follows that there exists exactly one S-
geodesic which goes through a given point in the rheonomous Riemannian tangent 
vector at that point. We shall show another generalization of the parallel displacement. 

Definition. Let Ql(T)9 Te J be a quadratic tensor field defined along the trajectory 
(6). We shall say that the vector field (9) is generally-parallel with respect to the 
tensor field Qa

b(T) if the equation 

(25) DTva=Qa
bv

b
9 

holds for all Te J. 

Let us find the condition for the tensor field Qb
a that the generally-parallel displace­

ment defined by the equations (25) preserves the scalar product of any two vectors 
which undergo that displacement. Such a displacement will be called a H-parallel 
displacement. 

Let va(f)9 wb(T) be two vector fields which are in the above stated sense H-parallel 
along the trajectory (6). Also, 

Drv
a = Qavc , DTwb = Qb

cw
c , DT(gabv

awb) = 0 . 

Using the first two equations for the modification of the third equation we obtain the 
relation 

vawb(Gab + Qab + Qba) = 0 . 

Hence, the tensor Qab may be written in the form 

(26) Qab= ~\Gab + Eab9 

where Eab is any antisymmetric tensor. Conversely, it is easy to verify, supposing (26), 
that the parallel displacement (25) is an H-parallel displacement. 

If Eab is a zero tensor at all points of the trajectory (6) then the H-parallel displace­
ment is called a special H-parallel displacement. In this case the equations (25) are 
of the form 

(27) Drv
a + \Ga

bv
b = 0 . 

From these equations we conclude that under usual initial conditions a given vector 
may undergo an H-displacement along the trajectory (6) uniquely. Further, we may 
introduce the notion of a special H-geodesic and prove that there exists exactly one 
special H-geodesic which goes through a given point of the rheonomous space 
r — Vm(t) and possesses a given tangent vector at that point. 

If the rheonomous space r — V(t) is stationary then the relation Gab = 0 holds 
true everywhere. But then the equationes (10), (22) and (27) are mutually identical. 
So the following theorem holds true: 

40 



Theorem. Let r — Vm(t) be a stationary rheonomous Riemannian space. Then the 
pseudoparallel, 8-parallel and special H-parallel displacements along a given 
trajectory nutually merge. 

We shall give a simple physical interpretation of the introduced concepts from the 
standpoint of classical mechanics. First, to the parameter t we shall assign the physical 
meaning of time. After all, it is consistent with the equation (2) which describes the 
admissible transformation of this parameter. We shall consider the rheonomous space 
r — Vm(t) as an m-dimensional Riemannian space the metric of which at every point 
is a function of time. We shall interpret the parametric equations (6) as equations of 
motion of a point that is moving in r — Vm(t) where [xa(T), T] is the so-called position 
of the moving point in time T We shall call the vector 

-MI) or 5T-MD 
dT dT 

the velocity vector or the acceleration vector respectively of the point moving in 
time T. 

Remark. We may imagine geometrically the motion of a point in r — Vm(t) as 
a movement of a "very small motorcar", for example on an expanding sphere. The 
length of the corresponding trajectory that is determined by the relation (7) is the 
difference of readings on the tachometer of the car at the times T2,TX. The length of 
the trajectory which is a part of the parametric t-curve (the car is "stationary") is 
zero. 

In a rheonomous space r — Vm(t) let be given a vector field, so-called field of force, 
by means of functions 

pa = pa(x\t), {x\t}eQ. 

In our considerations we shall suppose that the motion of every point in r — Vm(t) 
is described by the system of differential equations 

dxa 

(28) M 5 r — = p\ 
v dT 
where M = const. > 0 is the so-called mass of the moving point. It is easy to trans-r 
form the system (28) into Cauchy's canonical form. From it there follows immedia­
tely: 

Theorem. In a rheonomous Riemannian space a mass point of given initial posi­
tion and non-zero velocity moves in the field of force uniquely. 

The next theorem follows from (28) and (23). 
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Theorem.!/ no force is acting on a mass point of a rheonomous Reimannian space, 
i.e. pa = 0, then this point moves along a 8-geodesic with a constant scalar velocity. 

The scalar function 

/o«\ r* - w dx f l dxb 

(29) E*« = iM0«> "77 7 : 
dT dT 

which is defined along the trajectory (6) is called the kinetic energy. If we differen­
tiate each side of the equation (29) we obtain the relation: 

/™\ dJSkin 1 m M dxfl dxb
 w A dxfl\dxfe 

dT dT dT V d : r / dT 

If no force is acting on the mass point the trajectory of which we investigate, then, 
according to (30), (28) and (22), 

dE 
—^2. = 0 or £kin = const. 

dT 

So the following theorem holds true: 

Theorem. The kinetic energy of a mass point on which no force is acting in 
r — Vm{t) is constant. 

Similarly, it is possible to generalize further theorems of classical mechanics of the 
mass point. Let us state without a proof that the equations (28) may be written in the 
following equivalent form: 

d dEkin dEkin __ _ „ , n/I , „ „ „ , x 

dГ ôxe õxe 

, , / , - , 1 GbcX
bXc\ 

= 9eaP" + M [Gea - - gea - ^ ^ 
\ 2 gbcx"xcJ 

In the case when the rheonomous Riemannian space is stationary the second term 
on the right-hand side of the preceding equation is zero. So we obtain the well-known 
Lagrange equation of II. kind. 
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